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Dynamics of stochastic‑constrained 
particles
Tao Guo 

Prior studies have focused on the overall behavior of randomly moving particle swarms. However, 
the characteristics of the stochastic‑constrained particles that form ubiquitously within these swarms 
remain oblivious. This study demonstrates a generalized diffusion equation for stochastic‑constrained 
particles that considers the velocity and location aggregation effects observed from their parent 
particle swarm (i.e., a completely random particle swarm). This equation can be approximated as the 
form of Schrödinger equation in the microcosmic case (low relative density) and describe the dynamics 
of the total mass distribution in the macrocosmic case (high relative density). The predicted density 
distribution of the particle swarm in the stable aggregation state is consistent with the total mass 
distribution of massive, relaxed galaxy clusters (at least in the range of r < r

s
 ), preventing cuspy 

problems in the empirical Navarro–Frenk–White profile. This study opens a window to observe the 
dynamics of stochastic‑constrained particles from a third perspective, from which the aggregation 
effect of particles without gravitation can be saw.

The dynamics of randomly moving particles have been extensively studied in the  past1–5. However, these studies 
have been based on the cases where the means (velocity and density) of the particles in the target (sub-) domain 
are identical to those in the total (parent) domain (Fig. 1), or the particle swarm in the sub- and parent domains 
are indistinguishable. There are certain stochastic-constrained sub-particle swarms with minuscule probabilities 
in the particle swarm that are formed by the randomly moving particles. For example, during a certain period, the 
sub-particle swarm ( Ru ) with a constant velocity relative to the parent particle  swarm6 belongs to this category 
(Fig. 1). These special sub-particle swarms are accidental phenomena for the particles in the parent domain, but 
for the observers near these sub-particle swarms, they are determined “gifts” from nature (survivor bias). These 
cases are also the more common existences we see and are meaningful to human beings (if the whole universe is 
considered as a composition of minute particles, a galaxy in a galaxy cluster, the Solar System in the Milky Way, 
and the Earth in the Solar System are similar to this type of phenomenon). Therefore, it is extremely necessary 
to study the particle swarms in common but special cases.

These special stochastic-constrained particle swarms, as a sub-particle swarm of the total particle swarm in 
a completely random state, may be in a variety of different constrained states observed from the total particle 
swarm. In a certain period and a fixed target domain (the volume is fixed and the location can move with the aver-
age velocity of the target particle swarm, the same is done below), when a sub-particle swarm is in a completely 
random (free) state, the location distribution of the particles in that state follows the Poisson distribution based 
on time with the same strength as the Poisson distribution of the population based on location. The velocity 
direction distribution is also consistent with the population (the norm of the average velocity follows the same 
Maxwell distribution). When a sub-particle swarm remains in a special accidental state for a certain period, it is 
equivalent to the sub-particle swarm being subject to some constraints and being in a non-completely random 
state. According to the constraint situation of the sub-particle swarm, we categorize it into the following three 
types of constrained states: For the first type of constrained state, in a certain period and a fixed target domain, 
the location distribution of the particles follows a Poisson distribution based on time with the same strength 
as the Poisson distribution of the population based on location, but the norms of the average velocities do not 
follow the Maxwell distribution. The special case of this state is that the average velocity norms of all counted 
particles are constant at u under the condition that the location distribution remains unchanged, which is termed 
Iu (Fig. 2a). For the second type of constrained state, in a certain period and a fixed target domain, the norms 
of the average particle velocities follow the Maxwell distribution, but the location distribution of the particles 
in the domain does not follow the Poisson distribution based on time with the same strength as the Poisson 
distribution of the population based on location. The special case of this state is that the number of particles in 
the fixed target domain is fixed under the condition that the velocity direction distribution remains unchanged. 
For the third type of constrained state, in a certain period and a fixed target domain, the norms of the average 
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particle velocities do not follow the Maxwell distribution, and the location distribution of the particles in the 
domain does not follow the Poisson distribution based on time with the same strength as the Poisson distribution 
of the population based on location. The special case of this state is that the number of particles is fixed and the 
average velocity norm of all particles is fixed as u in the fixed target domain, which is termed IIIu (Fig. 2b). The 
abovementioned sub-particle swarm ( Ru ) with a constant average velocity during a certain period belongs to IIIu.

