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Deep learning augmented 
ECG analysis to identify 
biomarker‑defined myocardial 
injury
Gunvant R. Chaudhari 1,6, Jacob J. Mayfield 1,2,6, Joshua P. Barrios 3,4, Sean Abreau 3,4, 
Robert Avram 1,3, Jeffrey E. Olgin 1,3,4 & Geoffrey H. Tison 1,3,4,5*

Chest pain is a common clinical complaint for which myocardial injury is the primary concern and is 
associated with significant morbidity and mortality. To aid providers’ decision‑making, we aimed to 
analyze the electrocardiogram (ECG) using a deep convolutional neural network (CNN) to predict 
serum troponin I (TnI) from ECGs. We developed a CNN using 64,728 ECGs from 32,479 patients who 
underwent ECG within 2 h prior to a serum TnI laboratory result at the University of California, San 
Francisco (UCSF). In our primary analysis, we classified patients into groups of TnI < 0.02 or ≥ 0.02 µg/L 
using 12‑lead ECGs. This was repeated with an alternative threshold of 1.0 µg/L and with single‑lead 
ECG inputs. We also performed multiclass prediction for a set of serum troponin ranges. Finally, 
we tested the CNN in a cohort of patients selected for coronary angiography, including 3038 ECGs 
from 672 patients. Cohort patients were 49.0% female, 42.8% white, and 59.3% (19,283) never had 
a positive TnI value (≥ 0.02 µg/L). CNNs accurately predicted elevated TnI, both at a threshold of 
0.02 µg/L (AUC = 0.783, 95% CI 0.780–0.786) and at a threshold of 1.0 µg/L (AUC = 0.802, 0.795–0.809). 
Models using single‑lead ECG data achieved significantly lower accuracy, with AUCs ranging from 
0.740 to 0.773 with variation by lead. Accuracy of the multi‑class model was lower for intermediate 
TnI value‑ranges. Our models performed similarly on the cohort of patients who underwent coronary 
angiography. Biomarker‑defined myocardial injury can be predicted by CNNs from 12‑lead and single‑
lead ECGs.

Chest pain is the chief complaint for more than 6.5 million Emergency Department (ED) visits in the United 
States each year, generating more than 28 million electrocardiograms (ECGs)1. Of primary concern for any chest 
pain complaint is myocardial injury, which includes myocardial infarction (MI), and is associated with significant 
morbidity and mortality. ECG and serum troponin measurement are the two central diagnostic and screening 
tests for chest pain evaluation and are core components of the American Heart Association  Guidelines2–6. Upon 
cardiomyocyte damage, troponin is released into the bloodstream, and serum troponin is a specific biomarker for 
myocardial  injury7. Despite ECG being the most commonly performed cardiac diagnostic  test1, ECG interpreta-
tion can vary in accuracy depending on reader skill, and frequently requires historical and clinical context to 
be  useful2,8. Though the annual cost of evaluation and treatment of chest pain is estimated to be between $5 and 
10  billion1,4,9–11, only 5.5% of patients seen in the ED setting for this complaint are ultimately found to have an 
acute medical illness requiring hospitalization, while more than half are diagnosed with non-cardiac chest  pain12.

Machine learning may facilitate both timely recognition of myocardial injury and reduction in the cost of 
chest pain evaluation. Recent advances in the field have demonstrated that neural network-based ECG analysis is 
capable of detecting patterns with important clinical and physiologic correlates that may not be as easily discern-
able by humans. Examples include arrhythmia  prediction13, estimation of left ventricular mass and mitral annular 
e′  velocity14, prediction of serum potassium concentration using single-lead  ECG15, detection of asymptomatic 
left ventricular  dysfunction16, prediction of atrial fibrillation based on sinus rhythm  ECG17, and screening for 
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and tracking of chronic diseases such as pulmonary hypertension or hypertrophic  cardiomyopathy18,19. ECGs of 
patients presenting with myocardial injury likely also contain similar patterns, including signals of myocardial 
damage that may be undetectable to clinician readers, but which may contain information related to biomarker-
defined myocardial injury.

