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Hay fever affects people differently and can change over a lifetime, but data is lacking on how 
environmental factors may influence this. This study is the first to combine atmospheric sensor data 
with real-time, geo-positioned hay fever symptom reports to examine the relationship between 
symptom severity and air quality, weather and land use. We study 36145 symptom reports submitted 
over 5 years by over 700 UK residents using a mobile application. Scores were recorded for nose, eyes 
and breathing. Symptom reports are labelled as urban or rural using land-use data from the UK’s Office 
for National Statistics. Reports are compared with AURN network pollution measurements and pollen 
and meteorological data taken from the UK Met Office. Our analysis suggests urban areas record 
significantly higher symptom severity for all years except 2017. Rural areas do not record significantly 
higher symptom severity in any year. Additionally, symptom severity correlates with more air quality 
markers in urban areas than rural areas, indicating that differences in allergy symptoms may be due to 
variations in the levels of pollutants, pollen counts and seasonality across land-use types. The results 
suggest that a relationship exists between urban surroundings and hay fever symptoms.

The worldwide prevalence of allergic respiratory disease has risen considerably in recent  years1. Whilst air pol-
lution is considered to worsen symptoms for the  individual2–7, increase pollen concentrations, and lengthen 
pollen  seasons8, the mechanisms of these combined effects on symptom severity are still not fully understood.

To investigate the relationship between air quality and hay fever symptoms, this paper reports the first study 
to compare the severity and duration of real-time symptom reports across rural and urban areas using experi-
ence sampled, geo-positioned cross-sectional  data9. The use of mobile application data to collect users’ symptom 
reports for comparison with environment data has increased over the last few years. Peeters et al. used two 
years of geo-positioned mobile app data to compare chronic rhinosinusitis symptoms with air pollution data 
in Belgium. They found that, during the spring/summer months, a relationship existed between symptoms and 
exposure to O3 and PM2.5

4. Cabrera et al., using 2 years of seasonal allergic rhinitis symptom data recorded in 
Madrid, found that temperature and pollution (most significantly O3 ), out of all the environment indicators 
investigated, had the highest association with participant  symptoms10. Kim et al. discovered an association 
between allergic rhinitis and SO2 in a cohort of elementary school children in an industrial region of  Korea5.

We hypothesise that people experience more severe symptoms in urban than in rural areas, due to an increase 
in the immune system burden. Urban and rural regions are reported to vary in pollen counts and  types11, pol-
lution  levels12–15, rates of allergic  reactions16–22 and daily mortality  rates23:

Hypothesis 1 (H1) Seasonal allergy symptoms are more severe for those in urban areas than in rural areas.

We also investigate whether higher pollution levels are related to more severe seasonal allergy symptoms:
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Hypothesis 2 (H2) Higher levels of pollution lead to worse seasonal allergy symptoms.

The Britain Breathing (BB) mobile  application24 supports the collection of experience sampled, cross-sectional 
hay fever symptom data from the general population. Developed for Android and iOS, and made available 
through Google Play and the Apple App Store, we used it to recruit a large sample of citizen scientists who live 
in various locations throughout the UK, and are interested in contributing towards research into hay fever 
 symptoms9,25. Previous studies of allergy symptoms have compared environmental data with medical data includ-
ing asthma hospitalisation  counts1, epidemiological studies of  asthma26 and allergy  questionnaires27,28. In this 
study, data is collected from those experiencing a range of hay fever symptoms from mild to severe, thus includ-
ing people who experience common allergy symptoms but do not present to medical services. This provides a 
broader picture of chronic health issues experienced by hay fever sufferers, as opposed to only observing those 
with more acute and/or problematic reactions. Within the last decade, mobile applications have increasingly 
been used to collect experience sampled data from the general population for public health studies, as they are 
popular with users, allowing easy  recruitment4,25,29. They are often convenient to use and maintain, lowering the 
cost of user support, regardless of the number of participants, and potentially improving participant engagement. 
In addition, the resulting data is available for analysis as soon as it is entered by the user.

Figure 1 displays screenshots from the data collection pages of the BB application, which gathers information 
about a user’s current condition. It asks whether they have taken any medication for their symptoms that day, 
and uses sliders to capture the severity of four symptoms: nose, eyes, breathing and tiredness. As tiredness was 
only added in a later version of the app, we focus in this analysis on nose, eyes and breathing. The sliding scale 
allows submission of the scores: 0 (no symptoms), 1 (mild symptoms), 2 (moderate symptoms) or 3 (severe 
symptoms). The time, date and location of each report is logged, providing symptom data at a level of temporal 
and spatial precision not captured by the medical record, questionnaire or prescription data commonly used 
for studying allergies. Location data is provided by the mobile device’s GPS sensor when the user permits it. 
Accuracy is set to 100–500 m to provide sufficient precision for the purposes of the study while complying with 
our data protection and ethical obligations.

A study conducted for 6 months over March–October 2016 showed that the experience sampling method 
used in the BB mobile application is a reliable approach for collecting allergy symptom data in the general popula‑
tion9. In this study we use data collected via the BB mobile  application9 from 2016 to 2020 to compare allergy 
symptoms reported in urban and rural locations over this 5 year period.

Methods
Overview. We primarily investigate whether any significant differences in symptom severity exist between 
BB application users in urban and rural locations. The allergy symptoms measured are nose, eyes, breathing and 
max score (a calculation of the maximum of the former 3 scores). Each score is an integer in the range 0 to 3, 
with 3 being the most severe. The user is also asked if they have taken any allergy medications that day (possible 
answers are yes or no).

