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Sunsetting Binding MOAD with its 
last data update and the addition 
of 3D‑ligand polypharmacology 
tools
Swapnil Wagle , Richard D. Smith , Anthony J. Dominic III , Debarati DasGupta , 
Sunil Kumar Tripathi  & Heather A. Carlson *

Binding MOAD is a database of protein–ligand complexes and their affinities with many structured 
relationships across the dataset. The project has been in development for over 20 years, but now, the 
time has come to bring it to a close. Currently, the database contains 41,409 structures with affinity 
coverage for 15,223 (37%) complexes. The website BindingMOAD.org provides numerous tools for 
polypharmacology exploration. Current relationships include links for structures with sequence 
similarity, 2D ligand similarity, and binding‑site similarity. In this last update, we have added 3D ligand 
similarity using ROCS to identify ligands which may not necessarily be similar in two dimensions 
but can occupy the same three‑dimensional space. For the 20,387 different ligands present in the 
database, a total of 1,320,511 3D‑shape matches between the ligands were added. Examples of the 
utility of 3D‑shape matching in polypharmacology are presented. Finally, plans for future access to the 
project data are outlined.

Databases of protein–ligand complexes are central to various drug discovery and design projects. They are 
particularly useful in polypharmacology projects, such as predicting off-target activities of drugs (toxicology) 
or finding novel applications of known drugs (drug repurposing). There are several databases that provide data 
on protein–ligand complexes, including Binding MOAD (www. Bindi ngMOAD. org)1–3, PDBbind (www. PDBbi 
nd. org. cn)4, BindingDB (www. bindi ngdb. org)5–9, sc-PDB (http:// bioin fo- pharma. u- stras bg. fr/ scPDB/)10,11, and 
many more. These databases are aimed at different applications, and their content and sizes vary because of their 
different selection criteria for including any particular protein–ligand complex.

MOAD was initiated in 2001, first published in  20051, and annually updated in early January of each year. 
When we began MOAD, the largest datasets for docking and scoring had roughly 200  complexes12,13. These were 
gathered in a “bottom up” approach of reading the medicinal chemistry literature to identify structures. We 
decided to use a “top down” approach that started with the whole Protein Data Bank (PDB) containing all possible 
complexes and augment that maximal set with affinity data through literature searching. A protein–ligand 
complex must have a resolution of at least 2.5 Å and contain at least one biologically relevant ligand in its PDB 
structure to be included in the database. In our HiQ subset of pristine protein–ligand complexes from  MOAD14, 
additional selection criteria require more exacting metrics of  Rfree −  Rwork ≤ 5%, Real Space R ≤ 0.2, and RSCC ≥ 0.9.

In 2014, the website and database were restructured into a LAMP (Linux, Apache, MySQL, and PHP)  format3; 
the improved user interface incorporated third-party plugins, such as Jmol, MarvinView, and JChemBase with 
MarvinSketch for better visualization of proteins and ligands. In the same update, useful features like filtered 
downloads and field-based searching were also incorporated. In 2019, NGL viewer was added for an improved 
visualization of the protein–ligand complexes, and MarvinView was replaced with MarvinJS for small-molecule 
searching in the  database15. The website was also equipped with polypharmacology tools, such as 3D binding-site 
similarity and 2D similarities of ligands.

Our latest addition to MOAD is 3D similarities across the ligands. Similar molecules tend to have similar 
chemical and biological  properties16. Assessment of structural similarities among small molecules can be a highly 
effective starting point for the discovery and optimization of various lead molecules. This is useful in predicting 
toxicological properties of off-target binding and repurposing drugs as potential inhibitors to other proteins of 
interest. Two-dimensional molecular similarity approaches have been quite popular because of their simplicity 
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and  accuracy17–22. However, 2D similarity calculations are mostly based on  molecular fingerprint descriptors and 
do not contain any information about the 3D structure of a molecule. We chose to add molecular 3D similarity 
because of its importance in virtual screening of molecular libraries as well as scaffold hopping  approaches23–25.

