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COVID‑19 epidemic peaks 
distribution in the United‑States 
of America, from epidemiological 
modeling to public health policies
Alexandre Vallée 1*, Davide Faranda 2,3,4 & Maxence Arutkin 5

COVID‑19 prediction models are characterized by uncertainties due to fluctuating parameters, such 
as changes in infection or recovery rates. While deterministic models often predict epidemic peaks too 
early, incorporating these fluctuations into the SIR model can provide a more accurate representation 
of peak timing. Predicting R0, the basic reproduction number, remains a major challenge with 
significant implications for government policy and strategy. In this study, we propose a tool for policy 
makers to show the effects of possible fluctuations in policy strategies on different R0 levels. Results 
show that epidemic peaks in the United States occur at varying dates, up to 50, 87, and 82 days from 
the beginning of the second, third, and fourth waves. Our findings suggest that inaccurate predictions 
and public health policies may result from underestimating fluctuations in infection or recovery rates. 
Therefore, incorporating fluctuations into SIR models should be considered when predicting epidemic 
peak times to inform appropriate public health responses.

Understanding the predictions at the different stages of the evolution of key epidemic indicators remains a 
major goal for policy makers and health professionals. The dynamics of human-to-human transmission risk 
is associated with many factors, including response measures and other temporal factors that could affect the 
trajectory of the  epidemic1,2. It is essential to consider fluctuations of epidemiological parameters (e.g., variations 
in infection or recovery rates) in the modeling of the epidemic spread to better predict the epidemic peak date. 
It remains extremely challenging to provide an accurate epidemic scenario of an epidemic both because of the 
partial knowledge of the health status of the population and the variability of virus  characteristics3. Previous 
studies investigated that COVID-19 prediction models are characterized by uncertainties resulting in fluctuat-
ing factors of the  epidemic3–5. Daily fluctuations of recovery rates present a main role in peak epidemic timing 
based on Susceptible-Infected-Recovered (SIR) model dynamics. Using such a model with fluctuating control 
parameters, a previous work has shown that the infection counts follow a stochastic process with a log-normal 
distribution at an early stage, and that the epidemic peak is a random variable when considering that these 
parameters fluctuate. A form of the stochastic solution of the infection counts at an early stage of the epidemics 
was derived. With this framework, it has been shown that the deterministic models anticipate the epidemic peaks 
with respect to the stochastic model. In the latter, fluctuations of infection and recovery rates induce a realistic 
delay on the most probable and average date of the epidemic peak. Based on the data of the Italian regions, we 
previously explained in this country that the dispersion of the epidemic peak date can be modeled by including 
fluctuations in the control parameters in a stochastic SIR  model3. This study aims to examine how daily fluctua-
tions in infection and recovery rates affect the dynamics of a Susceptible-Infected-Recovered (SIR) model and 
the timing of the epidemic peak in the United States. The study will use data from three COVID-19 waves in 
the United States to analyze the impact of these fluctuations on the most probable and average peak time of the 
epidemic using a theoretical deterministic model. The basic reproduction number (R0) will also be considered in 
the analysis. The results of this study will provide insight into the role of infection and recovery rate fluctuations 
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on the spread and peak of an epidemic, particularly we will show that the deterministic SIR model anticipates 
the peak with respect to the most probable and average peak time of the stochastic model.

Methods
Theoretical modeling of the most probable epidemic peak time modeling. Deterministic SIR 
model. We build our analysis by showing that daily fluctuations in the infection and recovery rate are essential 
to improve prediction of the epidemic peak date and suggesting that it should be introduced in epidemiological 
 models3. The epidemic peak date distribution allows for a new estimation of epidemic evolution using a Suscep-
tible Infected Recovered (S.I.R) model with daily fluctuations on infection  rates6.

The compartmental model divides the population into three groups, namely Susceptible (S), Infected (I), and 
Recovered (R) individuals, according to the following discrete-time evolution equations:

In the SIR model above, the parameters are the recovery rate (β), and the infection rate (λ), N is the total 
population.

