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AI co‑pilot: content‑based image 
retrieval for the reading of rare 
diseases in chest CT
Johannes Haubold 1,3*, Ke Zeng 2, Sepehr Farhand 2, Sarah Stalke 4, Hannah Steinberg 1, 
Denise Bos 1, Mathias Meetschen 1, Anisa Kureishi 3, Sebastian Zensen 1, Tim Goeser 5, 
Sandra Maier 1, Michael Forsting 1 & Felix Nensa 1,3

The aim of the study was to evaluate the impact of the newly developed Similar patient search 
(SPS) Web Service, which supports reading complex lung diseases in computed tomography (CT), on 
the diagnostic accuracy of residents. SPS is an image‑based search engine for pre‑diagnosed cases 
along with related clinical reference content (https:// eref. thieme. de). The reference database was 
constructed using 13,658 annotated regions of interest (ROIs) from 621 patients, comprising 69 
lung diseases. For validation, 50 CT scans were evaluated by five radiology residents without SPS, 
and three months later with SPS. The residents could give a maximum of three diagnoses per case. 
A maximum of 3 points was achieved if the correct diagnosis without any additional diagnoses was 
provided. The residents achieved an average score of 17.6 ± 5.0 points without SPS. By using SPS, the 
residents increased their score by 81.8% to 32.0 ± 9.5 points. The improvement of the score per case 
was highly significant (p = 0.0001). The residents required an average of 205.9 ± 350.6 s per case (21.9% 
increase) when SPS was used. However, in the second half of the cases, after the residents became 
more familiar with SPS, this increase dropped to 7%. Residents’ average score in reading complex 
chest CT scans improved by 81.8% when the AI‑driven SPS with integrated clinical reference content 
was used. The increase in time per case due to the use of the SPS was minimal.

Abbreviations
CBIR  Content-based image retrieval
CT  Computed tomography
CTDIvol  CT dose index-volume
DLP  Dose length product
HRCT   High-resolution computed tomography
ILDs  Interstitial lung diseases
IPF  Idiopathic pulmonary fibrosis
NSIP  Nonspecific interstitial pneumonia
ROI  Region of interest
SPS  Similar patient search
TLS  Transport layer security
UIP  Usual interstitial pneumonia

The differentiation between complex lung diseases requires a high level of expertise. Thus, in the case of even 
the most common pulmonary fibrosis, the idiopathic pulmonary fibrosis (IPF), patient care is greatly hindered 
by a high number of incorrect diagnoses and a median delay in treatment of one  year1. Recent studies show 
that convolutional neural networks have great potential in assisting the detection of different lung patterns in 
2D patches of interstitial lung diseases (ILDs), including patterns such as ground-glass opacities, micronodules, 
consolidation, reticulation, and  honeycombing2–5. The accuracy of radiologists’ diagnoses is thus likely to improve 
with the incorporated use of convolution neural networks in the diagnostic  process6. Nevertheless, knowing 
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individual patterns is often not sufficient for the final diagnosis since individual patterns such as ground glass 
opacities occur in a variety of diseases.

Alternatively, radiologists can compare the case with digital databases of reference cases to find the correct 
 diagnosis7. However, this is likely to be time-consuming. A possible solution to combine the advantages of a 
reference database with modern AI-based image analysis technologies is a content-based image retrieval  system8. 
This is used to compare the similarity of images based on extracted image features. The images with similar pat-
terns in the reference database are subsequently assigned to the image. Content-based image retrieval systems 
(CBIR) are constantly evolving with advances in AI-based image analysis and different variants are evaluated in 
centrally organized competitions such as  ImageCLEF9. The potential of CBIR systems to support radiological 
reporting was demonstrated for various modalities such as  mammography10.

With the help of modern technical achievement in the field of AI-based image  analysis11, Siemens Health-
ineers developed in cooperation with the investigating hospital a software for interactive image search of lung 
diseases.