Our consistent efforts in updating MOAD has made the database a popular choice among scientists. MOAD’s 
papers have been cited 600 times, and the website receives ~ 1000 hits a week. Many recent machine learning 
studies have introduced novel scoring functions for molecular  docking26,27 based on MOAD as a benchmark 
set. In a recent study, MOAD served as a benchmark set for RosENET (Rosetta Energy Neural Networks), a 
three-dimensional convolutional neural networks based study that combined molecular mechanics energies 
and descriptors for predicting the absolute binding affinity of protein–ligand  complexes28. The high quality of 
protein–ligand structures in the database also made MOAD a popular choice for some other neural network 
based studies, such as  KDEEP

29,  DEELIG30, and  DeepAtom31. These studies used three-dimensional voxelized 
representation of protein–ligand complexes for extractions of molecular features and binding related interaction 
patterns, in order to predict the binding affinities of the complexes. High quality of the structures of the complexes 
seems to be crucial for the success of the voxelized representation of complex structures. Historically, MOAD 
has been used to develop and test molecular mechanics parameters and docking and scoring  methods32–47; 
to examine fundamental protein–ligand  interactions48–58; to predict small molecules ligands, protein targets, 
and binding  sites59–62; and to aid protein  design63,64. Our own efforts with MOAD have focused on learning 
biophysical principles behind protein–ligand binding and relating those patterns to  affinity65–68. Furthermore, 
we used MOAD’s data to hold the first docking and scoring contests in the  field14,69.

Methods
As noted above, the data collection in MOAD is performed using a “top-down” approach, i.e., first all the 
protein–ligand complex structures from the RCSB Protein Data Bank (https:// www. rcsb. org/) are imported, 
then the structures that do not satisfy the inclusion criteria of MOAD are discarded, and finally the binding data 
for the included PDBs are extracted from the primary crystallography references. The primary reference is the 
reported reference for the PDB structure in the RCSB Protein Data Bank (PDB)70.

The RCSB databank had 160,152 protein–ligand complex structures on 1/2/2021, which were imported to 
our data pipeline for inspection. A total of 1078 journal articles were acquired for assessing the new structures 
added in the previous year. A detailed description of the procedure for the data pipeline has been reported in 
previous MOAD  updates1–3,15. An abbreviated summary of the pipeline is as follows:

1. Structures with resolution worse than 2.5 Å are discarded. The remaining structures are checked for at least 
one protein chain and at least one ligand that is not bound to the protein chain covalently.

2. The ligand(s) in each of the structures is checked for its biological relevance and annotated as “valid,” 
“invalid,” or “part of the protein.” Crystallographic additives, salts, buffers, metals, and solvents are considered 
invalid. HEME groups and modified amino acids in the protein chains are considered part of protein and 
not bound ligands.

3. Structures emerging from the step 2 with at least one valid ligand are hand curated before their final entry 
into MOAD. No structure is included in the database without being manually inspected. The binding data, 
whenever available, is extracted from the primary references for the crystal structure. Whenever multiple 
kinds of binding information are reported, our order of preference for selecting the data is Kd > Ki >  IC50 
(dissociation (or association  Ka) constants over inhibition constants over half-maximal inhibitory 
concentrations).

The protein–ligand complexes are then grouped into families based on sequence similarities, which are 
calculated using  BLAST71. A family contains all the complexes in the database that have sequences ≥ 90% identical 
to each other. Each of the families is assigned a leader that is typically the complex with the tightest binding 
ligand in the set. When binding data is not present for any member of the family, the leader is selected based on 
the ligand that has the best resolution and most biological relevance. Proteins are also grouped on 50% and 70% 
sequence similarities as well, if researchers prefer to analyze homologous sets of proteins, although no leader is 
chosen for these groups.

Cross comparison of affinity data. A unique feature of this last update is that the binding data in MOAD 
was cross-referenced with that of  PDBbind4. Each of the collected discrepancies were checked manually for the 
correct value of the binding data from the primary reference of the PDB entry. If MOAD values were incorrect, 
the correct values were added to the database, and those are now available on the database website. A detailed 
analysis appears below in Results and Discussion.

3D ligand similarity. Calculations of 3D-shape similarity were performed using  ROCS23 and  FastROCS23,24 
from OpenEye, based on all the valid ligands of MOAD database. Although ROCS has the utility to also perform 
color (or chemical feature) similarity search, it was not used in our analysis for tractability.