When a sub-particle swarm in the constrained state of IIIu ( Ru or the target domain) is observed in the 
total domain ( R0 ), it has the characteristics of location aggregation and velocity direction aggregation, which 
influence the diffusion rate constant of the particles. Therefore, the dynamic phenomena of this type of particle 
swarm exhibits certain special properties. Essentially, these stochastic-constrained particles are biased random 
particles. Regarding biased random particles, previous studies have mainly focused on physics, chemistry and 
biology fields in various  forms7. And the study for the motion of these biased random particles in astrophysics are 
usually regarding them as the multi-body interaction involving  gravitation8. However, the motion form without 
considering gravitation has not been provided. In the past, the formula for the total mass distribution of galaxies 
or galaxy clusters, such as the Navarro–Frenk–White (NFW)  profile9 and Einasto  profile10, was derived based 
on experience. However, a formula regarding the most basic dynamics of randomly moving particles is lacking.

This study focused on the particle swarm in the constrained state of IIIu , deduced the diffusion equation of 
the particles in this case and identified the formation conditions of a non-diffusion particle swarm. The basic 

Figure 1.  Relationship between the Total (Parent/Background) Domain (Red), Target (Sub-) Domain (Blue) 
and Microdomain (Green).

Figure 2.  Relationships between the target (sub-) particles/domain and the total particles/domain. (a), The 
constrained state of Iu : the number of blue particles follows the Poisson distribution based on time with the 
same strength as the Poisson distribution of the red particles based on location. (b), The constrained state of 
IIIu : the number of blue particles is fixed.
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structure of this study is as follows. The mathematical model was deduced step-by-step based on the defined 
physical model. Before derivation, two verifications were performed. First, it was confirmed that the physical 
model contained special relativistic effects; second, the form of Schrödinger equation was derived from the physi-
cal model under certain conditions. The process of the two checks also clarified how to derive the mathematical 
model, that is, the generalized diffusion equation. The process of deriving the generalized diffusion equation 
includes the following: ( i ) vector decomposition. The decomposition of nonmoving particles in space is extended 
to the decomposition of a 2-dimensional vector representing the sum of the 3-dimensional vector of moving 
particles at a certain point in space, which forms the core of the whole derivation. ( ii ) The classic diffusion coef-
ficient is reinterpreted and the essential key information is obtained. ( iii ) Based on ( i ) and ( ii ), the equations are 
conjoined according to the classical diffusion principle to obtain the generalized diffusion equation. Furthermore, 
certain important parts related to the equation are discussed and verified. The following is a detailed description.

Methods
In this study, a mathematical model was obtained through the logical derivation based on a physical model. 
Mathematica 13.1.0 for Mac (Wolfram Research Inc.) was used for all of the mathematical calculations, and the 
hardware was a Mac mini (Z12P) with the macOS Monterey 12.3.1 operating system. The solutions to each of 
the specific problems can be found in the Supplementary Information.

Results and discussions
Physical model. It is assumed that there are countless identical point particles with certain masses in an 
infinite 3-dimensional space. Their speed is c, the motion directions of each particle are evenly distributed in a 
3-dimensional space, and there is no interaction between these particles. Our research object is a subset of such 
particles. The particles in this subset are in the special case of the third type of constrained state (i.e., IIIu , the 
blue domain in Fig. 2b) observed from the total domain.

Special relativistic effects in the constrained state of Iu. In this study, the “point particles” described 
above are called “particles” or “1-particles”, whereas the larger finite-mass-level particles composed of k particles 
are called “k-particles”. The k-particles or aggregates mentioned in this section are k-generalized-particles or 
aggregates. And the k-particle term implies that only k particles are counted, irrespective of whether they are 
truly clustered or not. The 1-particles can be represented by random vectors with equal norms that are equal to 
the same movement speeds in Euclidean space. Thus, the “random vectors” and “randomly moving particles (or 
velocities)” mentioned in this study have the same meaning.

