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Computational analysis 
of the sequence‑structure relation 
in SARS‑CoV‑2 spike protein using 
protein contact networks
Pietro Hiram Guzzi 1,5*, Luisa di Paola 2,5, Barbara Puccio 1, Ugo Lomoio 1, 
Alessandro Giuliani 3 & Pierangelo Veltri 1,4

The structure of proteins impacts directly on the function they perform. Mutations in the primary 
sequence can provoke structural changes with consequent modification of functional properties. 
SARS‑CoV‑2 proteins have been extensively studied during the pandemic. This wide dataset, related 
to sequence and structure, has enabled joint sequence‑structure analysis. In this work, we focus on the 
SARS‑CoV‑2 S (Spike) protein and the relations between sequence mutations and structure variations, 
in order to shed light on the structural changes stemming from the position of mutated amino acid 
residues in three different SARS‑CoV‑2 strains. We propose the use of protein contact network (PCN) 
formalism to: (i) obtain a global metric space and compare various molecular entities, (ii) give a 
structural explanation of the observed phenotype, and (iii) provide context dependent descriptors of 
single mutations. PCNs have been used to compare sequence and structure of the Alpha, Delta, and 
Omicron SARS‑CoV‑2 variants, and we found that omicron has a unique mutational pattern leading 
to different structural consequences from mutations of other strains. The non‑random distribution 
of changes in network centrality along the chain has allowed to shed light on the structural (and 
functional) consequences of mutations.

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has accounted for over 657 million infections 
and over 6.8 million deaths at the end of the 2022 (Data from https:// covid 19. who. int)1. SARS-CoV-2 is a large 
enveloped coronavirus (family-Coronaviridae, subfamily-Coronavirinae) with non-segmented, single-stranded, 
and positive-sense RNA  genomes2. SARS-CoV-2 is composed of the spike (S), nucleocapsid (N), membrane (M), 
and envelope (E) proteins, of 16 non-structural proteins (NSP1-NSP16), and six accessory proteins (NS3, NS6, 
NS7a, NS7b, NS8, and ORF10). The Spike protein (S) infects human cells by binding the ACE2 human  receptor3–5. 
During the pandemic, many mutant strains emerged, the vast majority of which had a very short life span and 
limited spatial distribution. In very few cases, the emerging mutant became the most common strain, with the 
sudden disappearance of the other variants.

Viruses, with their often small genomes and error-prone replication mechanisms, adapt very rapidly to 
changing micro-environmental cues. Moreover, the huge number of replications make it possible to observe their 
‘natural evolution in real time’ as they acquire antiviral drug resistance or mediate persistent infection through 
escape from T and B cell immune system responses to  infection6. This behaviour can be equated with a sort of 
Darwinian struggle for life in which ‘the fittest strain’ is the most efficient in terms of reproductive success. In the 
case of viruses, reproductive success is strictly related to its infective power, i.e. on the ability to enter into the host 
cells and reproduce. One consequence of this is the tendency of emerging infections to become milder in terms 
of their pathological effect (in some cases creating a symbiotic  relationship7,8) thereby enabling more rapid dif-
fusion across host (in this case human) populations. The above considerations allow to understand why proteins 
at the interface between viral particle and host cell are the key to understanding the evolution of the viruses.
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The importance of S protein for infectivity and the consequent spread of the SARS-CoV-2 virus, and the 
fact that vaccines are tailored upon this protein, made S protein the privileged point of departure for the study 
of natural history of viruses in structural/bioinformatic terms. Sequence analyses of S protein have revealed 
the emergence of new SARS-CoV-2 mutation hotspots whose random or selection-driven character is hotly 
 debated1,9–11. Here, we focus on a number of selected variants: Alpha, Beta, Gamma, Delta, and Omicron. These 
variants have different transmission rates, evolutionary patterns and levels of vaccine resistance and became 
predominant one after the other. Alpha prevailed over the original Wuhan strain, then Delta overcame Alpha and 
Omicron became virtually the only one left. The Omicron variant, identified in February 2022, has spread faster 
than earlier  variants12,13 while its effects have proven to be less severe than previous strains. The Delta variant, 
isolated in a region of India in October 2020, has emerged as the dominant global variant alongside the  Alpha14.