The need to develop extensive, hand-crafted feature extraction limited earlier attempts to apply machine learn-
ing to ECG interpretation, both because the process is labor intensive and because it relies on the same heuristics 
used by human readers. Deep convolutional neural networks (CNN) eliminate this obstacle by automating and 
integrating feature  extraction20, and have shown significant promise in various  applications21–23. A deep learning 
approach to ECG analysis allows for inclusion of features that may be visually imperceptible or dependent on 
complex patterns across multiple leads. To our knowledge there have been no published efforts to apply deep 
learning to predict biomarker-defined myocardial injury.

Given the need to develop safer, more cost-effective systems of care for patients with chest pain, we aimed to 
develop a CNN to identify myocardial injury as evidenced by elevated serum troponin I (TnI) using the 12-lead 
ECG. We hypothesized that deep learning analysis of ECG data would enable prediction of elevated serum TnI. 
To test our hypothesis, we used data extracted from the University of California, San Francisco (UCSF) electronic 
medical record (EMR) to train, validate, and test deep learning algorithms to predict TnI values using various 
thresholds. We then asked if CNNs could be trained to make the same inferences using only single-lead ECG 
data. This work lays the foundation for the development of rapid, cost-effective, and accurate chest pain evalu-
ation pathways utilizing deep learning augmented ECG analysis.

Methods
Population and oversight. All patients who received an ECG at UCSF between January 31, 2005 and Jan-
uary 7, 2016 were eligible for inclusion. Any ECG from the study period was included if it was obtained within 
2-h prior to a serum TnI test result. In a sensitivity analysis, we also performed this analysis in a sub-cohort 
of patients who underwent coronary angiography at UCSF, had an ECG obtained within 2 days prior to the 
angiogram procedure, and had a serum TnI test result within 4 h of the ECG recording. This study was reviewed 
and approved by the Institutional Review Board of the University of California, San Francisco who exempted 
informed consent. All research was performed in accordance with relevant guidelines/regulations.

Outcomes. Our primary goal was to train a CNN to predict positive TnI values, defined as greater than 
or equal to 0.02  µg/L, utilizing standard 10-s 12-lead ECG voltages as inputs. An alternative TnI threshold 
of 1.0 µg/L was also evaluated. In addition to standard testing and validation of this model, we also used the 
trained model to make predictions on the subset of patients who underwent coronary angiography. Given the 
numerous possible etiologies for positive TnI values, ranging from cardiac ischemia to myocarditis, patients who 
underwent angiography were presumed a-priori to represent a more homogenous subset more likely to have 
had acute coronary syndrome (ACS)-related positive TnI. Similar algorithm performance in this sub-cohort 
would demonstrate predicting troponin from ECG remains consistent in ACS-likely populations. We also 
evaluated performance of CNNs trained on single-lead ECGs for binary TnI classification. Finally, we trained 
a separate CNN algorithm to classify patients into categories of predicted TnI ranges: < 0.02 µg/L, ≥ 0.02 µg/L 
to < 0.5 µg/L, ≥ 0.5 µg/L to < 2 µg/L, and ≥ 2 µg/L.

Deep learning model development and training. We implemented a CNN (Fig. 1) to accept input 
from standard 10 s 12-lead ECG data sampled at 250 Hz. ECG data was processed at time of acquisition by nor-
malizing between leads and converting to millivolts. The CNN is based on a previously validated  architecture13 
and consists of 15 layers organized into 13 blocks with 1 convolution per block, along with shortcut connec-
tions between blocks. Prior to the convolution layer, each block has batch normalization, rectifier linear (ReLU) 
activation, and dropout with probability of 0.2. Every 2 blocks, the inputs are subsampled by a factor of 2. The 
convolutional layers have a filter width of 16 and initial filter count of 64 that double every 4 blocks. After the 
blocks, one fully connected layer of size 1024 was used prior to the output layer, which consisted of a sigmoid 
activation for the binary networks and a softmax activation for the multiclass network. We tested multiple net-
work structures, including varying number of blocks between 10 and 15, changing dropout probability between 
0.0 and 0.5, and changing initial filter count between 16 and 64. This network architecture was chosen for having 
the highest validation-dataset AUC. The CNN was implemented in python using Keras with Tensorflow (Google 
Inc.) backend.