ROCS calculations are based on the concept that two entities will have the same shape if their volumes exactly 
correspond. Therefore, for any two overlaid ligands, the volume mismatch is a measure of dissimilarity. The 
converse of this is not true, i.e., two objects that have the same volume do not necessarily have the same shape. In 
the shape theory of ROCS, the precise definition of shape similarity between two objects is given by the integral

https://www.rcsb.org/
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where f
(

x, y, z
)

 and g
(

x, y, z
)

 are the characteristic functions of the objects. Molecular volume is represented by 
smooth Gaussians rather than hard spheres. ROCS uses a solid-body optimization process for molecules that 
maximizes the overlap between two molecules.

As an abstract definition, a Tanimoto coefficient is the ratio of the intersection and the union of two sets. In 
ROCS, the Tanimoto coefficient of the object is calculated by the equation

where the I terms correspond to self-volume overlaps and O term corresponds to the overlap between the two 
characteristic functions.

In our study, every ligand in MOAD was taken as a query ligand and compared to all the other ligands of 
the database. Comparisons were ranked based on their volume alignment between the query ligand and the 
alternate ligand. For a given ligand pair, first starting from the centers of mass of the ligands, the ligands were 
superimposed and a Tanimoto coefficient was calculated. A second Tanimoto coefficient was also calculated by 
taking the maximum Tanimoto coefficient over 8 different overlapping superpositions. The additional overlapping 
structures were generated by placing the center of mass of the query molecule randomly over the second molecule 
and optimizing for maximum volume overlap. This was done to account for the variable sizes of the ligands. All 
the conformations were kept rigid during all similarity calculations.

FastROCS is a tool from OpenEye that performs 3D similarity calculations using GPUs. The shape theory 
behind FastROCS is the same as that of ROCS, though FastROCS uses a slightly different algorithm to calculate 
molecular overlaps due to a modified GPU-version of the computer code. The maximum of three Tanimoto 
coefficients (ROCS in which center of masses of the query and database molecules were aligned, ROCS in which 
8 conformations were generated by placing the center of mass of the query molecule randomly over the database 
molecule were generated, and FastROCS) was taken as the final Tanimoto coefficient for the query-database pair.

The abovementioned calculations were performed over the PDB conformations of the ligands. However, it 
is possible that a ligand can be very similar to a query ligand in a conformation that is not reported in its PDB 
structure but is nevertheless energetically favorable. Therefore, it is important to find ligands which might exhibit 
high shape similarity with a PDB conformation of one ligand, when the Tanimoto coefficient is calculated with 
a different conformation of the second ligand. Therefore, 64 different conformations of all the unique valid 
ligands in MOAD were generated using OpenEye  Omega72,73. Prior to conformation generation, the ligands 
were passed through the Filter utility of OpenEye to eliminate undesirable compounds to save execution time. In 
the Filter screening of the valid ligands, checks on Lipinski violations were removed, limits on constraining the 
physical properties were relaxed, and the Boolean flag for constraining pH = 7.4 (-pkanorm) was set to false. The 
ligands were then separated into macrocycle and non-macrocycle molecules, as Omega uses different methods 
to generate conformations for the two. For non-macrocycle molecules, conformations were generated using 
Omega’s ‘fastrocs’ mode. For each of the macrocycle and non-macrocycle molecules, a maximum of 64 different 
conformations were generated, whenever possible.

Shape similarity calculations were performed between all the generated conformations (as database 
ligands) and the PDB-reported conformations of all the ligands (as query ligands). The total number of unique 
conformations generated for these calculations was ~ 950,000. In this study, we performed a total of 16 billion 
ROCS and 85 billion FastROCS calculations.

Results and discussion
The update. The current update of MOAD contains a total of 41,409 valid protein–ligand complex 
structures, which is a 26% increase since the last MOAD communication in  201915. The valid protein–ligand 
complexes are grouped into 11,058 protein families and collectively contain a total of 20,387 unique ligands. 
A total of 15,223 binding data entries are reported for the 41,409 complexes (37% coverage, which has been 
consistent over the last several years). The binding data entries contain 5,509  Kd values (including converted  Ka 
data), 4,581  Ki values, and 5,131  IC50. Table 1 presents the ranges for each of the types of the reported binding 
data. Many ligands in MOAD have drug-like characteristics: 51% have affinities of 440 nM or better, 69.9% range 
120–500 MW, and 69.4% have 0 or 1 Lipinski violation.
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Table 1.  The distribution of  Kd,  Ki, and  IC50 in Binding MOAD.