My previous  study6 has proven that the vector group in the constrained state of Iu formed by random vectors 
with equivalent norms has a special relativistic effect. That is, because of the statistical effect, when the centroid 
of the sub-particle swarm moves at a speed of u in one direction, the particles or the generalized k-particles 
formed by the sub-particles will lose a certain degree of freedom in other directions (or in other words, the 
movement trends in other directions decrease), resulting in the effect of special relativity. Here, the slowing ratio √
c2 − u2

c
 of the particles in Ru or generalized aggregates they form is recorded as Ŵ[· ] or Ŵ (we call it the Ŵ , or 

Ŵ[· ], effect). Although the particles in Ru are in the constrained state of Iu when observed from R0 , they are in 
a completely random state when observed from Ru . Moreover, my previous  study6 has confirmed that all the 
physical laws are identical to that of the case while studying a k-generalized-particle in R0 observed from R0 
and in Ru observed from Ru . In the constrained state of Iu , the particles themselves or the generalized particles 
formed by the particles show the effect of special relativity due to the aggregation effect of velocity direction; in 
the constrained state of IIIu , the aggregation effect also includes location aggregation (however, the two aggrega-
tion effect are uncorrelated to each other). Here, these two (aggregation) effects combined with the simultaneous 
effects of the velocity direction and location aggregation (such particles are in the constrained state of IIIu ) are 
collectively called the statistical effect of randomly moving particles. When these statistical effects work in tan-
dem, the generation conditions of a non-diffusion particle swarm can be obtained. This is explained in detail 
below.

Establishment of the vector diffusion equation in the constrained state of Iu. According to the 
discussions in section "Special relativistic effects in the constrained state of Iu", observing these stochastic-con-
strained particles from the constrained particle swarms cannot correctly perceive these constrained phenomena. 
Therefore, the constrained states mentioned below all imply observing from their background domains ( R0 ). 
Irrespective of the movements of these particles in 3-dimensional space, their trajectories are continuous, which 
leads to diffusion (or agglomeration) behavior, which is the generalized diffusion of randomly moving particles 
in the constrained state of IIIu . Considering particles of the same mass and speed, the generalized diffusivity of 
the corresponding random vectors is equivalent to the generalized diffusivity of random momenta (which are 
also vectors). It is considered that the scale of the “generalized diffusivity of vectors” is simply the scale that is 
most suitable for describing the invariant laws for randomly moving particles. More information will be lost if 
the scale is even slightly more macroscopic (e.g., the scale can be approximately described by real diffusion), and 
there will be no invariant statistical law to follow if the scale is even slightly more microscopic (e.g., the scale 
described at the beginning of this paragraph). At this scale, the external behavior of the vectors in a tiny space 
cannot be considered isotropic. Before studying the particles in the constrained state of IIIu , we first study the 
particles in the constrained state of Iu . Temporarily, the Ŵ effect is not considered here; thus, it is consistent with 
the scenario of a completely free state. Compared with the IIIu case, there is only diffusion without agglomera-
tion in Iu , and the other cases are consistent. In the constrained state of Iu (not considering the Ŵ effect) observed 
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from R0 , the total vector in a certain domain always points in an uncertain direction, and the norm is directly 
proportional to k, where k is the number of vectors (see Part 1 of the Supplementary Information for details). 
Although the direction of the total vector in a tiny space cannot be determined, we hope to use appropriate 
constraints to obtain the distribution rules governing the norm and direction of the total vector at any location 
in space.

First, we determine the constraints acting on spatial vectors (norms and directions). Let the density of the 
vector sum at some point P in space be denoted by X  , which is a function of location and time, that is, 
X (x, y, z, t) . It is defined as follows: at a certain time t, let Y(V) be a function of the sum of all vectors in the 
closed domain V containing P(x, y, z) ; and X (x, y, z, t) = lim

V→P

Y(V)

V
 [in the following, X  is also a function of 

the spatial coordinates (x, y, z) and the time coordinate t].
X  is the statistical average vector. The relationship between X  and the number of vectors follows a distribu-

tion. As illustrated in Fig. 3a, it is assumed that there are two microdomains VA and VB of the same size along the 
normal direction on both sides of the segmentation surface � . If the sum of all vectors in VA is 

⇀

OA and the sum 
of all vectors in VB is 

⇀

OB , then their sum is 
⇀

OC , and their difference is ⇀BA . Let the sum and difference vectors 
intersect at point M (Fig. 3b). Because the velocity direction distribution is homogeneous and there is no need 
to consider the statistical effects due to location aggregation here, considering the previous assumption that the 
domains VA and VB on both sides of � are equal, after the particles randomly move and mix, both vectors must 
tend to approach their average value 

⇀

OM ; that is, both 
⇀

OA and 
⇀

OB tend toward 
⇀

OM (this is a diffusion potential 
across a membrane. Scalar concentration difference can generate concentration gradient, and vector difference 
can generate vector gradient. Their essence is the random motion of particles). The change rate of 

⇀

OA or 
⇀

OB to ⇀

OM depends on the difference between 
⇀

OA and 
⇀

OB and the diffusion (motion) rate of particles. Accordingly, the 
rate of change in X  along the normal direction (the motion or the vector generated by the motion in the other 
two tangent directions is invalid) at a particular point should be related to the time-dependent rate of change in 
X  in defined domain. This time-dependent rate of change is also influenced by another inherent factor (i.e., the 
velocity of the particles forming X  ), the concrete value of which is temporally uncertain. Therefore, the above 
two rates of change should be directly proportional when the differences between particles caused by density 
(location aggregation of particles) are neglected.