For each CNN algorithm that was trained, we randomly split the ECG data into training, validation, and 
test datasets sized of 70%, 15%, 15% respectively; datasets contained mutually exclusive patients. To improve 
the robustness and repeatability of performance estimates, we trained 10 versions of all algorithms on 10 ran-
dom splits of the data to obtain mean statistical values ± one standard deviation, unless otherwise specified. To 
improve generalizability, data augmentation was performed by dilating or contracting the raw ECG data (matrix 
size 2500 × 12) by a factor between 0.85 and 1.15 along the time axis and by selecting the fixed-sized 2048 × 12 
sample input matrix randomly from within the resulting ECG matrix. The network was trained with normally 
initialized layer weights as previously  described24. We used Adam  optimizer25 with default parameters and a 
batch size of 64. After a grid search on learning rates ranging from 1 ×  10–3 to 1 ×  10–5, a learning rate of 1e-3 
was chosen, with a reduction by a factor of 10 for every two epochs that the validation set loss did not improve. 
All training was done on one NVIDIA GeForce GTX 1080 Ti graphical processing unit. The model consisted of 
15,427,457 trainable parameters and took about 71 s to train per epoch on a consumer grade GPU. Peak model 
performance on the validation set was achieved at epoch 19.5 on average.
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In the sensitivity analysis whereby the (binary classification) CNN algorithm was deployed on the coro-
nary angiogram sub-cohort, patients in the coronary angiogram sub-cohort were removed from the CNN 

Figure 1.  Deep convolutional neural network architecture. Boxes represent layers of the neural network; box 
labels indicate layer type. A sigmoid activation was used for binary classification, while a softmax activation was 
used for multi-class classification.
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training dataset and the CNN was re-trained on the remaining dataset and deployed on the coronary angiogram 
sub-cohort.

Saliency maps. In order to better understand what parts of the ECG contribute the most to the CNN’s 
predictions of myocardial injury, we generated saliency maps for the CNN trained at cutoff 0.02 using guided 
 backpropagation26 with the iNNvestigate tool (v1.0.9)27. Three representative positive class samples and one rep-
resentative negative class sample were selected. Values below 0 were set to 0 and each map was separately scaled 
to between 0 and 1. After visual review of each map, the most active 4.1 s blocks from leads I, V2, V3, and V5 
were selected. We also present visualizations of filters-outputs from specific CNN layers by mapping filter values 
to a color schema.

Statistical analysis. In all cases, the performance of our models was assessed by sensitivity, specificity,  F1 
score, and area under the curve (AUC) of the receiver operating characteristic (ROC) curve values. P values were 
calculated from χ2 test for categorical variables and 1-way analysis of variance testing for continuous variables.

Results
A total of 64,728 ECGs from 32,479 unique patients met inclusion criteria for the primary analysis (Table 1), 
providing a mean of 1.99 ECGs per patient (SD ± 2.38). Seventy-seven ECGs were excluded due to uninterpret-
able data (e.g., multiple leads with signal variability of less than 0.1 mV or one or more leads with aberrantly 
large signal over 100 mV). The majority of ECGs (57.2%, n = 27,693) were associated with TnI value < 0.02 µg/L. 
Cohort patients were 49.0% female, 42.8% white, and 59.3% (19,283) never had a positive TnI value (≥ 0.02 µg/L). 
The median ages of patients with all negative troponins vs. patients with one or more troponin ≥ 0.02 µg/L were 
60 and 68, respectively.