At the beginning of the epidemic the number of susceptible people is considered constant (S ∼ N = constant) 
and large with respect to the number of infected people, without parameter fluctuation, we recover the expo-
nential growth at early stage:

this solution shows that if λ ≤ β or  R0 = �
β
 ≤ 1 there is no epidemic outbreak, this is called the epidemic threshold 

and exhibit the importance of the  R0 to understand and control an epidemic  dynamic7–10.
To consider time-dependent control factors, a stochastic approach is performed by which the control param-

eters k ∈ {β; �} are described through a stochastic process:

where ǫ is a reduced centered Gaussian random variable. k0 ∈ {β0; �0} is set to the mean value of the parameter. 
We show that the infection counts follow a log-normal distribution and then, we can investigate the quantile of 
this  solution11. The log-normal distribution of the number of infected people implies sub-exponential divergence 
of the quantile of the solution from the average exponential growth behavior. Therefore, effectively managing 
an epidemic over a specific time frame and with a desired level of certainty should focus on managing a specific 
quantile of the solution Empirically we may consider the dynamic for the worst α (= 95% for example) scenarios 
of the solution. The corresponding α−quantile  qα for the Brownian motion is:

Thus, the quantile of the number of infected people reads:

The log-normal distributions are positively skewed with long right tails due to low mean values and high vari-
ances in the random variables. This feature creates a balance between highly diffuse behavior at short time and 
drift domination at large time. A non-trivial time analogous to the time horizon appears canceling the exponent:

with m = λ0 – β0 and σ̃
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Thus, numerical experiments are performed by discretizing a SIR model defined previously with an Euler 

scheme and a time step �t = 1 day following the guideline defined by Faranda and  Alberti4.

Most probable date of the epidemic peak. The incorporation of fluctuating parameters in the SIR 
model introduces a level of randomness to the solution, making the predicted epidemic peak date itself a ran-
dom variable We will use tool borrowed from first passage time theory to compute the probability distribution 
of the epidemic peak date, the first passage modeling has shown to be ubiquitous in nature: diffusion-limited 
 growth12, neuron  firing13, survival probability of a noble’s man name (male descendent)14, or the triggering of 
stock  options13. At the epidemic peak, the number of infected people has reached its maximum, as an approxi-
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mation, we will use the deterministic peak level from the SIR model and compute the random time at which the 
number of infected people reaches that level.

Assuming that the number of infected people at t = 0 is 1, for the deterministic SIR, an approximation of the 
number of infected people at the epidemic peak  is10,15:

using this approximation, the deterministic peak from the SIR model occurs at:

with θ = log  (Ipeak) and m = β0(R0 − 1). Now let’s assume that we introduce the fluctuation on the control param-
eters of the epidemic, the time at which the number of infected people will reach the level defined by Eq. (9) is 
a random variable defined as:

with a = (m− σ 2

2(1+m)2
) , b = σ

(1+m)
 , and Wt the Brownian motion. The probability distribution of this random 

variable is equivalent to the first passage time distribution of a lognormal process to a given  threshold16:

this time strongly depends on  R0 and is delayed with respect to the deterministic peak time due to the fluctua-
tions. Another interesting time to study is the most probable date of the epidemic peak:

where Pe = 2aθ
b2

 is the Péclet number of the model. When fluctuation play a major role—R0 ≃ 1—the most prob-
able date for the epidemic peak scale like tmp = tmeanPe

6   with  Pe → 0, and could be much smaller than average 
peak date of the epidemic. It is true particularly for  R0 close to 1.

Thus, the epidemic peak time of the stochastic solution exhibits an inverse Gaussian probability distribution, 
that we will use to fit the spread of the epidemic peak times observed across the different regions/states3.

We recall that the probability distribution of the epidemic peak time is described by the following distribution:

with a = (m− σ 2

2(1+m)2
) , b = σ

(1+m)
 , m = β0(R0 − 1) , β0 is the recovery rate and σ the amplitude of daily fluctua-

tions of the control parameters (i.e., variations of infection rates or recovery rates). As shown above, this probabil-
ity distribution one can easily get the most probable peak time, mean peak time and the confidence intervals of 
the epidemic peak  time3.