Secondly, we test for urban/rural differences in the correlations between each of these symptoms and a variety 
of air quality and meteorology measurements: PM2.5 , PM10 , NO2 , NOX (as NO2 ), SO2 , O3 , relative humidity, 
temperature, air pressure and 12 pollens.

Figure 1.  The BritainBreathing web application example screenshots.
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Data collection. Britain breathing data. The Britain Breathing study was approved by the University of 
Manchester Ethics Committee, number CS 250 and carried out in accordance with all UK guidance and regula-
tions. Informed consent was obtained from all participants at the start of the study.

The Britain Breathing mobile application was first released as an Android app on the Google Play store on 
March 18,  20169 and this version continued until October 30 2016, and then was used again in March to October 
in 2017 and 2018. A second version was released in 2019 and also included an Apple version, made available 
on the Apple Store. The BB project and app were advertised via social media, blogs, websites, public engagement 
activities, appearances in science festivals and on public television9.

At the time that the user installs the application, they are asked for basic demographics such as gender, age and 
do you have hay fever? Participants are asked to report their symptoms each day for each of the three symptoms, 
using a simple sliding scale widget, designed to allow easy selection of one of the available 4 (0 to 3) scores and 
whether they have taken allergy medication that day (see Fig. 1). Each time the user inputs their scores, they are 
sent to a central server and recorded along with the date, time and the phone’s geographical location at the time 
of submission. In order to make the data non-sensitive, user identifiers were not included in the 2016 dataset, 
but they were included during subsequent years.

Britain breathing participants. At the end of October 2016, the app had been downloaded 1530 times, 425 people 
had the app installed on their phones and 20278 reports had been  submitted9. In the years 2017 to 2020, 924 users 
had downloaded the application and 17,526 daily reports were submitted.

To rule out any bias relating to user demographics across rural and urban locations, participant data was 
analysed for gender, age and allergy medication usage. The female to male ratio in urban locations is 0.944 and 
in rural locations 0.927. The mean user age for all urban reports is 51.1 and for rural reports 57.3. Finally, the 
mean value of those who had taken medication for allergies on the same day as the report submission was 0.57 
for urban locations and 0.54 for rural.

Land‑use data. Land‑use data was obtained from the UK’s Office for National Statistics (ONS)30 and used to 
divide the user reports into rural and urban, using the geographical co-ordinates recorded at the time of report 
submission. The ONS 2011 Census Rural–Urban Classification30 categories are described in the Supplementary 
Appendix. Categories A1, B1, C1, and C2 for England and Wales, and 1, 2, and 3 for Scotland, are classified as 
urban. All remaining categories are classified as rural.

Environment data. Total daily pollen grain counts were available from UK monitoring sites for the 12 pollen 
types: hazel (Corylus spp., 13 sites), alder (Alnus spp., 13 sites), willow (Salix spp., 13 sites), birch (Betula spp., 13 
sites), ash (Fraxinus spp., 13 sites), elm (Ulmus spp., 13 sites), oak (Quercus spp., 13 sites), plane (Platanus spp., 
13 sites), grass (Poaceae, 15 sites), nettle family (Urticaceae, 13 sites), mugwort (Artemisia spp., 13 sites), and 
ragweed (Ambrosia spp., 13 sites). The data collection period for the pollen count monitoring stations is early 
March to early September in the years 2016 to 2020, and the data are obtained from the UK Met Office (MIDAS 
dataset) via the MEDMI server. Hourly measurements of PM2.5 (81 sites), PM10 (81 sites), NO2 (161 sites), NOX 
(as NO2 , 161 sites), SO2 (28 sites), and O3 (75 sites) were downloaded from the Automatic Urban and Rural Net-
work (AURN) network. Hourly measurements of relative humidity (323 sites), temperature (323 sites), and air 
pressure (154 sites), are also obtained from the UK Met Office (MIDAS dataset) via the MEDMI server.

Pre-processing. Britain breathing data. BB data was collected as a CSV file with each row representing a 
user report submission and each field containing report information such as time, location and symptom scores. 
Several pre-processing steps were performed on the symptom data before all subsequent analysis: For 2016 
data, user identifiers were improvised using year‑of‑birth, gender and postcode location. See the Methodological 
Limitations Section for the potential affects of this. Reports were filtered to include only those submitted within 
the months March to September inclusive. Only the latest report per day per user and only reports from users 
who submitted on at least 10 days, were used. This left 11,576 reports by 344 users for 2016; and 11,662 reports 
by 417 users for the years 2017 to 2020.

Each report (row) was assigned a postcode, firstly by inputting the geographical co-ordinates into a postcode 
finder  API31. If no postcode was found (approximately 10% of reports), the location co-ordinates were mapped 
to the closest location found in a further online location-to-postcode mapping  tool32. Reports were then labelled 
as urban or rural, using the ONS postcode classifications and the max_symptom score was calculated, which is 
the maximum of all 3 symptoms (nose, eyes and breathing).

Environment data. The environment measurements consisted of daily means and maximums for each of the 
pollutants and meteorological variables (calculated from hourly data) and daily counts for the pollen variables. 
The pollutant and meteorological variables were cleaned, and missing hourly values were (where appropriate) 
imputed before the daily means and maximums were calculated. We have made all of the pre-processed pollen, 
pollutant and meteorological sensor data described above publicly available  at33,34. The cleaning and imputation 
methods used are described  in35 and the pre-processing tools are available  at36.