Since April 2021, the literature has been enriched by many works focusing on the impact of variants on SARS-
CoV-2 S protein  modification15–19 and the importance of mutations at the sequence level has been considered a 
crucial step in the analysis and prediction of variants. These studies were made possible thanks to the availability 
of a large volume data sets. The study of mutational landscape at the sequence level has been facilitated by the 
large volume of data stored in public databases (such as the GISAID database)20. On the contrary, the impact 
of the mutation at the structural level suffers from the lack of experimental data on protein structures. Existing 
structures stored in PDB  database21 are mainly related to various structural domains of the Spike protein and 
its  mutations17.

We present a systematic sequence-structure analysis of Spike protein for the three variants Alpha, Delta, and 
Omicron. We analysed the variants according to the following procedure: (i) we first checked the mutual differ-
ences between strains in sequence space; (ii) we computed the between strain differences in terms of residue con-
tact network distances; (iii) we checked the existence of a general linear relation between sequence and structure 
metrics; (iv) we built up a phenomenological sequence/structure relation in terms of PCN descriptors of single 
mutated residues. We relied on our experience in Protein Contact Network (PCN) framework to perform the 
first sequence-structure analysis. Protein Contact Networks (PCNs)22,23 can catch the protein structure modular-
ity at the basis of domain functional partition of protein molecular structures and allosteric  regulation24–26. We 
compared the selected variants in terms of network invariants stemming from the PCN approach, complementing 
the classical sequence-based comparison. The distance-to-distance correlation  analysis27 on global sequence and 
structure has 21 mutated residues (while the other two strains only 6 and 4 point mutations)hence an outlier 
pointing to a clear separation (in both sequence and structure metrics) of this strain with respect to the other 
two. Focusing on changes in the Eigenvector Centrality (EC)  descriptor28, the unique mutational pattern of 
Omicron with its highly non-random distribution of EC changes emerged as a cue for rationalising the func-
tional consequences of the observed mutations. We report a marked excess of centrality value in the Receptor 
Binding Domain (RBD), and a decrease in the cleavage-allosteric region, pointing to a significant restructuring 
consistent with phenotype changes (vaccine escape, lower lethality) and finally observed structural modifica-
tions of the Omicron  strain29

Related work. The study of protein sequence-structure (also referred to as Protein sequence-structure anal-
ysis - PSSA -) consists of an integrated analysis of protein sequences and structures. In recent years extensive 
research has been devoted to prediction by means of sequence comparison and alignments of sequences and 
 structures30–32. The current outbreak of COVID-19 has opened up an unprecedented field of application for such 
methods.  In33, the authors analysed Membrane (M) and Envelope (E) proteins of COVID-19 and the compari-
son to homologous proteins in MERS, SARS, and bat viruses, and found that many regions of E and M proteins 
of SARS-CoV-2 are similar to SARS and bat ones. Conversely, the MERS virus proteins differ in many respects.

Cherian et al.34, analysed four mutations of the Spike protein (L452R, T478K, E484Q and P681R), during the 
second wave of COVID-19 in Maharashtra (India). In particular, focusing on the impact of these mutations on 
the RBD domain structure, they found a possible increase of the ACE2 binding affinity in L452R, T478K, E484Q 
mutation, while postulating an increased transmission rate for P681R. The analysis of mutations of Spike protein 
has also been also treated  in35,36, focusing on mutations affecting antigenicity. Ortuso et al.17 found certain Spike 
mutations in the RBD : S477N, N439K, N501Y, Y453F, E484K, K417N, S477I and G476S. Among these, they 
found that mutation N501Y, in particular, is one of the characteristic features of the SARS-CoV-2 Delta. Using 
mutation analysis for SaRS-CoV-2, Di Giacomo et al.37 reported a study on T478K mutation of S protein, inte-
grating both sequence and structure analysis. All the above studies have employed a local (typical of structural 
biology and biochemistry studies) approach aimed at rationalising a structural (and/or functional) phenotype 
based on mutations present in the primary sequence.

The study of the mutations has been stimulated by the availability of a large amount of data over the world and 
each lineage has been characterised in terms of mutation, spatial distribution, and impact on disease evolution 
and transmissibility. For instance, the mutations of the Delta variants on S protein have shown a reduction in the 
reaction to  antibodies38. Similarly, the mutation-based analysis for the Gamma variant evidenced a neutralising 
reduction of some  antibodies39.