In addition to the retrieved reference cases, the radiologist can access information about the disease in the 
system through an integration of the Thieme eRef database (https:// eref. thieme. de/ cockp its/0/ 0/ coRad enOGW 
0020/0).

This study aimed to determine whether residents in radiology could provide more accurate diagnoses of chest 
CTs using CBIR searches without any substantial increase in the time required to make a diagnosis.

Methods
Ethics statement. This study was conducted in accordance with all guidelines set forth by the approving 
institutional ethics committee of the university hospital Essen (approval code - 20-9454-BO). Written informed 
consent was waived by the ethics committee of the university hospital Essen due to the retrospective character of 
the study. All data were completely anonymized before being included in the study.

Study design. To examine whether SPS can increase residents’ diagnostic accuracy, five residents without a 
specialization in chest CT scans were asked to analyze 50 lung CT scans based solely on image data. Of the five 
residents, two were in their first year of training, two were in their second year of training, and one was in the 
third year of training with 6 months, 8 months, 16 months, 18 months and 26 months of experience in reading 
CT scans.

For this purpose, 50 cases were presented to the residents on two occasions at baseline (t0) and at least three 
months later (t1) (105 days, 147 days, 123 days, 99 days, 91 days).

Reporting was done via an in-house developed web tool. In this tool, three diagnoses could be specified for 
each case. Upon selecting the open button, the case was opened in syngo.via and by clicking next, the case was 
saved and the next case was displayed on the screen. When the case was saved, the reading time for the respec-
tive case was stopped and saved at the same time and the timer for the next case was started while the next case 
was displayed.

In the first run, the residents had no supporting tools, while in the second run, they were provided with SPS. 
After the first run, the residents were not told whether they had made correct or incorrect diagnoses. They were 
also asked not to talk about the cases and not to participate in training on the subject between the two phases 
of the study. They were also not allowed to be employed at workplaces dedicated to pneumology and thoracic 
surgery patients between the two evaluation rounds. In a retrospective analysis of the residents’ reports between 
reviews, none of the diagnoses from the validation cohort were made by the residents in other patients. The 
study design is shown in Fig. 1.

Figure 1.  Presentation of the study design. Residents had to report the 50 cases without any tools in the first 
run and at least 90 days later had to report the 50 cases again with the help of SPS in the second run.

https://eref.thieme.de/cockpits/0/0/coRadenOGW0020/0
https://eref.thieme.de/cockpits/0/0/coRadenOGW0020/0
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They received a 15-min introduction to the use of SPS prior to the second run. Here, readers were demon-
strated a randomly selected case from the training collective, in which they learned how the basic functions 
such as windowing etc. work, as well as how the SPS own functions, such as drawing the ROI, the CBIR and the 
knowledge database can be accessed. Utilizing this training case, they were allowed to test all functions prior 
to the second run.

For each case, up to three different diagnoses from a predetermined list of 85 lung diseases (shown in sup-
plementary material 1) could be specified by the study participants. A maximum score of three points was given 
if only the correct diagnosis without further possible diagnoses was reported. A correct diagnosis, together with 
one wrong additional diagnosis scored two points, and a correct diagnosis with two wrong additional diagnoses 
scored one point. All cases for which no correct diagnosis was provided were granted zero points. This scoring 
scheme relates to the clinical routine, where each additional possible diagnosis makes the report less clear and 
reduces its usefulness in determining the correct diagnosis.

In an additional supplementary experiment, three raters had to reevaluate the 50 cases after a wash-out 
period of one year without SPS (t2) to exclude a possible bias due to the order of the evaluation. Furthermore, 
the residents had to reevaluate the 50 cases a fourth time (t3) with SPS to exclude a possible bias due to a gain 
of knowledge between the evaluations and due to the length of the wash-out period.