Predicting elevated TnI using 12‑lead ECG. CNN algorithms trained to discriminate 12-lead ECGs 
associated with TnI < 0.02 µg/L vs. ≥ 0.02 µg/L achieved an overall AUC of 0.783 (95% CI 0.780–0.786) (Fig. 2), 
averaged across 10 algorithms. At an operating threshold where sensitivity for a “positive” TnI ≥ 0.02 µg/L was 
80.0%, the CNN achieved a specificity of 61.9% (95% CI 60.9–63.0%), a negative predictive value (NPV) of 
80.4% (95% CI 80.1–80.8%), a negative likelihood ratio (LR) of 0.32 (95% CI 0.32–0.33), a positive LR of 2.1 
(95% CI 2.0–2.2), and an accuracy of 69.7% (95% CI 69.0–70.3%). At an operating threshold where specificity 
for a “positive” TnI ≥ 0.02 µg/L was 80.0%, the CNN achieved a sensitivity of 61.4% (95% CI 60.9–61.9%), a posi-
tive predictive value (PPV) of 69.8% (95% CI 69.2%-70.4%), a positive LR of 3.1 (95% CI 3.1–3.1), a negative LR 
of 0.48 (95% CI 0.48–0.49), and an accuracy of 72.1% (95% CI 71.9–72.2%). We also developed CNN algorithms 
that were trained to discriminate 12-lead ECGs associated with TnI < 1.0 µg/L and ≥ 1.0 µg/L, that achieved an 
AUC of 0.802 (95% CI 0.795–0.809) (Fig. 2). For this TnI threshold, at sensitivity for a “positive” TnI ≥ 1.0 µg/L 
of 80.0%, the CNN achieved a specificity of 64.3% (95% CI 63.0–65.5%), and at a specificity for a “positive” 
TnI ≥ 1.0 µg/L of 80.0%, the CNN achieved a sensitivity of 65.9% (95% CI 64.3–67.5%).

Classifying multiple TnI ranges using 12‑lead ECG. We then trained separate CNN algorithms to dis-
criminate several categories of TnI value-ranges based on the 12-lead ECG. For these multiclass algorithms, the 

Table 1.  Patient-level study demographics stratified by presence of at least one abnormal serum troponin 
I value (defined as ≥ 0.02 µg/L). ± SD indicates standard deviation. P values calculated from χ2 test for 
categorical variables and 1-way analysis of variance testing for continuous variables. *Indicates statistical 
significance.

Serum troponin I concentration

 < 0.02 µg/L  ≥ 0.02 µg/L p value Total

Sex—no. (%)

 Female 9956 (62.6) 5947 (37.4)  < 0.001* 15,903 (49.0)

 Male 9321 (56.3) 7245 (43.7) 16,566 (51.0)

Race/ethnicity—no. (%)

 White 8489 (61.0) 5418 (39.0)  < 0.001* 13,907 (42.8)

 Black 1973 (56.9) 1496 (43.1) 0.003* 3469 (10.7)

 Asian/Pacific Islander 2058 (59.6) 1394 (40.4) 0.768 3452 (10.6)

 Hispanic 1232 (66.8) 611 (33.2)  < 0.001* 1843 (5.7)

 Native American 33 (60.0) 22 (40.0) 0.924 55 (0.2)

 Other/unknown 5498 (56.4) 4255 (43.6)  < 0.001* 9753 (30)

Age

 Mean (± SD) 59.8 (16.9) 66.9 (16.6)  < 0.001* 62.6 (17.2)

 Median 60 68 63

Total—no. (%) 19,283 (59.3) 13,196 (40.6) 32,479
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CNN performed the best on high and low TnI ranges. By range of TnI value, AUCs were: 0.759 (95% CI 0.753–
0.764) for TnI < 0.02 µg/L, 0.626 (95% CI 0.614–0.639) for ≥ 0.02 µg/L and < 0.5 µg/L, 0.682 (95% CI 0.674–0.690) 
for ≥ 0.5 µg/L and < 2 µg/L, and 0.810 (95% CI 0.802–0.818) for ≥ 2 µg/L (Fig. 3). In sensitivity analyses, multi-
class CNN performance was similar when the low TnI threshold was set at 0.04 µg/L.