Regional estimation of environment data using concentric regions. To link each BB symptom report to envi-
ronment variables, a regional estimation method is used. We started with the requirement that we needed to 
preserve the anonymity of the study participants while, at the same time, linking their reported symptoms with 
atmospheric measurements. Postcode regions were selected for the estimations as they provide similar popula-
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tion sizes, are large enough to provide anonymity and they have clearly defined geographic areas which can be 
estimated using nearby sensor data. If one or more sensors exist in the same region as the BB report, the mean is 
used. If not, a concentric regions  method35 is used to find environment measurements from the closest possible 
regions. This searches for sensors in those postcode regions directly adjacent to the reporting region and if none 
are found, searches the next ring, until sensors are found, from which the mean is taken. We have made all of the 
pollen, pollutant and meteorological sensor regional estimations publicly available  at37,38. The regional estima-
tions methods used are described  in35 and the tools used to pre-process are available  at39.

Methodological limitations. The methods used in this study do have some limitations, which should be 
noted here. Firstly, all participants included in the study are self-selected and therefore are unlikely to represent 
a random sample of the population. For example it is hypothesised that those who downloaded the BB mobile 
application and regularly recorded symptoms are more likely to be hay fever sufferers.

Another limitation is the inability to measure the effect of taking medication (using the ’Taken Medication?’ 
response on the BB mobile app) on the outcomes of this study. This is because there is no record of whether par-
ticipants reported symptoms before or after taking any antihistamines. For this reason, we do not stratify results 
by the responses to this question, but only use it as a potential extra indicator of symptom severity.

Participants were asked to report once-per-day, but as no limit was set by the mobile application, we selected 
the latest report for each day, for each participant. User identifiers are present in the 2017–2020 data, but for the 
2016 data user identifiers had to be improvised using year-of-birth, gender and postcode location. This will result 
in multiple reports being included for users that reported from different postcodes on the same day. To a lesser 
extent, it could also result in multiple users who reported from the same postcode, with the same gender and year-
of-birth being treated as a single user. Although we cannot quantify the scale of either of these anomalies, it is not 
expected that they would significantly effect the comparisons between urban and rural symptom severity reports.

Results
Within this section we split the analysis of our dataset into three stages. First, we compare symptom severity 
and duration in urban and rural areas, finding that symptom durations are longer, and severity higher, in urban 
areas for four of the five years studied. Secondly, we explore symptom and environmental data correlations for 
urban and rural areas for the whole of the UK, finding that correlations between symptoms and pollutants are 
strong, with relationships more likely to be found in urban than rural areas. Finally, we explore relationships 
between symptom and environmental data at the regional level, using postcode areas for matching data, and 
the concentric regions method for filling gaps in the environmental  dataset35 (see “Methods”, “Pre-processing” 
section). These regional correlations are found to be weak, which may be due to the complexity of interactions 
between pollutants and bio-aerosols40 and the variability of human biological response to those  interactions20, 
and/or difficulties accurately sampling environmental data at this fine granularity.

The BB n values (user and report counts) for each year, used for all results are as follows (note that 2016 user 
counts are calculated using derived user IDs, as described in the “Methods”: “Pre-processing” section): urban-
2016 285 users, 9543 reports; urban-2017 133 users, 4028 reports; urban-2018 84 users, 3094 reports; urban-2019 
30 users, 697 reports; urban-2020 15 users, 778 reports; rural-2016 59 users, 2033 reports; rural-2017 78 users, 
1073 reports; rural-2018 50 users, 1294 reports; rural-2019 19 users 424 reports; rural-2020 8 users, 274 reports.

The environmental data used are pollutant measurements sourced from the Automatic Urban and Rural 
Network (AURN), and meteorological and pollen measurements from the UK Met Office (MIDAS dataset)33,34. 
More details of these measurements, and how they are preprocessed, are included in the Methods section. For 
all analyses comparing BB reports with environmental data, only data from the months March to September 
(inclusive) are used, as this is when pollen data is collected and pollen allergies are strongest. In all of our analy-
ses, only the latest report per day, per user is included. To avoid including highly disengaged users, only reports 
from users who have submitted on ≥ 10 days are used. We perform a between-subjects analysis at the level of 
symptom reports, as the sporadic reporting that is common in longitudinal citizen science studies and the fact 
that people tend to report from either urban or rural areas, rather than across both, means that an inferential 
within-subjects analysis at the level of the participant would be unreliable.

We explore the differences between urban and rural symptom reports as these two location types act as 
abstract intermediaries for representing / grouping the complex interactions between the different environmental 
factors and the reported hay fever symptoms. We label the BB symptom scores as urban or rural using ONS 
land-use classifications (see the Methods section for the criteria used).

UK-wide urban vs rural symptom severity. To investigate the first hypothesis (H1), we compared mean 
daily symptom severity between land-use types. Reports were classified as urban or rural and we calculated 
the mean scores for each day, for each location type and symptom combination. These mean scores are then 
aggregated by year (2016 to 2020). Table 1 shows comparisons between urban and rural mean scores for each 
symptom (or whether medication was taken), for all months of the year. (See Supplementary Table S1b for com-
parisons using only BB reports from March-September incl., in which the differences are as pronounced, if not 
more so.) The first row displays the averages across all years, and the remaining rows display each year. Nested 
rows show data for each symptom. The diff mean column is the urban mean score minus the rural mean score, 
so positive values indicate a higher urban mean score. The table shows that, when averaging across all years, 
symptoms reported from urban locations have a considerably higher severity. For an expanded version of this 
table which includes urban and rural standard deviations, see Supplementary Table S1a. We used Cohen’s d41 to 
measure the effect size between the two means. Effect sizes can be categorised as: 0.01 = very small; 0.2 = small; 
0.5 = medium; 0.8 = large; 1.2 = very large; 2.0 =  huge42. Table 1 also displays the non-parametric Kolmogorov–
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Smirnov test result (U1), used to compare the distance between the urban and rural daily mean distributions. 
Higher scores represent a greater difference between the two distribution functions, with a possible range of 0 
to 1. Each individual year shows considerably higher severity in urban areas in at least one symptom, except in 
2017, where no substantial differences exist. Rural areas record no considerably higher symptoms than urban 
areas (no increases greater than 0.061), in any year. The overall results indicate generally higher symptom sever-
ity scores in urban regions, supporting H1.