The differences between t1 and t2 with reversed evaluation order (first with SPS, then without SPS) are shown 
in Supplementary Table 1 and the differences between t2 und t3 in Supplementary Table 2. In total, therefore, 
there are 3 comparison scenarios:

Without SPS (t0) -> 3-month wash-out -> with SPS (t1).
With SPS (t1) -> 1-year wash-out -> without SPS (t2).
Without SPS (t2) -> no wash-out -> with SPS (t3).

Initial patient characteristics of the validation cohort. The validation cohort consisted of CTs from 
50 patients examined between 2009 and 2019. Patients were, on average, 54 ± 17 years old and consisted of 42% 
women and 58% men. The diagnoses of the validation collective are described in Table 1.

Data protection. The SPS tool is cloud-based. To protect the privacy of the patients, only anonymized data 
was sent to and processed by the servers in the cloud. This anonymized data includes the pixel data of the slice 
on which the ROIs were drawn, along with further non-personal technical information (Slice Thickness, Pixel 
Spacing, Kernel, Manufacturer) and the outline of the ROI. All data communications with the cloud servers 
are routed through HTTPS and are Transport Layer Security (TLS)-encrypted. TLS is a cryptographic protocol 
designed to ensure the security of communications over a computer network. It is the successor to the now 
obsolete Secure Sockets Layer (SSL).

Computed tomography. All CTs were performed on a Somatom Definition Flash (Siemens Healthineers), 
Somatom Force (Siemens Healthineers), or Somatom Definition AS + (Siemens Healthineers). All CT images 
were reconstructed in a hard reconstruction kernel with a layer distance and thickness of 5 mm and 1 mm, as 
well as a soft tissue kernel with a layer distance and thickness of 5 mm. CTs were performed at the investigat-
ing hospital between 2009 and 2019. On average, the CT dose index-volume (CTDIvol) was 8.6 ± 4.7, and the 
dose length product (DLP) was 283.3 ± 150.0. Patients were examined at a median of 120 kV (min. 80 kV - max. 
130 kV) and an average of 119.4 + 54.2 mAs.

Software/hardware. Syngo.via VB40—Advanced Visualization Software (Siemens Healthineers) was used 
for image interpretation. In the second study phase, the cloud-based tool Similar patient search (SPS) Web Ser-
vice (Siemens Healthineers) was activated in syngo.via. The used Laptop was: HP(R) Mobile Workstation with 
Intel(R) Core i7-3920XM CPU @2.90Ghz, 32 GB RAM and 1 TB HDD with Windows Server 2019 installed as 
operating system. The syngo.via version installed on the system was modified, such that it accessed the Similar 
Patient Search prototype version, as the Similar patient search was not generally available at the point of time 
when the research was conducted.

syngo—Similar patient search. The SPS is an interactive CBIR tool designed to support radiologists in 
their routine reading of chest CTs, with a focus on CT patterns commonly seen in ILDs. Powered by an image-
based search engine, the tool enables fast access to both similar images from a large database of diagnosed cases 
and the related clinical reference content. A schematic illustration of the SPS is shown in Fig. 2a and an example 
case in Fig. 2b.

The supporting reference database of the SPS was constructed using chest CT scans from 621 patients diag-
nosed with one of 69 diseases that affect the lung. For each scan, axial ROIs that are most representative of the 
underlying disease were annotated by an expert chest radiologist. A total number of 13,658 annotated ROIs were 
included in the database.

The technical backbone of the SPS search engine is an image embedding function that maps a ROI to a 
fixed-length feature representation. The embedding function takes the form of a deep residual convolutional 
neural  network11. The network was trained using metric learning techniques so that different pathological pat-
terns are well-separated in the feature space. Given a query ROI, a feature representation is first computed using 
the embedding network, after which we calculate and sort the Euclidean distance between the query feature 
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and each reference feature. Reference ROIs whose feature representations are closest to the query features are 
returned as top matches.

Table 1.  Diagnoses of the validation cohort.