Tightest

Number of entries

Weakest < 1 nM 1 nM– 1 μM 1 μM–1 mM  > 1 mM

Kd (or  Ka
−1) 10.0 fM 323 2048 2796 342 Ka = 0.00108  M−1

Ki 10.0 fM 540 2353 1468 220 837.0 mM

IC50 0.00316 nM 341 3235 1445 110 378.0 mM
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Comparing affinity values to PDBbind. PDBBind’s ‘refined set’ is a dataset comparable to  MOAD4. The 
collection of the binding data for PDBbind is done through a keyword-based search through the full text of the 
primary reference provided in each relevant PDB structure, followed by independent manual examination of 
the text by two scientists who must agree on a value. With MOAD, the data extraction is done by basic natural 
language processing (NLP) and one person manually checking the primary reference of the PDB  structure2,74. 
Our semi-automated, text-mining tool is BUDA (Binding Unstructured Data Analysis) that allows for guided 
reading to identify key sentences and phrases in papers; it has a weighted-scoring algorithm to rank the likelihood 
that sentences and phrases contain binding data. BUDA is a shared utility that allows coworkers to divide the 
structures among themselves and keep abreast of each other’s progress. The curators can sort the articles by 
their weighted scores, review texts with highlights noting key phrases or sentences, and update the data into 
Binding MOAD. The NLP portion of BUDA is built upon the General Architecture for Text Engineering (GATE) 
framework (gate.ac.uk). Our GATE pipeline consists of ANNIE plug-ins, modified lookup lists for its Gazetteer, 
multiple JAPE grammars, and processing/exporting tools. Our additions to the lookup lists include keywords 
like “dissociation constant”, “binding”, “IC50”, etc. The transducers annotate large phrases and sentences, eg. a 
transducer is used to group numbers and molar units (nM, mM, pM, etc.). A second transducer identifies and 
highlights patterns where a constant name is very near a number-unit pair. The BUDA dashboard displays each 
paper with highlights on the text, tables, and figure captions that help the curator find the needed information.

Since there are many structures common to both the MOAD and PDBbind databases, we performed a 
comparison of the binding data from the two sets and collected discrepancies. The discrepancies were reexamined 
again through manual inspection of the primary references of the PDB structures. Though PDBbind has adopted 
many of the quality protocols introduced in Binding MOAD over the years, this is the first time we have compared 
back to PDBbind.

The comparison between MOAD and the refined set of PDBbind resulted in a total of 2,371 disagreements. 
Most of the mismatches originated simply from a difference in preferences for reporting data in the literature. 
For example, MOAD emphasizes reporting dissociation  (Kd) and association  (Ka) constants over inhibition 
constants  (Ki) or half-maximal inhibitory concentrations  (IC50). MOAD also aims to report data exactly as found 
in the literature, i.e., without changing the units of the data. Specifically, binding affinities for two-thirds of the 
complexes (1,589) were actually agreements with different units used (e.g., MOAD may report a literature value of 
0.003 μM but PDBbind reports 3.0 nM). Of the 782 erroneous mismatches, MOAD contained 602 errors (making 
its error rate only 4% of the affinity entries collected over 20 + years). PDBbind contained the remaining 180 
disagreements with the data in the crystallography papers, but it should be noted that differences with the values 
in PDBbind might stem from their search for affinity data outside the crystallography literature. The MOAD 
errors can be assigned to the following categories: 1) 98 with incorrect binding measurement type (e.g., MOAD 
reported  Kd when the value was actually listed as either a  Ka,  Ki, or  IC50); 2) 44 with incorrect inequality type 
(e.g., MOAD reported an “ = ” even though a “ ~ ” or a “ < ” was given in the literature); 3) 256 with an incorrect 
ligand interaction reported (e.g., data was reported for the wrong protein–ligand pair); 4) 204 cases of human 
error due to simply wrong reporting of the binding data. We are grateful for the excellent work in PDBbind 
curation that made this error check possible.