Predicting elevated TnI using single‑lead ECG. Since remotely monitored electrocardiographic 
devices—such as ambulatory monitoring, telemetry or even smartwatch ECGs—increasingly rely on fewer than 
the full 12-leads of a standard electrocardiogram, we examined the ability to build CNNs to identify a positive 
troponin using only single ECGs leads as inputs. Separate CNN algorithms were trained using ECG data from 
each of the 12 leads to discriminate a TnI < 0.02 µg/L and ≥ 0.02 µg/L. AUCs for the single-lead CNNs were sig-

Figure 2.  Receiver operating characteristic curves for deep neural network discrimination of Troponin I at 
0.02 µg/L and 1.0 µg/L thresholds in the test dataset using 12-lead ECG. Dark lines and shaded regions indicate 
mean and std, respectively, across 10 models trained on different splits of the data. N = 32,479 patients.

Figure 3.  AUCs for multi-class discrimination of serum troponin ranges (upper left) and results of using 
single-lead ECG inputs (lower left). Right panel: Plot showing mean AUC and 95% CI for each troponin 
threshold or lead. Boxes and lines indicate mean and 95% CI, respectively, across 10 models trained on different 
splits of the data. Single lead models were trained using data from each of the 12 leads to discriminate between 
TnI < 0.02 µg/L and ≥ 0.02 µg/L. N = 32,479 patients.
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nificantly lower than AUC for the 12-lead model (AUC = 0.783), ranging from 0.773 (lead aVR) to 0.740 (lead 
aVF) (Fig. 3).

Performance of CNN in a sub‑cohort of patients referred for coronary angiography. In a sensi-
tivity analysis, we used the CNN trained on the full cohort to discriminate TnI < 0.02 µg/L from ≥ 0.02 µg/L and 
examined its performance on the subset of patients who underwent a coronary angiogram at UCSF. Six hundred 
and seventy-two patients met criteria for inclusion in the coronary angiography sub-cohort, contributing a total 
of 3038 eligible ECGs (see “Methods” section). The sub-cohort was 32.3% (217) female, 35.0% (233) white and 
average age was 66.2 years (SD 13.1). ECGs paired with TnI values < 0.02 µg/L constituted 19.0% (578) of this 
cohort. The performance of the trained CNN algorithm in this sub-cohort (AUC = 0.766) was similar to that of 
the CNN in the revised test dataset (AUC = 0.777) after removing sub-cohort patients from the training data (see 
“Methods” section).

Saliency map analysis of CNN. We generated saliency maps to visualize which ECG regions were of great-
est importance to the CNN for its troponin predictions. For the CNN trained to discriminate TnI < 0.02 µg/L 
from ≥ 0.02 µg/L, saliency maps for the troponin-positive class (Fig. 4a–c, Supplementary Fig. 2a–c) showed 
increased importance of ST segments and T waves, and to a lesser degree Q wave and P regions. Saliency maps 
for the negative-troponin class (Fig. 4d, Supplementary Fig. 2d) were more homogenous and fewer ECG regions 
of importance were highlighted, which included terminal T-wave regions and to a lesser degree the terminal P 
wave. Convolutional filter outputs (Supplementary Fig. 1) were much more complex for the positive class than 
for the negative class, suggesting that the CNN identified more complex features associated with elevated TnI 
ECGs compared to TnI negative ECGs. Convolutional filters of elevated TnI ECGs showed relatively greater 
activation in the ST segment and P wave/PR interval regions of the ECG (Supplementary Fig. 1).

Discussion
This study demonstrates that biomarker-defined myocardial injury can be predicted from raw 12-lead ECG 
data with a CNN. CNN-enabled analysis of the ECG—a rapid, inexpensive, and ubiquitous test—may improve 
the efficacy and cost effectiveness of the diagnostic evaluation of chest pain. We also demonstrate that single-
lead ECGs are capable of this task, further expanding this technique to a wider range of care settings, including 
remote ECG monitoring.