If a domain W is enclosed by a closed surface � , then during the infinitesimal period dt , the directional 
derivative 

∂X

∂N
 of X  along the normal direction of an infinitesimal area element dS on the surface � is directly 

proportional to the vector dX  flowing through dS along the normal direction in the closed domain W enclosed 
by � (Fig. 4), under the assumption that the coefficient is a positive real number D.

For the time interval, ta to tb , when the influence of the vector density on D is not considered (i.e., the diffusion 
coefficient is the same at every location), the variation of the vector sum A inside the closed surface � is given as

According to the Gaussian formula, Eq. (1) can also be written in the form

(1)

Figure 3.  Illustration of the principle of the generation of a mutual diffusion potential in microdomains VA and 
VB . ( a ), Illustration of diffusion potential. ( b ), Vector representation of diffusion potential.
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where ∇ is the Hamilton operator, which describes the first derivative with respect to location (x, y, z). The left-
hand side of Eq. (1) ( δA ) can also be written as

By setting the right of Eq. (3) equal to the right of Eq. (2) and transforming the order of integration, we can obtain

Based on the observation that ta , tb and domain W are arbitrary, the following equation can be written as

To facilitate the task of vector decomposition in the constrained state of IIIu , a 3-dimensional vector needs to be 
converted into a plane vector. Next, we determine the constraints acting on plane vectors. Although the opera-
tion in Eq. (5) is performed using 3-dimensional vectors, when differential operations are performed on a spatial 
vector, the (sum or) difference operations are always performed at two points on the vectors that are separated by 
an infinitesimal distance; thus, all 3-dimensional vectors can exhibit only relative 2-dimensional characteristics. 
Consequently, by solving this differential equation, only 2-dimensional constraints can be obtained. Therefore, 
only the derivatives of plane vectors are needed to act as the derivatives of the 3-dimensional vectors (in this 
case, plane vectors can retain the important information, such as the norms of the vectors and the included angle 
between them). Moreover, according to the Sturm–Liouville theory, the function of plane vectors obtained by 
solving the partial differential equation expressed in terms of plane vectors is unique and corresponds to the 
3-dimensional vectors obtained from a differential equation of the same form. It is assumed that the function 
of plane vectors describing the density of the vectors or momenta is M(x, y, z, t) , which corresponds to X  at 
the point (x, y, z, t) [unless otherwise stated, in the following, M is a function of the spatial coordinates (x, y, z) 
and the time coordinate t]. Thus, X  can be replaced with M . Following this replacement, it is obvious that the 
norm of the plane vector remains constant while its direction is reoriented. Finally, Eq. (5) can be written as

Now, let us determine the constraints on the direction of the plane vector M . In view of the continuity of the 
trajectories of point particles, since M is also characterized in terms of the statistical properties of an enormous 
number of particles, it should also be smooth. According to the theory of plane curves, the first and second 
derivatives of a plane vector in any direction in space are vertical. If an equation relating these derivatives is estab-
lished according to the above derivative relationship (Eq. 6), the direction needs to be adjusted to be consistent; 
otherwise, the equations cannot be equal; then, the unique and definite relationship can be written in the form

where i is an imaginary unit. By multiplying both sides of Eq. (7) by i , the form of the Schrödinger equation 
(without an external field) can be obtained as

(2)δA =
� tb

ta





���

W

D∇2X dxdydz



dt,

(3)δA =
∫∫∫

W

(∫ tb

ta

∂X

∂t
dt

)

dxdydz.

(4)

∫ tb

ta

∫∫∫

W

∂X

∂t
dxdydzdt =

∫ tb

ta

∫∫∫

W

D∇2X dxdydzdt.

(5)
∂X

∂t
= D∇2X .

(6)
∥

∥

∥

∥

∂M

∂t

∥

∥

∥

∥

= D
∥

∥∇2M
∥

∥.