N Consensus diagnose Accepted differential diagnosis

1 Post-primary pulmonary tuberculosis

2 Normal

3 Idiopathic pulmonary fibrosis

4 (Scleroderma-related) non-specific interstitial pneumonia

5 Lymphangioleiomyomatosis

6 Aspergilloma

7 Idiopathic pulmonary fibrosis

8 Non-specific interstitial pneumonia

9 Idiopathic pulmonary fibrosis

10 Chronic hypersensitivity pneumonitis

11 Aspergilloma

12 Respiratory bronchiolitis interstitial lung disease

13 Chronic hypersensitivity pneumonitis

14 Chronic hypersensitivity pneumonitis

15 Pulmonary alveolar proteinosis

16 Pulmonary sarcoidosis—stage II

17 Mounier-Kuhn syndrome

18 Primary ciliary dyskinesia

19 Lymphangioleiomyomatosis

20 Pulmonary Langerhans cell histiocytosis

21 Pulmonary sarcoidosis—stage II

22 Cryptogenic organizing pneumonia

23 Lymphocytic interstitial pneumonitis Non-specific interstitial pneumonia

24 Post-primary pulmonary tuberculosis

25 Allergic bronchopulmonary aspergillosis

26 Desquamative interstitial pneumonia

27 Mounier-Kuhn syndrome

28 Desquamative interstitial pneumonia

29 Desquamative interstitial pneumonia

30 Pulmonary langerhans cell histiocytosis

31 Pulmonary granulomatosis with polyangiitis

32 Swyer-James syndrome

33 Idiopathic pulmonary fibrosis

34 Allergic bronchopulmonary aspergillosis

35 Rheumatoid pulmonary nodule

36 Rheumatoid pulmonary nodule

37 Subacute hypersensitivity pneumonitis

38 Cystic fibrosis

39 Silicosis

40 Silicosis

41 Pulmonary alveolar proteinosis

42 Pulmonary alveolar proteinosis

43 Pulmonary sarcoidosis—stage IV

44 Allergic bronchopulmonary aspergillosis

45 Cryptogenic organizing pneumonia

46 Cryptogenic organizing pneumonia

47 Acute hypersensitivity pneumonitis

48 Silicosis

49 Pulmonary alveolar microlithiasis

50 Eosinophilic granulomatosis with polyangiitis
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SPS is currently available for the Advanced Visualization Software syngo.via VB40B and higher and Syngo 
Carbon as the “CT Lung Assistant Tool”. A prototype was used for this study which employed the same similarity 

Figure 2.  (a) Schematic Illustration of the Similar Patient Search Web Service. (1) The user selects an ROI on 
an axial CT slice using the host Application (syngo.via VA40A). The slice, along with the ROI, is sent to the 
cloud service (2). A deep-learning-based feature representation (fingerprint) for the slice/ROI combination is 
computed in the cloud (3). The fingerprint is then compared to pre-generated fingerprints from the reference 
database (4). The tool returns a webpage that shows the most similar image patches from the reference database 
and their corresponding diagnosis (5). The clinical reference content from Thieme is accessible by a single click 
on the disease detail page (6). (b) Example SPS result from the study: Left: Input Slice (case with Mounier Kuhn 
Syndrome) with the ROI chosen by the study participant (orange outline) Right: SPS User interface with top 3 
results of the similarity search for this case.
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search algorithm as the one used in the product version VA12A of SPS. A video clip describing the later product 
version of SPS can be viewed at the following link:

https:// pep. sieme ns- info. com/ en- us/ syngo- via- vb50- simil ar- patie nt- search- web- servi ce-e- clip
The workflow of the SPS tool is the following (see Fig. 2 A for illustration):