Data analysis. Epidemic peak time, when the outbreak reaches its highest point, is crucial for controlling 
the spread of the disease. From a modeling perspective, the distribution of epidemic peak time can be derived 
analytically using the following approximations: we assume that the epidemic peak time is determine by a drifted 
lognormal distribution to the deterministic peak level, as see above, for full probability distribution; the average 
epidemic peak time  tmean and the most probable epidemic peak time  tmp (for three waves in the United States of 
America) are derived analytically. The epidemic peak is delayed due to control parameters fluctuations with the 
SIR model (with conditions specified as above and 1.1 < R0 < 2) and from the analytical predictions. To compare 
our theoretical model to real data, we consider the U.S. states’ infection counts. The data that support the find-
ings of this study are openly available in https:// github. com/ CSSEG ISand Data/ COVID- 19. For each state, each 
epidemic wave started after the lowest number of infections between the previous wave to the next wave. The 
empirical distribution function of the epidemic peak time for each wave is fitted using maximum likelihood esti-
mates of the theoretical epidemic peak time distribution defined above. Population of each US states came from: 
https:// www. census. gov/ data/ tables/ time- series/ demo/ popest/ 2020s- state- total. html# par_ texti mage. Analytic 
models were performed using MATLAB software.

Results
Figure 1 showed the different epidemic peak distributions according to the days from the beginning of a wave 
with different R0 comprising between 1.1 and 1.7 based on the theoretical model. Figure 2 showed the median 
epidemic peak time for each wave and 90% confidence interval according to R0 level based on analytical predic-
tions and assuming control parameters daily fluctuations (as variations in infection rate or recovery rates) of 20%, 
with R0 ~ 1.7 for the second wave and R0 ~ 1.4 the third and fourth waves. The closer the R0 fluctuations are to 
1.0, the greater the epidemic peak distribution will be large, with a larger confidence interval, with 275 days for 
R0 equal to 1.1 and with less than 50 days for R0 < 1.7. We observed that the peak across US states, for the second 
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wave, was distributed around 50 days (most probable peak date) (SD 24 days) (Fig. 3A), for the third wave around 
87 days (SD 26 days) (Fig. 3B), and for the fourth wave around 82 days (SD 15 days) (Fig. 3C).

Figure 1.  It illustrates the distribution of epidemic peaks at various intervals from the start of an outbreak, 
based on a theoretical model that considers  R0 values ranging from 1.1 to 1.7. The figure displays how the 
peak of the epidemic may vary depending on the number of days since the beginning of the outbreak and the 
corresponding  R0 value.

Figure 2.  Median epidemic peak time for each wave and 90% confidence interval according to  R0 level 
assuming control parameters daily fluctuations of 20%. EPT: epidemic peak time.



5

Vol.:(0123456789)

Scientific Reports |         (2023) 13:4996  | https://doi.org/10.1038/s41598-023-30014-2

www.nature.com/scientificreports/

Figure 3.  Epidemic peak distribution for the three last waves of the U.S. states, represented by alpha codes. 
Epidemic peak time is computed starting the time after the minimum of infection counts between two waves. 
The empirical distribution function of the epidemic peak is displayed in continuous lines, an histogram of the 
U.S. state counts date is shown in orange. (A) Epidemic peak distribution from maximum likelihood estimator 
for the second wave. (B) Epidemic peak distribution from maximum likelihood estimator for the third wave. (C) 
Epidemic peak distribution from maximum likelihood estimator for the fourth wave.
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Discussion
For policymakers and health professionals, forecasting key pandemic indicators in the short term, such as the 
reproduction number (R0) and the number of new cases, is a crucial goal. Accurate predictions can inform the 
implementation of effective response strategies and aid in the more efficient allocation of resources The trajec-
tory of the COVID-19 pandemic depends on a number of factors, including the attributes of the virus (such as 
its transmissibility), the characteristics of the location (such as population density and transportation patterns), 
individual behaviors in response to the pandemic, and government  actions1,17–19. Understanding how these 
factors influence the spread of the disease is essential for policymakers and health professionals as they work to 
develop effective strategies for managing the pandemic. By analyzing the interplay between these factors and 
the trajectory of the pandemic, policymakers and health professionals can better understand the drivers of the 
disease’s spread and develop more effective response strategies.

These factors are correlated with a more linear growth of  pandemics20 but were still investigated in dynamic 
models of the COVID-19 transmission. Our study showed that epidemic peaks across the US. states during the 
second, third and fourth waves were distributed around 50, 87 and 82 days from the beginning to the peak of the 
epidemic wake (Fig. 3). Thus, fluctuations in models should be considered in the epidemic modeling to predict 
the epidemic peak and plan appropriate public policies.