Moreover, the effects of the mutations on the vaccination have been investigated in many works such  as4,40–43. 
Genomics sequence integration has been proposed  in44 where a library of human antibodies and topological 
analysis of the sequences evidenced the evolution for S proteins and their impact on vaccination. They found 
that most common variants present the strengthening of infectivity and vaccine escape on the RBD domain of S 
protein. They also found that infectivity strengthening results from the evolution of the virus, and the emergence 
of possible vaccine-escape mutations is more likely to occur in highly vaccinated populations. Moreover,  in45 
the authors point to the ability of the Omicron strain to mutate in order to reduce the effect of the neutralising 
antibodies, while keeping a close affinity with the ACE2  receptor45.
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In this work we used sequence-structure analysis and a systemic perspective. We some might argue that, 
since we consider only three mutant strains, we have little  information28, making the overall sequence structure-
relation severely biased. However, the computation of network centrality descriptors at the level of single mutated 
residues provides allow a direct appreciation of structural consequences of each sequence change. Indeed, we 
noted that the same point mutation presents many different behaviours in terms of topological changes of the 
network representing the S protein. This is a proof-of-concept of the unique feature of the proposed approach 
to translate purely local information into systemic terms.

Results and discussion
Sequence analysis. We analysed the sequence of the Spike protein considering three selected variants 
(Alpha, Delta, Omicron) in three different states (Closed, Open 1RBD-Up, Complex with ACE2). We obtained 
the best multiple alignment of considered sequences using Clustal Omega  routine46. Afterwards, we created a 
distance matrix from a multiple sequence alignment, calculating the evolutionary distance between each pair of 
sequences in a multiple sequence  alignment47.

Structure analysis through protein contact networks. We build PCNs using PCN-miner as depicted 
in Fig. 1. (PCNs)22 allow us to model a protein structure into a graph that can be  analysed22,23,48. PCNs are net-
works whose nodes represent the C − α atoms of the backbone of proteins, while their edges represent a relative 
spatial distance between 4 and 8 angstroms. Topological descriptors of PCNs, such as centrality measures, are 
used to discover protein properties such as allosteric  regions24,48,49. The structural distances between PCNs are 
computed by means of the Frobenius metric, which stems from the pair-wise comparison across 18 adjacency 
matrices (6 mutants and 3 aggregation states). The Frobenius metrics indicates the number of corresponding 
pairs of residues differing in the two structures. The Frobenius norm between two matrices is defined as the 
square root of the sum of the absolute squares of their elements.

Correlation between sequence and structure distance matrices. We studied the correlation between the sequence 
distances and the related structure distances, as shown in Fig. 2. The x-axis of the Figure represents the pair-wise 
sequence distances that are identical for the three aggregation states and depend only upon the differences in the 
primary structure, while the y-axis corresponds to the pair-wise mutual distances relative to the three aggrega-
tion states for the mutants. Each point represents the correlation of a pair sequence-structure. We report results 
for the wild-type, alpha, delta and omicron variants and the three different structural conformations, open, 
closed and complex with ACE2.

The Figure shows that there is no correlation between sequence and structure. In other words, the entity 
of sequence distance has no explanatory content for the resulting structural distance. We should note that the 
Omicron variant is by far the most mutated species of all other forms bearing 21 mutated locations, while alpha 

Figure 1.  Scheme of the PCN construction on the close conformation of SARS-CoV 2 spike protein (PDB code 
6vyb): starting from the structure (upper left). it is possible to compute the distance matrix (lower left), then the 
adjacency matrix (lower right) and finally the PCN (upper right).
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and delta strains have 6 and 4 mutated locations, respectively. The range restriction effect completely hides any 
general sequence/structure relation that collapses to the pure registration of the singular position of the Omi-
cron strain in both sequence and structure spaces. This well-known  fact50 evidence of the continuity breaking 
of sequence distance with the oncoming of a mutant (Omicron) bearing a higher number of mutations than 
the others is a puzzling event pointing to strong selective pressure regarding random mutational events. The 
Omicron strain is notably different from the others, as unfortunately shown by the poor performance of the 
 vaccines51,52. Second, we note that the wider distances of structures (y-axis) are related to the complex of S and 
ACE2 proteins; this may be related to the higher infectivity rate of this strain. This result tells us that structural 
(and consequently functional) differences are highly context-dependent at the fine scale of analysis, preventing 
any simple extrapolation from sequences.