As the above comparisons were not performed as part of a controlled study, it is necessary to check for any 
indication that the positive results are biased, for example by very high numbers of reports from individuals in 
one land use type. To achieve this, we used a re-sampling bootstrap test to repeat these comparisons multiple 
times on smaller samples: 2000 random samples (each containing 20% of the total number of BB reports) were 
taken and the mean of each sample calculated and plotted in a histogram. Figure 2 displays each of the resulting 
histograms. Each year is displayed in a row (the top row represents all years together) and the columns show 
nose, eyes, breathing, medication taken and max_score. The gold histograms represent the distributions of urban 
means and green represent rural. The results illustrate the strength and consistency of the differences between 
urban and rural means for all symptoms in 2020. Other years show more mixed urban/rural differences, although 
the differences are still clear with the exceptions of breathing in 2016, nose and max score in 2018 and eyes in 
2019. For data across all years (top row), these differences are clear for nose, eyes and max score. As we see the 
same effect when using this re-sampling method, we can be reasonably confident that it isn’t biased by a few 
individuals in one group.

UK-wide urban vs rural symptom duration. To further test the validity of H1, we examined the dura-
tion of reports with symptoms scores greater than 0 (meaning that at least some symptoms were experienced) 
for each user, also allowing for single non-reporting days. Results indicate that durations are slightly longer in 
urban areas than in rural, supporting H1. Table 2 shows the average duration in days for which users report 
higher symptoms from March to September inclusive, and compares the differences in duration between urban 

Table 1.  Urban vs rural symptom severity (all months). Average daily scores for each are presented, with the 
difference between the two (diff), the Kolmogorov–Smirnov test statistic (U1), and significance (p). p values > 
0.05 are marked as ns.

BB measure Urban mean Rural mean Diff mean Cohen’s d U1 p (2-tailed)

 All years

Nose 0.738 0.376 0.362 0.887 0.406 <.001

Eyes 0.614 0.372 0.241 0.57 0.352 <.001

Breathing 0.63 0.331 0.299 0.7 0.293 <.001

Taken_meds 0.63 0.397 0.233 0.818 0.310 <.001

Max_score 1.037 0.614 0.423 0.843 0.35 <.001

 2016

Nose 0.566 0.315 0.251 1.2 0.538 <.001

Eyes 0.429 0.296 0.133 0.692 0.396 <.001

Breathing 0.336 0.389 -0.052 -0.338 0.271 <.001

Taken_meds 0.496 0.51 -0.014 -0.102 0.196 <.001

Max_score 0.786 0.649 0.136 0.592 0.342 <.001

 2017

Nose 0.626 0.6 0.027 0.09 0.136 .0223

Eyes 0.484 0.541 -0.057 -0.202 0.185 <.001

Breathing 0.398 0.459 -0.061 -0.253 0.174 .0013

Taken_meds 0.574 0.607 -0.032 -0.163 0.149 .009

Max_score 0.911 0.918 -0.007 -0.021 0.142 .0147

 2018

Nose 0.705 0.592 0.113 0.352 0.169 <.001

Eyes 0.598 0.604 -0.006 -0.015 0.093 .0795ns

Breathing 0.57 0.545 0.025 0.077 0.112 .019

Taken_meds 0.703 0.593 0.11 0.55 0.287 <.001

Max_score 1.044 0.931 0.113 0.271 0.177 <.001

 2019

Nose 0.593 0.28 0.314 0.713 0.423 <.001

Eyes 0.5 0.349 0.151 0.321 0.349 <.001

Breathing 0.668 0.195 0.473 0.959 0.429 <.001

Taken_meds 0.654 0.282 0.372 1.142 0.435 <.001

Max_score 0.972 0.443 0.529 0.897 0.428 <.001

 2020

Nose 1.057 0.12 0.937 2.123 0.821 <.001

Eyes 0.957 0.1 0.857 1.975 0.815 <.001

Breathing 0.963 0.133 0.83 1.769 0.772 <.001

Taken_meds 0.625 0.095 0.53 2.036 0.754 <.001

Max_score 1.287 0.215 1.072 2.205 0.784 <.001
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and rural users. The rural and urban columns show the average number of unbroken, chains of higher scoring 
days per participant. Note that 2016 data has derived user IDs, as described in the “Methods”: “Pre-processing 
and methodological limitations” sections; as a result of this, chains of symptom reports are more easily broken in 
this cohort, as reports by the same user can appear to come from different users where they report from different 
postcode locations. It is not expected that this will affect urban and rural comparisons. The min score column 
shows the minimum score that must be recorded, for the chain to be unbroken. The allowed gap column shows 
the number of days that a user is allowed to miss (not submit any report), before the chain is broken. The results 
indicate that most urban symptom duration means are higher than rural, for chains of days with a minimum 
score of 1 or 2. No difference is recorded for chains of days with scores of only 3, as both medians are of 1 day 
chains only, for each symptom.