Epidemiological implications for public health policies. The epidemic peaks distributions are genu-
ine features of the COVID-19 epidemic, and they originate from the combination of initial conditions (the health 
status of the population at the beginning of an epidemic wave) and the inherent fluctuations of the parameters 
that, in the SIR model, can be represented by stochastic fluctuations. Our previous study reported that epidemic 
peaks across the Italian region during the first wave were distributed around 55 days (most probable peak date), 
and around 130 days for the second  wave3. Other models have shown a 6-week (~ 42 days) errors for cumulative 
death below 10%19, a median absolute percentage error at 10 weeks (~ 70 days) of forecasting COVID-19 resur-
gence for the Institute for Health Metrics and Evaluation (IHME) SEIR  model21.

Many hypotheses have been mentioned to explain the divergence between the predicted and observed epi-
demic peaks, many inaccuracies and incompleteness of available  information22, difficulties in confirming large 
numbers of cases by specific tests, presence of asymptomatic cases and possible delays in diagnosis, lack of test-
ing, individual behavioral  responses23, seasonality, meteorological  factor17, variant  spread24, worse the situation 
for modeling the different scenarios.

Uncertainties in predicting the peak of a pandemic can affect the efficacy of health policies and strategies. 
These uncertainties may be due to errors in long-term forecasts and to variations in the mechanisms of viral 
transmission. The expected exponential growth of transmission may not always be observed, which can be 
attributed to government interventions as well as individuals’ reactions to the epidemic, such as self-isolation 
and practicing social distancing. These behavioral responses are indeed associated with a sub-exponential growth 
of  epidemics20,23. However, these observations remain difficult to implement in the dynamic modeling of SARS-
CoV-2 transmission. Restrictions in activities, such as non-pharmaceutical interventions and non-physical dis-
tancing factors, may probably help to delay the epidemic peak by playing a part in mitigating potential spikes in 
cases, especially when physical distancing measures are  relaxed25. However, this work included limitations with 
large uncertainties for the estimate  R0.

The validity of such claims depends on the evidence to support the hypotheses regarding the impact of a 
policy on  transmission18. Different dynamics can interact with these models and impact the predicted gross scale 
of the epidemic. Indeed, the public health policies, including precautionary measures and quarantine, modu-
late the possible trajectories of  outbreak26. Uncertainty in peak and date sizes can be due to numerous factors, 
including stochasticity of early dynamics, heterogeneity of contact profiles, spatial variation, and dynamics of 
epidemiological  parameters8. While strong control policies have been associated with inmate growth in cases 
where house-stay restrictions were unlikely to be the one-size-fits-all agreement, a gradual approach to restric-
tive measures could be of  concern27.

The prediction of  R0 remains a major epidemiological challenge with practical consequences due to it sup-
ports governments policies to develop rapid strategies to counteract the growth of the outbreak. In this study, 
we propose a policy-maker tool which show the consequences of possible fluctuations in policy strategies on 
different  R0 levels (Fig. 2)28.

Limitations. Our data were provided from a public data source and thus, were limited to the accuracy of 
their report.

Conclusion
Our study suggests that the distribution of epidemic peaks across different regions of the United States during 
each wave is not solely determined by the mean infection and recovery rates, but also by the fluctuations in these 
rates. This is an important finding as it highlights the need to consider fluctuations in predictive models and 
public health policies in order to have a more accurate prediction of the epidemic peak time.

Inaccurate predictions of both epidemic scenarios and public health policies could be the consequence of 
an underestimation of these fluctuations. This means that without considering the fluctuations in the infection 
and recovery rates, the predictions of the epidemic peak time could be incorrect. This could lead to inadequate 
and ineffective public health policies, which in turn can lead to a failure in controlling the spread of the disease.

To address this issue, our study proposed a policy-maker tool that incorporates fluctuations in R0 into pre-
dictive SIR models. This tool could be a valuable resource for policymakers in developing rapid strategies and 
implementing appropriate public health policies in response to outbreaks. By incorporating fluctuations in R0, 
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the tool would provide policymakers with a better understanding of the potential impacts of different policy 
strategies on the spread of a disease. This could allow them to make more informed decisions and effectively 
allocate resources to prevent or mitigate outbreaks.

Overall, we emphasize the importance of considering the fluctuations in infection and recovery rates in order 
to have a more accurate prediction of the epidemic peak time, and thus to have a better epidemic control. This is 
crucial for policymakers and health professionals to develop effective response strategies and allocate resources 
in a more targeted way.

Data availability
The data that support the findings of this study are openly available in https:// github. com/ CSSEG ISand Data/ 
COVID- 19.
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