Network invariants. Having assessed the singular position of Omicron vis-à-vis Alpha and Delta strains by 
both sequence and structure (entire network wiring) spaces, network invariant analysis enables us to explain the 
structural changes. The change in network invariants regarding the initial Wuhan strain was estimated in terms 
of log ratio. Thus a value of zero (0 in number) corresponds to no change. Positive and negative values point to 
an increase or decrease, respectively. We calculated main centrality measures for each node: Closeness (CC), 
Eigenvector EC, and Betweenness (BC)  Centrality53,54. The Closeness Centrality (CC) measures how close the 
nodes are to each other in term of shortest paths. The Eigenvector Centrality (EC) indicates the importance of 
a node in a network. The Betweenness Centrality (B)C estimates show how many shortest paths go through a 
given node, thereby revealing its important role in signal transmission throughout the network. Recently, Barozi 
and coworkers applied these centrality metrics to analyse the Molecular Dynamics of the Omicron S-protein 
by identifying a specific evolutionary pattern towards an increased allosteric regulation of the S-protein RBD-
hACE2  binding55.

Only the EC showed a striking variation from a global null effect with Omicron, highlighting a marked and 
statistically significant difference regarding the other strains ( F = 14.03 , p < 0.0001 as for an absolute change in 
EC). It is worth stressing that this result has no necessary relation with the number of mutated sites, given that 
it corresponds to the average change per mutated residue (see Table 1, and Fig. 3).

We also report in Table 2 that the EC changes, setting a threshold of relevant change at EC = |2| and consider-
ing values less than −2 (i.e., < − 2) as ‘negative’ and greater than 2 (i.e. values > 2) as ‘positive’, we note that only 
Omicron mutations lead to the changes in their role in PCN wiring. The distribution of these mutations is far 
from random; positive changes are only present in RBD domain, while negative changes concentrate on the splic-
ing  domain29. The Eigenvector Centrality (EC) of a node can be equated to the loading of a variable on the first 
principal component of a multivariate data  set56. Thus, the increase of EC of a set of nodes of the same protein 
domain corresponds to a drastic contraction of the domain marked by an increase in the amount of structural 
variance explained by the first component. On the contrary, a proxy of structural relaxation corresponds to a 
decreased value of EC coordinates.

This implies that the Omicron RBD has a more compact structure than the original strain, which is con-
sistent with observations in other works, such  as29. The analysis is labor intensive as well as dependent on the 
availability of the structures from the PDB database. In addition, we observed relaxation of the splicing domain. 
Considering that the splicing domain encompasses the allosteric site of spike protein, we achieve a highly con-
sistent structural explanation of this peculiar phenotype of Omicron. We also observe that Omicron presents 
these characteristics: (i) from a molecular point of view it exhibits stabilisation of RBD and increased sensitivity 

Figure 2.  The x-axis of the Figure represents the distance of the sequences while the y-axis the distance of the 
structures. Each point represents the correlation of a pair sequence/structure. We report the wild type, alpha, 
delta and omicron variant and three structural conformations open, closed and complex.
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to microenvironment allosteric signalling (relaxation of splicing domain); (ii) from a phenotypic point of view, 
data from the literature reports higher infectivity and vaccine escape. Thus, we hypotesise that molecular changes 
determine the changes to the phenotype.

A final remark is related to the considerably different EC change provoked by the mutation of the same resi-
dues by the same amino acid substitution as for 501 and 614 positions in the three strains (Table 2). While these 
mutations do not provoke any notable EC change in Alpha and Delta strains, they culminate in a drastic EC 
change in Omicron. This provides evidence of the ‘context dependent’ character of network invariants of mutation 
patterns with respect to the purely local consideration of both the sequence-based and global structural views.