(7)
∂M

∂t
= iD∇2M,

Figure 4.  Illustration of the diffusion of the vector sum density X .
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Equation (8) describes the distribution of a moving particle swarm (including the direction of movement) in the 
constrained state of Iu (not considering the Ŵ effect) or in a completely free state following the same diffusion 
coefficient; in other words, it is the stochastic-constrained vector diffusion equation observed from R0 . When 
u is small, the constrained state of Iu can also be approximated to a completely free state (the Ŵ effect can be 
ignored) and Eq. (8) levels off to the Schrödinger equation without an external field. However, when u is large 
and there is both a location-constrained state (i.e., the constrained state of IIIu ), the effect on diffusion is not 
clear. To more comprehensively describe this type of diffusion process (which is called generalized diffusion), 
further analysis is needed.

Construction of the generalized diffusion equation in the constrained state of IIIu. To con-
struct the generalized diffusion equation in the constrained state of IIIu , we need to consider several aspects, 
including whether the generalized diffusion coefficient Ɖ should vary and how to describe it to include the 
characteristics of the two types of constrained states.

When particles are in the constrained state of Iu (not considering the Ŵ effect), they follow a diffusion equa-
tion with the same diffusion coefficient. However, when such particles are in the constrained state of IIIu , the 
effect of location aggregation on Ɖ should be considered, and Ɖ should vary with the value of the target vector. 
Suppose that, as illustrated in Fig. 3a, the vector sum density in the microdomain VA is greater than that in the 
VB . If both cases ( VA and VB ) are in the constrained state of IIIu , there is a greater consumption of degrees of 
freedom for the higher density in the VA . In terms of probability, less uncertainty is introduced into the unit 
volume, which inevitably affects the (average) particle speed. Therefore, the overall particle speed in the VA 
decreased. As mentioned above (or in Eq. 27 below), the particle speed is what determines D; therefore, the law 
governing the diffusion rate towards the right ( DA ) is not identical to the law governing the diffusion rate in the 
VB towards the left ( DB ) (under the assumption that Ɖ is a combination of DA and DB ). Therefore, it is necessary 
for the generalized diffusion coefficient to vary in time with the vector sum density to reflect this inequality.

In view of the above considerations, choosing the appropriate quantitative function to describe this phenom-
enon (with different laws) is the key issue to be addressed in this study. First, the sum of the momentum vectors 
in the microdomain is decomposed, as described in the following subsection.

Vector decomposition. First, let us determine the distribution function for a certain number of nonmoving 
particles with equal probability (randomly) distributed in a certain domain, as follows: Suppose that the entire 
domain contains n particles in total. For convenience of description, the entire domain is also partitioned into n 
boxes of equal size. The gaps between the boxes and the wall thickness are both 0. This is a localized system. Now, 
let us determine the probability of k ( k ∈ N+ ; the same is given below) particles in a local area containing M 
boxes (suppose that the particles are small enough to fall into the box, not the wall). In view of the statement 
described above, the probability of particles existing in each domain is the same. Accordingly, the total number 

of possible cases describing how n particles can be randomly distributed among n boxes is nn , there are 
(

n

k

)

 total 

ways that k particles can be randomly chosen from among n particles, there are Mk total ways in which the k 
chosen particles can be randomly distributed among M boxes, and there are (n−M)n−k total ways in which 
the remaining n− k particles can be randomly distributed among the remaining n−M boxes. Therefore, the 
probability P(M, k) of k particles existing in M boxes can be expressed as

Suppose that the number n of particles in the entire domain is infinite; then, by taking the limit of Eq. (9) as 
x → +∞ , we find that

again, where M denotes the number of boxes comprising the local domain of interest (the size of the volume in 
3-dimensional space), k denotes the number of particles in that domain of M boxes, and P denotes the probability 
that k particles exist in that domain. Equation (10) is the (location-based) Poisson distribution.

It is considered that this is the most appropriate method of partitioning a whole domain (the domain can 
be the whole universe or merely a broad range including the objects of investigation) into uniform boxes with 
the same number as that of particles. Besides reducing the parameters involved and facilitating discussion, the 
reasons are as follows: if the boxes are slightly larger, they will not ensure the accuracy of the following vector 
decomposition; if they are slightly smaller, they will not adequately reflect the grouping effect of the particles. 
Therefore, in this study, the whole domain is divided into a number of uniform boxes equal to the number of 
particles it contains, and this partitioning serves as the basis for all of the following discussions. In this study, the 
whole domain (environment) is called the T-domain (it is the sub-domain of sub-domain in Fig. 1), and the local 
domain (target) is called the S-domain; the set of all particles contained in the T-domain is called the T-particle 
swarm (it is the sub-particle swarm of sub-particles as shown in Fig. 2), and the subset of particles contained in 
the S-domain is called the S-particle swarm.