1. The radiologist draws a 2D-ROI on an axial CT slice.
2. The CT slice and ROI are sent to the cloud server.
3. On the server, a feature representation of the CT Slice/ROI combination is generated using a neural network 

that was trained to differentiate between radiographic patterns in lung CTs.
4. The feature representation of the generated input data is compared to pre-generated features of the reference 

database, which contains 13,658 annotations on 621 cases from 69 different diseases.
5. The result of the similarity search, a list of the eight most similar diseases displayed in the Result Overview, 

is sent back to the user and presented on an interactive website

1. Disease result: For each of the listed diseases, similar patches from the database are presented. A Dis-
ease Detail Page with similar patches and Thieme clinical reference content is directly accessible with 
a single click on the disease name, the patches, or the diseases listed in the Also Consider section. The 
Also Consider section provides a list of diseases that may present similar radiological patterns to the 
disease in question.

2. Textual search: To access diseases (similar patches and Thieme clinical reference content) that are not 
provided in the result list but are in the SPS scope, a textual search is available.

6. Disease detail page: The Disease Detail Page contains similar patches from the corresponding disease and 
the Thieme eRef content. The clinical reference content is structured according to the following categories:

1. Definition
2. Imaging signs
3. Clinical aspects
4. Differential diagnosis
5. Tips and pitfalls
6. Selected references

By clicking the “Back” button or the “Home” button, the user can navigate back to the Result Overview.
Further information on SPS can be found in supplementary material 1.

Evaluation cohort. The sample size was calculated for the binary question of whether the correct diagnosis 
was made. For this purpose, the accuracy of the residents without and with SPS was estimated. From our clinical 
experience, we estimated that for these rare conditions, the correct diagnosis is made only 20% of the time and 
with SPS about 50% of the time. With a confidence interval of 95% and a power of 80%, this resulted in a sample 
size of 36 using a sample size calculation for comparing two proportions (α = 0.05; ß = 0.2; delta = 0.3) (Wang, H. 
and Chow, S.-C. 2007. Sample Size Calculation for Comparing Proportions. Wiley Encyclopedia of Clinical Tri-
als). However, because this is associated with high uncertainty due to the estimation, 50 cases were included. In 
the following, an experienced thoracic radiologist assembled a collective of 100 cases that covered the spectrum 
of complex lung diseases as broadly as possible with a confirmed diagnosis recognizable by imaging. The radiol-
ogist selected the cases from the database by means of a full-text search. No data was used from the training data 
set, and only patients whose diagnosis was histologically confirmed, microbiologically confirmed, or deemed 
confirmed at an interdisciplinary conference, were included. After the exclusion of all patients that were already 
included in the training collective, we randomly selected 50 cases for the evaluation cohort. Table 1 shows the 
diseases of the patients in the validation collective. Two radiology consultants with four and eight years of clini-
cal experience respectively cooperatively analyzed the diagnosis of ILDs. All available clinical and imaging data 
were used to determine whether the diagnosis could be made unambiguously with the imaging data. One case 
showed no pulmonary signs of the disease, which was rated as healthy. In this case, three points were awarded 
if no diagnosis was given. If the case was mistakenly considered pathological with at least one diagnosis, zero 
points were given. In another case, the correct diagnosis was not clearly distinguishable from a different diagno-
sis, so here, two diagnoses were rated as correct.

Statistical analysis. The statistical analyses were performed with Graphpad Prism 7 (GraphPad Software, 
San Diego, California, U.S.). A P-value of less than 0.05 was considered statistically significant. The cohorts were 
checked for normality using the Shapiro–Wilk test. The unweighted and weighted total scores of each rater 
were normally distributed and the significance was tested using a Student’s t test. The other cohorts were not 
normally distributed. Therefore, the Wilcoxon Matched-Pairs Signed Rank Test was used to check the scores for 
significant differences of paired groups (Figs. 3, 4) and the Mann–Whitney test was used for unpaired groups 
(Fig. 5). Fleiss kappa was used to calculate the inter-rater agreement. The intra-rater agreement was calculated 
using Cohen’s kappa.