Adding 3D similarity. Our most recent features in MOAD have added polypharmacology tools. 
Polypharmacology is the binding of one small molecule at multiple target proteins. Off-target activities of 
small molecules (toxicology) and finding novel applications of known drugs (drug repurposing) are typical 
applications of polypharmacology. The relationship between shapes of protein binding sites and shapes of 
the ligands that bind to them is not one to one or one to many but is many to many. A recent study by Gao 
and Skolnick showed that the protein binding sites and ligands interaction are rather complicated because of 
promiscuous natures of protein binding sites as well as that of  ligands75. The study also points out that the shape 
space of protein binding sites is finite and can be represented by about 1000 pocket  shapes76,77. A significant 
set of shape features in a binding site can therefore be found in another binding site, which may not share any 
evolutionary relationship. As such, it is important to investigate polypharmacology prospects of a ligand by 
comparing its shape not only with other ligands in the same protein family but throughout the database. Ligand 
promiscuity also indicates that different conformations of a ligand might result in its binding to different binding 
 sites78. Therefore, we have investigated 3D similarities of the ligand conformations with the known poses of a 
protein bound ligand (reported in PDB structures). The 3D similarity calculations conducted for the ligands of 
MOAD have enhanced the identification of small molecules with potential polypharmacological properties. The 
3D similarity pairs are reported on the website for Tanimoto similarity > 0.85. From the similarity calculations 
performed on the ~ 950,000 ligand conformations (PDB-reported and those generated by Omega), more than 26 
million individual similarities across all the conformations were identified and a total of 1,320,511 new 3D-shape 
matches between the individual ligands were added to the MOAD database. These have been added to a new 3D 
similarity section for ligands on our BindingMOAD.org pages for each complex, see Fig. 1.

Examples of using 3D‑ligand similarity from the Binding MOAD resource. The new 3D matches 
in MOAD can identify off-target activities of small molecules as well as potential applications of known drugs. 
Figure  2 shows such an example; the molecule N-Methyl-1(R)-Aminoindan (RM1) is a rasagiline analogue 
that shows inhibitory activity to the protein monoamine oxidase (MAO, PDBid: 2C67)79 whereas the molecule 
Tranylcypromine (TPA) is an inhibitor for the serine protease trypsin (PDBid: 1TNL)80. The two molecules are 
not similar by a 2D comparison, and their binding sites do not match according to APOC or GLoSA. However, 
RM1 and TPA have a 3D Tanimoto coefficient of 0.92, revealing a very similar shape. We searched the literature 
and indeed found that TPA can be effective against MAO, a target for clinical  depression81.
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Another example can be seen in Fig. 3. The molecule 1-phenyl-1H-1,2,4-triazole-3,5-diamine (TT4) binds 
to mitogen-activated protein kinase 1 (also known as ERK2, PDBid: 4XNE) in rats (Rattus Norvegicus)82. 
Neuroactive drug Gabapentin (GBN) is a molecule shown to form complex with human mitochondrial branched 
chain aminotransferase (BCATm, PDBid: 2A1H)83. Despite there being no similarity of the molecules by 2D 
measures and no similarity of the binding sites, it was found that GBN can inhibit ERK2 in  rats84. The 3D 
Tanimoto coefficient for the two ligands in our calculations was 0.90.

Conclusions
Here, we report the last update of the Binding MOAD database. While the addition of 3D-ligand similarity 
calculations is a powerful benefit, searching through all the ligand comparisons has significantly slowed the time 
for loading pages at the website, which is problematic.

Figure 1.  Example of the 3D similarity of an entry on BindingMOAD.org.

Figure 2.  TPA has little 2D similarity to RM1, and its binding site in trypsin has no similarity to the binding 
site of MAO. However, their 3D similarity shows the connection of TPA as an inhibitor of MOA.



6

Vol:.(1234567890)

Scientific Reports |         (2023) 13:3008  | https://doi.org/10.1038/s41598-023-29996-w

www.nature.com/scientificreports/

The options available on the website include downloading the entire dataset, filtered downloads, ligand-based 
searches (though MarvinSketch), and an individual webpage for each of its complexes (identified by their PDBid). 
Each complex’s webpage is equipped with the family’s annotation (90%, 70% and 50% sequence similarities) 
with other proteins in the database. Similarity calculations (2D and 3D) for each of its ligands and binding-site 
similarity are also annotated.

The database will continue to be available online at BindingMOAD.org for another year and a half (through 
June 31st, 2024 when the server’s operating system will no longer be supported). For future access, the binding 
data will continue to be available via the RCSB PDB website pages for each complex. The backend of the website, 
including all affinity data and polypharmacology relationships across the dataset has been licensed to Chemical 
Abstract Services.

Data availability
The data in this manuscript are available at www. Bindi ngMOAD. org and the RCSB Protein Data Bank (www. 
rcsb. org).
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