(8)i
∂M

∂t
= −D∇2M.

(9)
P(M, k) =

(

n

k

)

Mk(n−M)n−k

nn
.

(10)P(M, k) =
e−MMk

k!
,
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Next, we will investigate the equiprobability distribution of the nonmoving particle swarm in the abovemen-
tioned S-domain V . In Eq. (10), M denotes the number of boxes (volume) spanned by certain S-domain (which 
belonged to the domain in which the target particles are distributed). Put another way, when the T-domain is 
partitioned into uniform boxes following the above method, M can also denote the average relative density of 
the particles in the S-domain V , where the reference density is the average density of the T-particle swarm in the 
T-domain. M represents the corresponding multiple of the average density, k denotes the number of particles in 
one box, and P is the probability of k particles existing in that box. Thus, the distribution of the S-particle swarm 
in V is a Poisson distribution with density intensity M . Next, we will analyze the Poisson distribution formula 
given in Eq. (10). In fact, it is the proportion of each term determined by k (when eM is expanded as a power 
series) to the value of eM . The meaning here is that it is also the proportion of the number of boxes containing 
k particles each to the total number of boxes in V when the S-particle swarm of relative density M is distributed 
among the reference boxes determined by the above criteria and spanned by the S-domain V (assuming that 
the number of boxes spanned by V is sufficiently large). According to mathematical analysis, we can see that the 
power series expansion for this case is unique, and obviously, this ratio distribution is also unique. If the right-
hand side of Eq. (10) is multiplied by k, the result, denoted by R(M, k ), takes the following form:

In this way, termwise addition (by k) based on this expression offers a possible form for the decomposition of 
M into infinite items. Because the power series expansion above is unique, this decomposition form of the con-
taining power series is also unique. According to the previous statement of physical meaning, the meaning of 
Eq. (11) is the relative density contributed by the particles in the boxes that contain k particles each to the total 
relative density M (the average relative density in V ) after the particles of relative density M are dispersed among 
the (infinitely many) reference boxes spanned by V with equal probability. Multiplying Eq. (11) by the number 
of boxes contained in V yields the total number of particles in the boxes containing k particles each. Since the 
distribution of particles in this form is definite (following the Poisson distribution), from this point of view, the 
decomposition of the relative density M in this (containing power series) form is also unique.

If M is a complex number (or plane vector), Eq. (11) can be written in vector form as follows:

The form obtained by dividing Eq. (12) by k yields still the ratio of each term (complex) determined by k (when 
eM is expanded as a power series) to the complex of eM . There is one more dimension here, and the power 
series expansion is still unique. Similarly, the termwise addition of Eq. (12) also provides a decomposition form 
for the vector M . This decomposition form of the containing power series is also unique.

Now, we study the distribution of the velocity of the moving S-particle swarm in the abovementioned 
S-domain V . If the particles in the T-particle swarm move randomly in the T-domain, the distribution of the 
S-particle swarm in one time slice in a sufficiently small S-domain (when the particle speed is fast enough) can 
also be approximated as an equiprobable distribution. At the human scale—and it will be proven with self-con-
sistency that, in fact, the same obtains at any scale—the number of S-particles in almost every “microdomain” of 
the universe can be regarded as approaching infinity; therefore, the number distribution of particles in the moving 
S-particle swarm in a certain microdomain V can be described by Eq. (10). The moving particles in each type of 
box partitioned by k in one S-domain V can form a component vector (denoted by Yk , as shown schematically 
in Fig. 5), and these components can be added together to generate the total 3-dimensional vector Y in V , that is

Once Y formed by the moving S-particle swarm in V , which includes the specific number of (equivalent) 
particles, is determined (i.e., the average speed u of the S-particles or T-particles is determined observed from 
R0 ), the norm (mathematical expectation) of each component vector should be (approximately) directly propor-
tional to the number of particles forming it when the number of particles is large (see Part 1 of the Supplementary 
Information for details). Note that the number of samples in V is very large even when k = 1 . Therefore, the ratios 
between the norms (mathematical expectations) of the component vectors in various boxes partitioned by k are 
uniquely determined by the form of (containing) the power series determined by Eq. (11) (observed from R0 ). 
In other words, when M represents the relative density of the particles in V , we have the following relationship:

As the limiting value X  of the quotient of Y and V , it can still be considered as a sum of 3-dimensional vectors 
in the S-domain V . Therefore, there is also a form of component vectors with the ratios of norms determined 
by Eq. (11) spanning various boxes partitioned by k. When the 3-dimensional component vectors (spanning 
various boxes partitioned by k) of the 3-dimensional vector X  are mapped to the 2-dimensional component 
vectors (spanning various boxes partitioned by k) of the plane vector M , it is clear that there is also a corre-
sponding 2-dimensional form of component vectors with the ratios of norms determined by Eq. (11) (namely, 
the ratios of norms follow a Poisson distribution corresponding to the number of particles), but the direction is 

(11)R(M, k) =
e−MMk

(k − 1)!
.

(12)R(M, k) =
e−MMk

(k − 1)!
.

(13)Y =
∞
∑

k=1

Yk .

(14)�Y1� : �Y2� : · · · = R(M, 1) : R(M, 2) : · · · .
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not determined. That is, when X 1 , X 2 , · · · represent the component vectors of X  respectively and M1 , M2 , · · · 
represent the component vectors of M respectively, we have

According to Eqs. (14) and (15), we can obtain the following relationship:

According to the conclusion in Part 1 of the Supplementary Information, the norm (mathematical expectation) 
of each component vector is the product of the number of particles forming it and the speed of the system it 
located observed from R0 . Therefore, we obtain

Note that when M represents a relative scalar, M represents a relative vector. Therefore, �M� = M is always 
true when u = 1 , where u is the average speed of the T-particles. In this way,

In other words, when u = 1 , the ratios of norms of the component vectors of M are the ratios of the power series 
(determined by the Poisson distribution) forms of its own norm.

When M is decomposed into M1 , M2 , · · · denoted by itself (i.e., u = 1 ), the relationship between ‖M1‖ , 
‖M2‖ , · · · must satisfy Eq. (18). In view of the uniqueness of R(‖M‖, k) , which is the power series form of the 
norms, Mk must be expressed in the form of R(M, k) (Eq. 12, or at least the form of R(M, k) · eM ) to satisfy 
Eq. (18). At this point, the direction of Mk is uniquely determined. In view of the termwise addition (by k) of 
Eq. (12) is the unique decomposition of M ; therefore, the plane mapping of the sum of all the vectors in the 
boxes containing the same number k of particles is the component vector determined by k in Eq. (12). When k 
takes all values in N+ , the termwise sum of these terms is the unique decomposition of M (spanning various 
boxes partitioned by k), namely,

The above analysis shows that two conditions must be satisfied for M to be uniquely decomposed into com-
ponents divided by k. On the one hand, u = 1 (or �M� = M ) must be satisfied; on the other hand, ‖M‖ must 
be a relative value as M . Therefore, it is clear that M should also be a relative vector. Furthermore, M should 
be not only a multiple of the number of reference boxes but also a multiple of the speed of the system (that is, 
the norm of the average velocity of the counted particles; u = 1 can be satisfied only if u is regarded as a relative 
value u∗ ). Therefore, the reference value of vector M is nu (where u is the absolute speed of the target domain 

(15)�Y1� : �Y2� : · · · = �X 1� : �X 2� : · · · = �M1� : �M2� : · · · .

(16)�M1� : �M2� : · · · = R(M, 1) : R(M, 2) : · · · .

(17)�M� = M · u.

(18)�M1� : �M2� : · · · = R(�M�, 1) : R(�M�, 2) : · · · .

(19)M =
∞
∑

k=1

e−MMk

(k − 1)!
.

Figure 5.  Illustration of the physical meaning of Yk ( k = 1, 2, 3, . . . ) in the S-domain V (a planar figure is used 
to represent the stereo figure). The vector sum of the red particles ( k = 1 ) is Y1 , the vector sum of the green 
particles ( k = 2 ) is Y2 , and the vector sum of the blue particles ( k = 3 ) is Y3 , · · ·.
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in the background domain). Accordingly, M in section "Establishment of the vector diffusion equation in the 
constrained state of Iu" should be exactly the relative vector sum density, which has the same direction as the 
absolute sum of the vectors located at that place observed from R0 . As mentioned above, the sum and difference 
operations between two spatial vectors are performed in their shared plane. In this plane, they can be respectively 
decomposed into a sum of plane vectors, as described in Eq. (19). Therefore, the two sets of plane component 
vectors can also serve as their respective spatial component vectors to correspondingly perform sum, difference 
or derivative operations.