https://pep.siemens-info.com/en-us/syngo-via-vb50-similar-patient-search-web-service-e-clip
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Results
In the first evaluation, the residents reported the correct diagnosis in one of up to three differential diagnoses in 
9.2 ± 2.5 of 50 cases (6, 10, 7, 13, 10). During the second evaluation, they were able to significantly increase their 
results by 82.6% (p = 0.0134) to 16.8 ± 4.1 correct diagnoses in 50 cases (19, 11, 14, 17, 23). No resident experi-
enced a deterioration in score due to the use of SPS. Comparing the score per case of all residents in radiology, 
the improvement was highly significant (0.18 vs. 0.34 p < 0.0001) (Fig. 3a, b). The inter-rater agreement (Fleiss 
kappa) increased from 0.17 without SPS to 0.25 using SPS.

In the next step, the individual scores were weighted per case depending on whether the correct diagnosis 
was given without further possible diagnoses or with one or two other possible diagnoses.

In the evaluation without SPS, the residents achieved a score of 17.6 ± 5.0 out of 150 possible points (14, 16, 12, 
26, 20). Using SPS, the residents were able to significantly increase their score by 81.8% (p = 0.0275) to 32.0 ± 9.5 
of 150 possible points (48, 20, 29, 27, 36). No resident experienced a deterioration in score due to the use of SPS.

The improvement was highly significant when the score per case of all radiology residents is considered (0.35 
vs. 0.64 p = 0.0001) (Fig. 4a, b).

All in all, the use of SPS showed a significant improvement in the diagnostic accuracy of the radiology resi-
dents. Since SPS is structured similarly to a book, which brings up the right page based on the picture, the ques-
tion arises of how much time the additional research with SPS costs. Therefore, the time needed for the reading 
of each case was automatically recorded. The residents required an average of 205 ± 350 s per case (average total 
reading time of 10,250 s) without using SPS and 251 ± 220 s per case (average total reading time of 12,550 s) 
with SPS (Fig. 5). This corresponds to a 45 s increase, or 21.9% increase, in the time needed for the diagnosis 
when SPS was used. When comparing the average duration per case, the time per case was significantly higher 
using SPS (p < 0.0001).

It is important to note that the residents were using SPS for the first time in the study. Whenever unknown 
software is used, a certain training period is required to develop familiarity with the software. In order to deter-
mine the extent to which the time increase is due to unfamiliarity with the software, we compared the time per 
case of the first 50% of the cases with the last 50% of the cases (Fig. 6). Both the evaluation round with SPS and 

Figure 3.  (a) Mean score per case of each resident 1–5 without SPS (a) and with SPS (b). (b) Mean score/case 
without SPS (a) and with SPS (b).
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without SPS showed a significant (p < 0.0001) lower time per case in the last 50% of cases compared to the first 
50%. Without SPS, the time per case was reduced by 17.0% to an average of 186 s. With SPS, the time per case 
was reduced by 33.8% to an average of 200 s. Due to the substantial reduction in time per case in the second half 
of cases, the increase in time in the last 50% of cases when SPS was used was found to be only 13 s or 7.0%. The 
results of the respective readers are described in detail in Table 2.

Figure 4.  (a) Weighted mean score per case of each resident 1–5 without SPS (a) and with SPS (b). (b) Mean 
weighted score/case without SPS (a) and with SPS (b).

Figure 5.  Mean time/case in seconds without SPS (a) and with SPS (b).
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Discussion
Our study evaluated the influence of SPS on the accuracy of radiology residents in reading rare lung diseases in 
computed tomography. With the use of SPS, the residents’ scores increased by 82.6% to 16.8 points. Furthermore, 
the score weighted by the amount of differential diagnoses improved by 81.8% to an average of 32 points. The 
inter-rater agreement (Fleiss kappa) increased from 0.17 to 0.25. Overall, the use of SPS significantly improved 
the diagnostic accuracy of the radiology residents from 0.17 to 0.34.