Methods
Protein contact networks. A protein structure can be represented as a complex three-dimensional object 
formally defined by the coordinates in the 3D space of its atoms. Despite the wide availability of data on protein 
molecular structures, the protein structure-function relationship is far from fully understood. For this reason, 
it is necessary to define simple descriptors that can describe protein structures with few numerical variables. 
Structure and function are based on the complex network of inter-residue interactions, where residues are iden-
tified by amino acid  sequences22. The interaction of residues, therefore, is the way to define protein contact 
networks (PCN) that represent the protein structure by means of α-carbon location. The spatial position of Cα is 
still reminiscent of the protein backbone, and this allows us to also highlight the most important features of the 
three-dimensional structure. Starting from spatial distribution of the Cα , a distance matrix d is evaluated where 
each di,j represents the Euclidean distance in the 3D space between the i-th and j-th residues, defined as

where (xi , yi , zi) and (xj , yj , zj) respectively are the Cartesian coordinates of residue i and j. Matrix d is used to 
define a Protein Contact  Network2257. It is possible to build up adjacency matrix A, whose generic element is 
defined as:

Thus, we define a link between two residues i and j if their mutual distance lies between 4 and 8 Å. The lower end 
excludes all covalent bonds, which are not sensitive to environmental change (hence to protein functionality), 
while the upper end eliminates of weaker non-covalent bonds (hence not significant for protein functionality).

(1)di,j =
√

((xi − xj)2)+ ((yi − yj)2)+ (zi − zj)2)

(2)Aij =

{

1 if 4 ≤ dij ≤ 8

0 otherwise

Figure 3.  The absolute values of eigenvector centrality (EC) variations relative to the three analysed strains are 
reported as box-plots. In terms of the changes it is evident that the position of Omicron is quite different from 
that of the other strains. The use of module values is crucial for a statistically significant result (F = 14.03, p < 
0.0001).

Table 1.  The table reports mean and standard deviation for both real and absolute (|EC|) values of eigenvector 
centrality for the three strains. It is worth noting the neat departure from no effect for the Omicron strain 
together with the elevated standard deviation (SD (EC)) of current values pointing to the presence of both 
highly positive and negative EC changes for mutated residues. On the contrary, for the other two strains 
mutations do not provoke any important change in EC.

Strain Mean (EC) Mean (|EC|) SD (EC) SD (|EC|)

Alpha − 0.469 0.521 0.739 0.696

Delta 0.066 0.256 0.324 0.153

Omicron 0.988 2.147 2.201 1.015
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The adjacency matrix of a graph is unique regarding the ordering of nodes. With proteins where the order 
of nodes (residues) corresponds to the residue sequence (primary structure), the evidence shows that its corre-
sponding network is unique: this establishes a one-to-one correspondence between the protein and its network.

In the case of SARS CoV-2 spike protein, this formalism has been used to detect the allosteric site of the S 
 protein58 through an integrated structural/dynamic  approach59.

Finally, we consider the distance between two PCN as the Frobenius distance of their adjacency matrices.

Datasets. We consider SARS-CoV-2 genomic sequences extracted from  GISAID20 database on March 2022. 
Sequences used in this work can be found at https:// github. com/ hguzzi/ Multi scale model ling. We downloaded 
thirteen protein structures from the Protein Data Bank (PDB https:// www. rcsb. org/): 6vxx, 7wk2, 7sbk, 7fet, 
6vyb, 7edf, 7w92, 7tgw, 7df4, 7fem, 7wk4, 7w98, 7vxm. Coordinates of the Carbon-α atoms were used to obtain 
PCNs.

Sequence comparison. Sequence alignment was performed by the Smith-Waterman and the Clustal 
Omega  algorithm46. Regarding pair-wise alignment, we used  EMBOSS47 (European Molecular Biology Open 
Software Suite), that is a high-quality package of open source software tools for molecular biology. It uses 
the Smith-Waterman algorithm (changed for speed enhancements) to calculate the local alignment of two 
sequences. For multiple alignment, we used Clustal Omega, a multiple sequence program that uses seeded guide 
trees and HMM profile-profile techniques to generate alignments between three or more sequences. The pair-
wise alignment tool contains a file that reports input parameters (i.e., two sequences in FASTA format), align-
ment obtained and expressed as a percentage. PCN-Miner software http:// github. com/ hguzzi/ PCN- MINER was 
used to build  PCNs26.