Figure 2.  Urban (gold) vs rural (green) bootstrap re-sampling of average symptom severity. Each column 
presents a single symptom (left to right: nose, eyes, breathing, taken medication and max score). Each row 
contains a different year (top to bottom: all years, 2016, 2017, 2018, 2019 and 2020). Y-axes represent counts, 
x-axes represent mean scores. Each sample size is 20% of original data, and 2000 different samples were used for 
this analysis.
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UK-wide correlations for urban and rural locations. To explore the validity of our second hypothesis 
(H2) that higher levels of pollution lead to worse hay fever symptoms, the BB user reports are again divided into 
urban and rural locations and compared with environment measures using monthly averages. We use all UK 
sensors and take monthly averages, to discover if correlations exist at a general, coarse-granularity. All pollen 
and weather sensor data are used as they are not classified into location types, but for the pollutant dataset, we 
include only urban background and rural background sensor measurements. We do not use any sensor data from 
roadside or industrial locations as we are most interested in tracking large-scale regional patterns in pollution, 
and these could be masked by the local pollution events measured at these sites. We begin by correlating urban 
and rural symptoms with UK-wide averages for all environmental measures without dividing the pollution sen-
sors into urban and rural locations (Table 3). To check if urban and rural reports are more correlated with their 
respective sensor types, we also look at correlations between monthly symptoms and pollution measurements, 
grouped by urban background and rural background sensor type (Table 4). (Note that this is not possible for non-
pollutant variables, as some sensors are not classified by location type).

Table 3 shows all statistically significant (p≤0.05) correlations between monthly means of BB symptoms and 
monthly means of environment measurements. The results are split between BB urban scores (top section) and 
BB rural scores (bottom section), and each section is ordered by significance. These results indicate that urban 
symptoms correlate more highly, and with a wider variety of UK-wide pollutant markers, than rural symptoms. 
The highest (absolute) monthly correlation is urban: a negative correlation of −0.72 between SO2 (daily mean) and 
urban eyes symptoms. The strongest correlations for urban locations are for SO2 , NOx , and NO2 . No symptoms 
exhibit a strong correlation with particulate matter pollutants ( PM10 and PM2.5 ). The rural symptoms have only 
four significant correlations, with the highest correlation being +0.38 for eyes vs grass (Poaceae) (daily mean). The 
only factors rural symptoms correlate with are SO2 and grass and, unlike in urban locations, no rural symptoms 
correlate with NOx , NO2 , or O3 factors. Although the highest rural symptom correlations are weaker than the 
highest urban symptom correlations, those factors common across both land-use types ( SO2 and grass) have 
similar magnitude correlations with symptoms.

Grass (Poaceae) pollen has similar positive correlations for both urban and rural areas and the only other 
pollen with significant correlation is hazel (Corylus spp.), but it is negative, perhaps due to its spring (February-
March) peak, which would be inversely related to the later summertime peak of grass. Another pattern worthy 
of note is that all of the urban symptom correlations with pollutants are negative, except for O3 . Rural symptoms, 
on the other hand, only have positive correlations with one gaseous pollutant SO2 (no significant correlations 
exist between rural symptoms and O3).

Table 4 (top section) shows the correlations between average monthly urban BB symptom scores and back‑
ground urban pollutant sensors. When BB urban scores are compared only with urban background sensors in 
this way, the scores remain very similar to those found when both urban and rural background sensors are used 
(Table 3). Once more, for urban locations, all correlations with O3 are positive, and all correlations with other 
pollutants are negative. Again, the significant correlations are only with the gaseous pollutants; particulate matter 
( PM10 and PM2.5 ) show no significant correlations.

Table 4 (bottom section) shows the correlations between average monthly rural BB symptom scores and 
background rural pollutant sensors. When BB rural scores are only compared with rural background sensors in 

Table 2.  Urban vs rural symptom duration: medians of the user average (mean) duration of symptoms in days 
(March–Sept incl.). Except for tests using maximum symptom score (max_score), all rows where the difference 
is zero are removed.

Min score Allowed gap (days) Symptom Rural Urban Diff (urban − rural)

 1

 0

Breathing 1.188 1.286 0.098

Eyes 1.25 1.333 0.083

Max_score 1.4 1.5 0.1

Nose 1.3 1.414 0.114

Taken_medication 1.517 1.526 0.009

 1

Breathing 1.427 1.533 0.106

Eyes 1.333 1.625 0.292

Max_score 1.598 2 0.402

Nose 1.5 1.75 0.25

Taken_medication 1.858 2.125 0.267

 2

0 Max_score 1 1.25 0.25

 1

Breathing 1 1.25 0.25

Eyes 1.167 1.2 0.0339

Max_score 1.286 1.4 0.114

Nose 1 1.286 0.286

 3
0 Max_score 1 1 0

1 Max_score 1 1 0
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this way, the highest rural correlation ( SO2 max daily and eyes) has risen to +0.5. Once more, all correlations 
with the SO2 pollutant levels are positive, and no significant correlations exist with any other pollutants.

Overall, these correlations at the coarse-grained level, using monthly means and UK-wide environment vari-
ables, show that relationships exist between the pollution levels and allergy symptoms, but they are complex and 
will be explored further in the Discussion section.

Regional-level correlations between BB symptoms and environment variables. To test for rela-
tionships between hay fever symptoms and environmental factors within more localised areas, we compare 
correlations between symptoms and pollen, pollutant and meteorological data at the regional level. Symptom 
reports (as in all previous analyses, these are limited to a maximum of 1 report per day per user, each including 
nose, eyes, breathing, and a max score: the maximum of these) are matched with mean environment measure-
ments for the same postcode region. A concentric regions  method35 (see “Methods” section, “Pre-processing” 

Table 3.  Correlations of BB symptom scores with average monthly environment variables (UK-wide, March–
Sept incl.). Only significant correlations (indicated by p values ≤ 0.05) are included here.