The diagnosis of complex lung diseases requires a radiologist with a great amount of  experience12. Further-
more, since even experienced radiologists struggle to find a reliable diagnosis in some ILDs, interdisciplinary 
boards are considered the gold standard for  diagnosis13. Without any technological support, the residents were 
only able to make a correct diagnosis in one of 3 possible diagnoses in 9.2 of 50 cases (18.4%). If the results are 
balanced, so that additional but incorrect diagnoses lead to fewer points, the residents scored only 17.6 out of 
150 possible points (11.7%).

This fits well with the literature, which describes that the most common type of pulmonary fibrosis is delayed 
on average by one year due to a frequent failure to recognize the underlying  pattern1. Therefore, methods are 
urgently needed to improve the diagnostic accuracy of rare and complex lung diseases.

Figure 6.  Mean time/case in seconds of the first 50% and the last 50% of cases without SPS and with SPS.

Table 2.  List of the results of the evaluation of the 5 readers (CC = R1 Correct cases (round 1); CC 
R2 = Correct cases (round 2); WDD R1 = Wrong differential diagnoses (round 1); WDD R2 = Wrong 
differential diagnoses (round 2); EDD R1 = Empty differential diagnoses (round 1); EDD R2 = Empty 
differential diagnoses (round 2); MC R1 = Missed cases (round 1); MC R2 = Missed cases (round 1); WSC 
R1 = Weighted score (round 1); WSC R2 = Weighted score (round 2); TPC R1 = Time per case (round 1); TPC 
R2 = Time per case (round 2); ACC R1 = Accuracy (round 1); ACC R2 = Accuracy (round 2); k = Intra-rater 
agreement (Cohen’s kappa).

CC R1 CC R2 WDD R1 WDD R2 EDD R1 EDD R2 MC R1 MC R2 WSC R1 WSC R2 TPC R1 TPC R2 ACC R1 ACC R2 k

Rater 1 5 19 67 50 78 81 45 31 14 48 183.24 239.68 0.1 0.38 0.07

Rater 2 10 11 92 93 48 46 40 39 16 20 130.5 324.72 0.2 0.22 0.22

Rater 3 7 14 95 85 48 51 43 36 12 29 135.34 136.22 0.14 0.28 0.12

Rater 4 12 17 83 99 55 34 38 33 26 27 256.78 258.76 0.24 0.34 0.34

Rater 5 9 23 83 91 58 36 41 27 20 36 323.74 295.7 0.18 0.46 0.45

Mean 8.60 16.80 84.00 83.60 57.40 49.60 41.40 33.20 17.60 32.00 205.92 251.02 0.172 0.336

SD 2.70 4.60 10.91 19.44 12.32 18.90 2.70 4.60 5.55 10.61 83.15 72.10 0.054 0.092
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Current approaches have shown that convolutional neural networks can be used to detect underlying pat-
terns of ILDs, such as ground-glass opacities or  honeycombing2,4,14. However, these are only a small number of 
possible patterns that do not correspond to any singular diagnosis.

An alternative approach to improve diagnostic accuracy is to use teleradiology to ask experienced radiologists 
for a second  opinion15. However, radiologists with expertise in ILDs are a limited resource, both with respect to 
their numbers and their availability.

Nonetheless, even with SPS, the residents were unable to identify the correct diagnosis in many cases. This 
may have been due to missing clinical information. To ensure the diagnosis is based purely on the image infor-
mation, no clinical information other than age and gender was provided. These are essential in everyday clinical 
practice to make a reliable clinical diagnosis. However, these clinical data were excluded as possible confounders 
in this study since the quality of the clinical data also influences the quality of the  report16. As a consequence, 
the total score may not represent clinical reality, but it shows the unbiased effect of SPS in terms of improving 
the ability of residents to reach the correct diagnosis.

Moreover, though the ability to analyze a target structure is an advantage of SPS, it is also a limitation. This 
is because the evaluation itself similarly depends on delineating a target structure of particular importance to 
the diagnosis.