Table 2.  The EC change (logratio) with respect to the original strain for each mutated amino acid residue is 
reported. The absence of any relevant change in EC of the Alpha and Delta strain is worth than nothing, while 
14/21 (67%) Omicron mutations imply a significant change with respect to the original strain. Moreover the 
distribution of positive and negative changes is far from random, positive changes being concentrated in RBD 
domain, while negative changes are only found in the splicing domain.

Strain Mutated residue modEC effect

Alpha 501 − 1.89267 Null

Alpha 570 − 0.16767   Null

Alpha 614 − 0.375 Null

Alpha 716 0.060667 Null

Alpha 1118 0.095333 Null

Delta 142 − 0.352 Null

Delta 452 0.321667 Null

Delta 614 0.321667 Null

Delta 950 0.028 Null

Omicron 67 − 0.786 Null

Omicron 142 − 1.08433 Null

Omicron 339 2.449667 Positive

Omicron 371 3.125667 Positive

Omicron 373 2.703333 Positive

Omicron 375 2.721333 Positive

Omicron 417 3.207 Positive

Omicron 440 2.709667 Positive

Omicron 493 2.906333 Positive

Omicron 496 2.876 Positive

Omicron 498 2.930667 Positive

Omicron 501 2.826 Positive

Omicron 547 1.134667 Null

Omicron 614 − 2.14667 Negative

Omicron 655 − 2.32667 Negative

Omicron 764 − 0.82067 Null

Micron 796 − 3.03567 Negative

Omicron 856 1.23533 Null

Omicron 954 0.017667 Null

Omicron 969 3.31266 Null

https://github.com/hguzzi/Multiscalemodelling
https://www.rcsb.org/
http://github.com/hguzzi/PCN-MINER
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Centrality measures. We considered following centrality measures with respect to PCNs: degree, close-
ness, betweenness and eigenvector.

Degree centrality is the number of adjacent nodes to wi which can be defined as follows.

Closeness centrality is to be considered as a central node close to the others in terms of distance. Formally, the 
closeness centrality of node wi is the reciprocal of the average shortest distance to wi over all n− 1 reachable 
nodes, i.e.

where d(wi ,wj) is the shortest distance between wi and wj.
Given an adjacency matrix A , the relative centrality score a node v can be defined as:

Eigenvector centrality estimates the influence of a node in a network. It scores the nodes of a network on the basis 
of the idea that high-scoring nodes contribute more to the score of the node than connections to low-scoring 
nodes. It has been shown that eigenvector centrality identifies the role of residues in allosteric signal transmis-
sion, both on a local and global  scale60.

Given an unweighted undirected graph G and its adjacency matrix A we can estimate the EC ( xv ) for each 
node v as

where Neigh(v) is the set of neighbours of v, and � is a constant. The previous equation may be written as in vec-
tor notation as the eigenvector equation Ax = �x , where � is an eingenvalue for which a non-zero eigenvector 
solution exists.

Betweenness centrality is defined as follows:

where σj,k is the total number of the shortest paths from node wj to node wk and σj,k(i) is the number of those 
paths that pass through i.

Conclusion
It is widely recognised that mutations of protein sequences impact first on their structure and then their function. 
The recent pandemic has provided an unprecedented scenario for the analysis of protein mutation, focusing on 
the mutations of SARS-CoV-2 viral proteins. We relied on this information to give a proof-of-concept of the 
‘quantum-leap’ in terms of extraction of hypothesis on structure-function relations provided by a mesoscopic 
approach, such as PCN. Our results clearly show that mutations in the Omicron sequence cause the increase 
and the decrease of EC in two distinct regions. Moreover, as evidenced by the ANOVA test, Omicron mutations, 
regardless of the number and region, cause a more marked shift in EC, confirming their different pattern of 
mutation. As regard sequence/structure/function protein studies, this result leads to a shift from episodic local 
considerations of single mutations to a context-dependent evaluation of structural consequences of point muta-
tions along the lines of Quantitative Structure Activity (QSAR) studies of small organic molecules.

Data availability
The website https:// github. com/ hguzzi/ Multi scale model ling contains data and code used in this work. More 
material may be shared upon reasonable request. Please contact Pietro Hiram Guzzi hguzzi@unicz.it for any 
request.
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