Our primary CNN algorithm sought to detect any elevated TnI plasma concentration based on 12-lead ECG 
data. Among the highly heterogeneous population of all patients receiving an ECG at a quaternary institution 
for any indication, CNNs performed moderately well to identify “positive” TnI at thresholds of 0.02 µg/L and 
1 µg/L. These thresholds were selected based on the laboratory assay-defined upper limit of normal and common 
clinical practice, respectively. We found particular efficacy at an operating threshold optimized for sensitivity 
of 80% for TnI threshold of 0.02 µg/L. Here, the CNN achieved an NPV of 76.9% with a negative LR of 0.32, 
illustrating that CNN-enabled ECG analysis may be used to rule out biomarker-defined myocardial injury in 
low-risk patients. While human performance on this task has not been explicitly evaluated, a recent study of 

Figure 4.  Representative saliency maps for the troponin discrimination network trained at cutoff of 0.02. Maps 
for leads I, V2, V3, and V5 are shown over 4.1 s of ECG acquisition. (a) Positive class (TnI of 50). (b) Positive 
class (TnI of 23). (c) Positive class (TnI of 7). (d) Negative class (TnI of 0).
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emergency physicians, cardiologists, and interventional cardiologists found that the average AUC for identifica-
tion of ST-segment elevation ACS, ostensibly a more recognizable phenomenon, was 0.7228, slightly lower than 
the performance of most of our models.

Our work relied upon a large dataset of real-world clinical data and findings remained consistent in clinically-
relevant sensitivity analyses, corroborating previous successes of machine learning models for similar tasks. 
Recently, Liu et al. developed a CNN approach utilizing multi-lead ECG data (n = 112) to predict clinically 
diagnosed anterior myocardial infarction (MI) with good  results29. Despite limited sample size, this work dem-
onstrated that deep learning can be applied effectively to this task with relatively low computational resource 
cost. Several groups have also employed machine learning techniques to predict MI using varied combinations 
of clinical and laboratory features as  inputs30–32. Most recently, Than and colleagues utilized gradient boosting 
to predict Type 1 MI using age, sex, and paired high-sensitivity cardiac troponin as inputs, ultimately demon-
strating performance characteristics exceeding those of the European Society of Cardiology 0/3-h  pathway3,30. 
A major limitation of these efforts is the relatively narrow focus on MI, one type of myocardial injury. Our work 
is further distinguished by using a CNN to analyze the raw ECG waveform, making it possible for the CNN to 
identify ECG signals not readily interpreted by human readers. This work provides the basis for a tool to predict 
biomarker-defined generalized myocardial injury.

One of the more promising findings from our work is the performance of models trained using only single-
lead ECG data. At-home single-lead and multi-lead ECG has increasingly become available to consumers in 
the form of internet-connected wearable devices. Our work demonstrates that CNNs could assist with triage, 
diagnosis and monitoring for myocardial injury in the remote monitoring setting using self-lead or multi-lead 
ECG remote monitoring devices, including smart watches. This may increase the accessibility of rural or under-
resourced communities in which access to laboratory services is limited to myocardial injury monitoring when 
clinically indicated. The COVID-19 pandemic has highlighted the need to effectively triage low-risk patients 
away from high-volume emergency departments. This work provides support toward achieving this goal for 
chest pain, a common and high-consequence cause for presentation to emergency departments. A recent study 
by Jin et al.33 did also show that single-lead ECG data from the emergency department could be used to detect 
troponin elevation, reporting similar but slightly lower performance.

Our efforts to use a multi-class strategy to stratify patients into TnI groups based on surface ECG yielded 
mixed results. The model was able to classify ECGs into undetectable (< 0.02 µg/L) and significantly elevated 
(≥ 2 µg/L) groups with good accuracy, but midrange discrimination was poor. We hypothesize that this may be 
at least partially explained by greater phenotypic heterogeneity in patients with lower levels of detectable TnI. 
It is well-known that a variety of disease processes can yield elevated  TnI5, however patients with plasma TnI 
levels above 2 µg/L may represent a more homogenous set of etiologies including acute coronary syndrome.