Environment measure (UK) BB symptom (urban) Correlation p (2-tailed)

SO2 mean Eyes −0.7163 ≤.001

NOx mean Eyes −0.6446 ≤.001

SO2 mean Nose −0.6248 ≤.001

NO2 mean Eyes −0.6009 ≤.001

NOx max Eyes −0.6005 ≤.001

NOx mean Breathing −0.596 ≤.001

NO2 max Eyes −0.573 ≤.001

NOx mean Nose −0.5728 ≤.001

NO2 mean Breathing −0.5658 ≤.001

SO2 mean Breathing −0.5627 ≤.001

NOx mean Max_score −0.56 ≤.001

NOx max Nose -0.5468 ≤.001

NOx max Max_score -0.5428 0.0011

NOx max Taken_medication -0.5326 0.0014

NO2 max Breathing −0.5116 0.0023

NOx max Breathing −0.5024 0.0029

NO2 mean Max_score −0.4904 0.0038

NO2 mean Nose −0.4902 0.0038

NOx mean Taken_medication −0.4882 0.0039

SO2 max Eyes −0.484 0.0043

NO2 max Max_score −0.4693 0.0059

NO2 max Nose −0.4652 0.0064

SO2 mean Max_score −0.4538 0.008

Grass (Poaceae) Max_score 0.4379 0.0108

O3 max Taken_medication 0.4268 0.0133

O3 max Nose 0.395 0.0229

Rel. hum. mean Taken_medication −0.384 0.0274

SO2 max Breathing −0.3816 0.0285

Rel. hum. mean Nose −0.3792 0.0295

Grass (Poaceae) Eyes 0.3751 0.0315

O3 mean Taken_medication 0.3729 0.0326

Temperature max Breathing 0.3629 0.0379

O3 mean Nose 0.362 0.0385

NO2 mean Taken_medication −0.3571 0.0413

Hazel (Corylus spp.) Breathing −0.3562 0.0419

NO2 max Taken_medication −0.3558 0.0422

Rel. hum. mean Max_score −0.3548 0.0427

Environment measure (UK) BB symptom (rural) Correlation p (2-tailed)

Grass (Poaceae) Eyes 0.3852 0.0269

Grass (Poaceae) Nose 0.3834 0.0276

SO2 mean Taken_medication 0.3663 0.036

Grass (Poaceae) Max_score 0.3497 0.046
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sub-section) is used to find environmental measurements where no sensors exist in a postcode area. This can 
lead to the use (in particular for pollen) of environmental data that is quite distant from the BB reports, and so 
we also calculate correlations for BB symptom reports only where environmental sensors for the given variable 
are available within the region. The correlations from both methods are presented for individual days, as well as 
aggregated for weekly and monthly periods (to allow for any potential lags between potential environmental trig-
gers and symptoms). For this regional analysis, all pollution sensor types (urban background, rural background, 
industrial and urban traffic) are used.

Table 5 shows correlations between environment scores (pollen, pollutants and weather) that have a sig-
nificance of p (2-tailed) ≤ 0.05. Note that none of the meteorological variables correlated with the required 
significance to be included in this table. The top 3 rows show correlations of daily BB scores with daily mean 
environment scores using concentric regions and, in this case, only one environmental measurement correlates 
significantly with any BB symptom. Grass (Poaceae) correlates with BB nose symptoms 0.1054, eye symptoms: 
0.109 and max score: 0.1139 (all with p (2-tailed) ≤ 0.001). Using correlations between BB symptom reports 
and environmental variables in the same region only, only one significant correlation, between eyes and grass, 

Table 4.  Correlations of BB symptom scores with average monthly pollutant variables (UK-wide, but grouped 
by sensor location type, March–Sept incl.). Only significant correlations (indicated by p values ≤ 0.05) are 
included here.

Environment measure (background urban) BB symptom (urban) Correlation p (2-tailed)

SO2 mean Eyes −0.713 ≤.001

NOx mean Eyes −0.6596 ≤.001

SO2 mean Nose −0.633 ≤.001

NO2 mean Eyes −0.6237 ≤.001

NOx max Eyes −0.6142 ≤.001

NOx mean Breathing −0.604 ≤.001

NOx mean Nose −0.5961 ≤.001

NO2 max Eyes −0.5948 ≤.001

NO2 mean Breathing −0.5819 ≤.001

NOx mean Max_score −0.5687 ≤.001

NOx max Nose −0.5662 ≤.001

SO2 mean Breathing −0.5524 ≤.001

NOx max Max_score −0.5496 ≤.001

NOx max Taken_medication −0.5384 0.0012

NO2 max Breathing −0.5226 0.0018

NO2 mean Nose −0.5205 0.0019

SO2 max Eyes −0.5198 0.0019

NOx max Breathing −0.5083 0.0025

NO2 mean Max_score −0.506 0.0027

NOx mean Taken_medication −0.4987 0.0031

NO2 max Nose −0.4921 0.0036

NO2 max Max_score −0.4812 0.0046

SO2 mean Max_score −0.457 0.0075

O3 max Taken_medication 0.4355 0.0113

SO2 max Breathing −0.4263 0.0134

O3 max Nose 0.4248 0.0137

O3 mean Nose 0.4131 0.0169

O3 mean Taken_medication 0.4031 0.02

SO2 max Nose −0.3948 0.023

NO2 mean Taken_medication −0.3752 0.0314

NO2 max Taken_medication −0.3665 0.0359

Environment measure (background rural) BB symptom (rural)