However, SPS is not intended to process entire CT examinations on its own, thereby automating the diagnosis 
process. The radiologist remains in the driver’s seat, whilst SPS assists by presenting the radiologist with a selec-
tion of similar images and the corresponding clinical reference content.

A further limitation is that only CT scans with a slice thickness of 5 mm could be used as input to SPS at 
the time of evaluation. HR images, which are recommended in the guidelines for the detection of pulmonary 
 fibrosis17, could not be used as an input. This is because to compile the reference database; older image material 
had to be used for some extremely rare diseases. At that time point, these images had only been archived in 
5 mm slice thickness. On the one hand, this is a disadvantage and limitation, as it would be expected that SPS 
will provide a higher predictive power with HR data and in the case of sequential CT acquisition, it could not 
work with the examination. On the other hand, this allows better generalizability of SPS, as it delivers adequate 
results with standard CT data with a slice thickness of 5 mm, which can be reconstructed in any CT examination 
acquired in spiral mode. In the context of data augmentation, it would be conceivable to train the network in a 
future update to work with both HR data and normal CT  data18.

Given the continuously increasing number of CT scans  worldwide19, time is an important factor for report-
ing. The additional time required for a diagnosis because of SPS usage was reduced from an average of 77 s for 
the first 25 cases to only 13 s for the last 25 cases. The reduction in additional time required indicates a steep 
learning curve. This might be based on learning how to use the software on the one hand and on learning the 
disease pattern through the software on the other hand. It is also worth noting that in the clinical setting, resi-
dents would have likely searched for information in a book or on the internet, which would also have required 
a substantial amount of additional time.

Nevertheless, this is also a limitation regarding the accuracy of the residents; with other available additional 
sources of information, which are usually available in everyday clinical practice, the residents would probably 
have had a higher accuracy. Whether SPS improves resident accuracy more than some well-written books cannot 
be answered by this study. Therefore, further studies should investigate how SPS compares with other sources of 
information. However, given the heterogeneous landscape of books and websites, no confounder was introduced 
in this first study by using a potentially poor source of information.

As a further limitation, the diagnosis can theoretically be deflected from a correct diagnosis to an incorrect 
one by presenting similar-looking cases with a different diagnosis to the resident. This is a phenomenon that 
can theoretically also occur through a literature search or consultation with another colleague. Therefore, it was 
important to show that all residents improved on average while using SPS as an aiding tool. Overall, on average, 
the score was improved by more than 80% and no resident scored worse with SPS than without SPS, so this 
phenomenon had no major impact on the reporting in our study.

As another limitation, the sequence of evaluations might have introduced a sequence bias. To rule out the 
possibility that the improvements attributed to SPS were caused by a sequence bias or possible learning effects 
between the evaluation rounds, we performed another evaluation round without SPS after one year. Here, no 
significant increase could be shown between round 2 (with SPS) and round 3 (without SPS). In addition, a pos-
sible bias associated with learning effects and a potential bias due to the length of the wash-out period was further 
excluded by requiring the residents to evaluate the cases twice on the same day (round 3, round 4). Between these 
time points, the use of SPS again resulted in a significant increase in residents scores. The length of the wash-out 
period showed no correlation with changes in scores between the evaluation rounds.

Thus, the increase in points from round 1 to round 2 cannot be explained by the sequence, length of the 
wash-out period or by the increase in knowledge between the evaluation rounds.

Last but not least, the impact of SPS on the variation of reporting time with and without SPS could be 
influenced by a certain recognition value. To evaluate the influence of SPS on reporting time, follow-up studies 
including competing sources of reference such as textbooks are needed.

Conclusion
Overall, the results of our validation underline the potential of a content-based image retrieval system and an 
integrated knowledge database (SPS) to improve the accuracy of radiology residents in CT reading of complex 
lung diseases.
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