In order to test the performance of our primary model on a more homogenous cohort, we attempted to 
identify a subset of patients with higher pre-test probability for myocardial ischemia by identifying a subgroup 
of patients who underwent coronary angiography. This analysis demonstrated similar AUCs for the primary 
analysis and the angiography subgroup, which is likely partially explained by training population heterogeneity. 
Even in ACS, there is a spectrum of ECG changes suggestive of MI, and it is well-recognized that these changes 
are dynamic over the course of an  infarction34. Further, revascularization can arrest the progression of electrical 
injury and sometimes results in normalization of the  ECG35, a phenomenon which may have resulted in pairing 
of normalized ECGs with elevated TnI measurements in our dataset (within our 4 h window inclusion crite-
ria). One recent study compared a deep learning algorithm to human physicians to detect angiogram-defined 
NSTEMI/STEMI ECGs showing that the algorithm significantly outperformed physicians, and that the algorithm 
performance further increased by adding  TnI36.

We applied several “AI explainability” techniques to our trained CNN, such as saliency maps, to better demon-
strate regions of the ECG that the CNN learned for itself during training as having greater importance to predict 
elevated TnI. More complex CNN-learned features were clearly associated with high TnI ECGs compared to 
normal-TnI ECGs, as evidenced by analysis of convolution filter outputs. Saliency maps highlighted some ECG 
regions well-understood to be associated with myocardial ischemia, such as the ST  segment5, which would be 
expected and provided some degree of validation that the CNN is learning patterns from the data consistent with 
physiologically understood ECG-changes. What was noteworthy were the positive-troponin ECG examples that 
did not have visible ST segment changes but which were still highlighted by the CNN saliency maps, suggesting 
that the CNN may be identifying non-visible patterns in the ST segment. Furthermore, the identification of the 
P wave and PR regions of TnI-positive ECGs were more unexpected, as these are not typically associated with 
myocardial injury. These regions were consistently highlighted across multiple TnI-positive ECGs and, if repli-
cated, may thus constitute a data-driven finding worthy of additional physiologic investigation. Findings such 
as these exemplify the type of analysis which may ultimately help to realize the fullest potential of “big-data” in 
medicine, whereby large-scale analysis by machine learning of medical data is able to identify heretofore unap-
preciated and physiologically-relevant signals in everyday diagnostic tests.

Our study had a number of limitations that should inform future efforts. A major barrier to training CNNs 
to recognize MI is the heterogeneity of disease processes that result in myocyte necrosis. Some patients with 
longstanding underlying conditions such as renal insufficiency may have chronically elevated  TnI5. Similarly, 
acute perturbation in non-cardiac organ systems can result in Type 2  MI36,37. In our study, we were not able to 
differentiate between these disease processes given available data, nor were we able to differentiate between ECGs 
obtained before or after interventional therapies. To improve test characteristics and provide additional decision 
support, future efforts should attempt to better phenotype patients with positive TnI assays, categorizing them 
into those with ACS (Type 1 MI), those with demand infarction (Type 2 MI), and those with myocardial injury 
(e.g., myocarditis). While we studied a large cohort of patients, the single-center design may limit generaliz-
ability to other centers in the United States and globally. Additionally, MI is defined as a change in TnI of ≥ 20%5, 
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but we considered only individual ECG-TnI pairs in this analysis. Finally, the observational nature of our study 
introduces both evident and hidden confounders. For example, the fact that a TnI assay was ordered by a pro-
vider suggests that the population has a higher-than-average pre-test probability for cardiovascular pathology. 
Controls in future efforts would ideally be members of the general population.

This study demonstrates that CNNs have the ability to predict biomarker-defined myocardial injury with good 
accuracy based on single-lead and 12-lead ECGs. The algorithm’s negative predictive value makes it particularly 
well-suited for triage of low-risk patients with chest pain using a simple and cost-effective ECG. Continued 
investigation utilizing better defined phenotypic groups is necessary to mature this paradigm for use in clinical 
practice.
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