SO2 max Eyes 0.4975 0.0032

SO2 mean Taken_medication 0.4935 0.0035

SO2 mean Max_score 0.4306 0.0124

SO2 mean Eyes 0.4136 0.0167

SO2 max Max_score 0.3861 0.0265

SO2 mean Nose 0.3603 0.0394

SO2 max Taken_medication 0.3591 0.0401

SO2 max Nose 0.358 0.0408
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occurs (shown in row 4), with no increase in correlation. Repeating the same analysis for weekly and monthly time 
aggregations leads to improved correlations (shown in rows 5–8 and 16–21), while using environmental sensors 
in the same region only increased correlations at the monthly level (shown in rows 22–32) (but not at the weekly 
level; shown in rows 9–15). These aggregations also broaden the range of environmental variables with which 
symptoms are correlated. The highest correlation (using monthly means and only matching BB and environment 
data from the same region) was 0.21, for breathing with SO2 mean. It should be noted that this correlation is lower 
than any significant correlation reported using the urban/rural grouping for symptom reports at UK-wide level, 
as described in previous sections. The lack of significant increase in correlations when replacing the concentric 
regions method with one that uses the same region only, to minimise this distance, suggests a number of pos-
sibilities: (a) the postcode regions used are too large, (b) the smaller sample size of BB reports with a sensor in 
the same region allows the results to be more influenced by noise, or (c) that other factors are at play. Previous 
research suggests there are a number of reasons which could make strong correlations unlikely. For example, 
they could be affected by the complex dynamics of atmospheric  components23,43,44 or the spatial heterogeneity 
of environment  factors45,46, across the postcode regions (and so between the nearest sensor and each BB report).

To illustrate the regional variability of atmospheric components, Table 6 shows how measurement sites for 
each pollutant, weather and pollen variable correlate within single regions (see bold for median regional cor-
relations), and across the entire UK (see † for the median inter-sensor correlations for all sensor pairs across the 
UK). The first 9 measurements in the table all have 2 or more working sensors in at least one postcode region 
and at least one pair of those sensors has a correlation with a p value of p ≤0.05. The strong correlations for these 
variables (and, in particular, for pressure, temperature, O3 , PM10 , and PM2.5 ) between the sensor-pairs both 
regionally and UK-wide give us confidence that it is reasonable for us to use these sensor data to infer temporal 
patterns (at least) for these at the regional scale. The lowest performing measurement of this group is SO2 , which 

Table 5.  Correlations of BB symptom scores with environment variables, grouped by postcode region. Only 
significant correlations (indicated by p values ≤ 0.05) are included here. Data is for March–Sept (inclusive). 
Highest results for each frequency/region type combination are highlighted in bold.

Time aggregation Regions Env variable BB symptom Correlation p (2-tailed)

 Daily mean
 Concentric regions

Grass (Poaceae) Max_score 0.1139 ≤.001

Grass Eyes 0.109 ≤.001

Grass Nose 0.1054 ≤.001

Same region only Grass Eyes 0.1095 ≤.001

 Weekly mean

 Concentric regions

Grass Max_score 0.1653 ≤.001

Grass Nose 0.157 ≤.001

Grass Eyes 0.1529 ≤.001

O3 mean Eyes 0.1113 ≤.001

 Same region only

Grass Eyes 0.158 ≤.001

SO2 mean Breathing 0.1541 ≤.001

Nettle family (Urticaceae) Breathing −0.1378 0.0023

SO2 mean Taken_medication 0.1234 ≤.001

Grass Nose 0.1212 0.0043

SO2 max Taken_medication 0.1171 ≤.001

Grass Max_score 0.1148 0.0068

 Monthly mean

 Concentric regions

Grass Max_score 0.1811 ≤.001

Grass Nose 0.1708 ≤.001

Grass Eyes 0.165 ≤.001

O3 mean Eyes 0.1309 ≤.001

O3 max Taken_medication 0.1096 ≤.001

O3 max Eyes 0.1069 ≤.001

 Same region only

SO2 Mean Breathing 0.21 ≤.001

Hazel (Corylus spp.) Breathing 0.1888 0.0145

Nettle family Breathing −0.1864 0.0156

SO2 mean Max_score 0.1707 0.0015

SO2 max Taken_medication 0.1665 0.002

Grass Eyes 0.1561 0.0311

SO2 mean Taken_medication 0.1502 0.0054

SO2 mean Nose 0.1297 0.0164

SO2 max Nose 0.1268 0.019

SO2 max Breathing 0.1158 0.0323

SO2 max Max_score 0.1117 0.0389
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has only a median UK-wide correlation of 0.146. Only one region (Belfast) with more than one SO2 sensor (with 
a correlation p value of p ≤0.05) has three sensors and a median correlation of 0.219. An expanded version of 
Table 6, showing the regions with the lowest and highest median inter-sensor correlations , as well as the mean, 
minimum and maximum sensor-pair correlations for these regions, is presented in Supplementary Table S6. 
The last 12 rows (all pollen type measurements) do not show any regions containing more than one sensor, so 
only their UK correlations are displayed. In this latter group, the UK-wide correlations are also considerably 
lower than the first group, bringing their ability to represent the majority of BB user environment conditions 
into question: the highest pollen median correlation is grass (Poaceae), at 0.302.

Discussion
One potential reason for the reduced differences between urban and rural symptom severity in 2017, might be 
that according to DEFRA reports (see Fig. 3 taken  from47, as well  as12), the number of days with moderate or 
higher O3 levels dropped slightly in 2017 before rising sharply and staying relatively high in subsequent years. 
Another factor worth considering is that 2017 was warmer and wetter than other  years48. Temperature, precipi-
tation and humidity have been found to have an effect on pollen  counts40,49–51 and also potentially on pollution 
levels or participants’ biological reactions to such factors. Figure 4 displays the correlations between yearly means 
of urban BB symptoms with (a) relative humidity (daily max) and (b) O3 (daily mean) respectively. The relative 
humidity correlation suggests that wetter weather could reduce the severity of some symptoms, or possibly that 
O3 increases symptoms. Previous work also suggests that O3 is associated with warmer  weather15. The presence 
of any of the above types of phenomena could be (directly or indirectly) related to reductions in urban symptoms 
and/or the increase in rural symptoms, potentially lessening the gap between the two for that year.

It is worthy of note that there is a negative correlation between symptom severity and all gaseous pollutants 
in urban areas, except for O3 which showed significant positive correlations. This indicates an inverse relation-
ship, in urban areas, between ozone and other pollutants, which has been discussed in several recent studies 
highlighting the weekend effect15,52,53 where O3 levels increase (often at weekends) as other pollutants reduce. The 

Table 6.  Pollution, pollen and weather measurement: median correlations both within single postcode 
regions (bold), and across the whole UK ( †). Data for March–September, inclusive, is used. Only significant 
correlations (those with p ≤0.05) are reported here.

Measurement Region count (regions with ≥ 2 sensors) Median corr

 NO2_mean  44
Median 0.689

UK (all regions) 0.531†

 NOXasNO2_mean  44
Median 0.63

UK (all regions) 0.482†

 O3_mean  12
Median 0.892

UK (all regions) 0.665†

 PM10_mean  28
Median 0.853

UK (all regions) 0.678†

 PM2.5_mean  20
Median 0.948

UK (all regions) 0.73†

 Pressure_mean  28
Median 0.998

UK (all regions) 0.939†

 Relativehumidity_mean  67
Median 0.85

UK (all regions) 0.461†

 SO2_mean  5
Median 0.219

UK (all regions) 0.146†

 Temperature_mean  67
Median 0.985

UK (all regions) 0.922†

Alder (Alnus spp.) 0 UK (all regions) 0.281†

Ragweed (Ambrosia spp.) 0 UK (all regions) 0.099†

Mugwort (Artemisia spp.) 0 UK (all regions) 0.153†

Birch (Betula spp.) 0 UK (all regions) 0.219†

Hazel (Corylus spp.) 0 UK (all regions) 0.093†

Ash (Fraxinus spp.) 0 UK (all regions) 0.167†

Plane (Platanus spp.) 0 UK (all regions) 0.199†

Grass (Poaceae) 0 UK (all regions) 0.302†

Oak (Quercus spp.) 0 UK (all regions) 0.162†

Willow (Salix spp.) 0 UK (all regions) 0.166†

Elm (Ulmus spp.) 0 UK (all regions) 0.134†

Nettle family (Urticaceae) 0 UK (all regions) 0.212†
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inverse relationship can also be seen in annual DEFRA figures (Fig. 3)47 in urban areas in years 2018 to 2020. 
We hypothesise that if any causal effect exists, is likely to be O3 worsening symptoms, rather than other gaseous 
pollutants lessening them.

Weaker correlations between BB hay fever symptoms and environmental variables are observed at a regional 
level, using the postcode regions method (Table 5), which we suggest could be due to any combination of the 
following complex factors: the spatial mix of pollutant emission sources; interactions between atmospheric 
 components3; and the spatial variability of pollens and some pollutants such as NO2 and SO2 (e.g.45,46,54), which 
will create distribution patterns that do not map cleanly onto postcode regions. Any relationships are likely to 
be further obfuscated by the variety of possible human immune responses.

In future Britain Breathing studies, we intend to obtain more information from users about whether they 
report symptoms before or after taking any antihistamines (using responses to the ’Taken Medication?’ question), 
so that we can stratify all symptom results by this factor. This would rule out any effects due to users’ interpreta-
tions of whether the symptoms should be recorded whilst such medications are active.

Conclusions
The main aim of this study was to investigate the relationship between environmental factors and real-time hay 
fever symptom reports using experience sampled, cross sectional data from the general  population9. To capture 
any potential relationship, we used a simple method of dividing and comparing symptoms according to whether 
they occur in urban or rural areas as these are (as outlined in the Introduction) reported to vary in pollen counts 
and types, pollution levels and rates of allergic reactions.

Our overall results indicate that H1 (Seasonal allergy symptoms are worse for those in urban areas than in 
rural areas.) is supported. When observing differences between rural and urban symptom severity, the associated 

Figure 3.  UK mean days per (urban) site with moderate or higher air pollution by year (from DEFRA  report47).

Figure 4.  BB symptom urban breathing correlations with relative humidity (a) and mean O3 (b), aggregated by 
year.
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Kolmogorov-Smirnov tests displayed in Table 1 show that in all years except 2017, urban means are significantly 
higher than rural means for nose, taken_medication and max_score. The bootstrap re-sampling method results, 
illustrated in Fig. 2 also show considerable differences across similar year symptom combinations, allowing 
confidence that these differences are not biased by a few individuals reporting from one land use type. This 
motivates further investigation into the reason why urban and rural symptom levels were more similar in 2017 
and we suggest possible reasons for this in the Discussion section.

Symptom duration, measured in unbroken sets of days of reported symptoms, is also higher in urban loca-
tions, suggesting that symptoms in urban areas are not only likely to be more severe, but to also last longer.

The results of analyses performed to test H2 (Higher levels of pollution lead to worse seasonal allergy symptoms.) 
were less conclusive and indicate a complex relationship between environment variables and allergy symptoms. 
We have measured UK-wide correlations between hay fever symptoms and environmental factors and compared 
differences between urban and rural locations (Tables 3 and 4). Results indicate higher (moderate) correlations 
in urban areas. Whilst urban symptoms correlate more highly with all gaseous pollutants, rural symptoms cor-
relate only with SO2 and grass pollen.

Data availability
All environmental data described in this publication are publicly  available33,34. Britain Breathing data is not 
publicly accessible, due to the possibility of identifying individual participants from the location data. Should 
people have queries about this data or wish to obtain it under a data sharing agreement, they are invited to 
contact the lead author.
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