Description of diffusion. Suppose that the standard deviation of the projection (treated as a random variable; 
the same is done below) of the velocities of the k equivalent particles forming a k-particle (that is the k-general-
ized-particle; the same is done below) onto each equivalent coordinate axis is σ . As mentioned earlier, the speeds 
of k-particles follow the Maxwell distribution with scale parameter 

σ
√
k

 (When it is in the constrained state of Iu 

not considering the Ŵ effect or in a completely free state, the speed of particle diffusion to uniform mixing in 
Fig. 3a is determined by the statistical average of the particle velocities, which is the inherent property of the 
system. Here, the particles in the target domain is regarded as a system with uniform distribution in the velocity 
direction, that is, the speeds of generalized particles follow the Maxwell distribution, and the average speed can 
be obtained according to the Maxwell  distribution6). Then, the average speed of k-particles is

For ka - and kb-particles, the ratio of their average speeds is

Because the sizes, or masses, of all 1-particles (forming k-particles) are identical, if the masses of a ka-particle 
and a kb-particle are ma and mb , respectively ( m ∝ k ), then according to the relationship shown in Eq. (21), the 
ratio of their average speeds can also be written as

See Part 2 of the Supplementary Information for the detailed calculation and derivation process. According to 
Eq. (22), for any-particles, the product of the square root of mass and the average speed is a constant (suppose 
it is κa ). Then, when the mass of a k-particle is m, its average speed is

The diffusion coefficient can be defined as follows: it is the mass or mole number of a substance that diffuses 
vertically through a unit of area along the diffusion direction per unit time and per unit concentration gradient. 
Therefore, it is believed that classical real diffusion is consistent with the essence of vector diffusion described 
here (the two diffusions that are achieved both require the random displacement of k-particles). According to 
the Einstein–Brown displacement equation, the diffusion coefficient is

where x is the average displacement of k-particles along the direction of the x-axis. To replace the average dis-
placement x in Eq. (24) with the average velocity (namely, V  ) of k-particles along the 3-dimensional directions, 
this diffusion coefficient can be transformed into (in isotropic system)

where t1 and the t implied in 
∥

∥V
∥

∥

2 are consistent, so t1 = 1 s. The average speed V  is related to the speed of 
a single k-particle. If the (average) speed of a single k-particle is v , then the statistical average speed of these 
particles in one direction is

The k-particle swarm spreads in the plane at this rate. By substituting Eq. (26) into Eq. (25) and combining t1 = 1 
s into the coefficient, which we then denote by κb , we can obtain

where κb is a constant coefficient with units of seconds (s).
By substituting Eqs. (23) into (27), the diffusion coefficient of a (k-)particle swarm of (average) mass m is 

obtained:

(20)v = 2

√

2

π
·
σ
√
k
.

(21)
va

vb
=

√
kb√
ka

.

(22)
va

vb
=

√
mb√
ma

.

(23)v =
κa√
m
.

(24)D =
x2

2t
,

(25)D =
∥

∥V
∥

∥

2

6
t1,

(26)
∥

∥V
∥

∥ =
v

2
.

(27)D = κb v
2,
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In view of the diffusion coefficient D only affecting the diffusion rate, the above equation (Eq. 28) can also be 
thought of as the apparent diffusion coefficient of particle(s) with mass m described by the 1-particle swarm 
(which forms a particle of mass m after collapse) in the constrained state of Iu . Here, we suppose that

As the situation in Ru observed from R0 , D should also be affected by the Ŵ[· ] effect, which is abbreviated as

Construction of the generalized diffusion equation. Previously, we adopted the assumption that there is no inter-
action between point particles. Accordingly, in a time slice of a microdomain, the decomposition of the vector 
given by Eq. (19) must be exhibited observed from R0 , and all boxes containing the same number of particles 
in different microdomains are equivalent. This is because there should be no differences between boxes of the 
same type (i.e., containing the same number of particles) when (the entire target domain is expressed as a system 
with a relative average speed of 1 and) the Poisson distribution determines the number differences of boxes of 
different types in different microdomains. Although the moving particles in the second or third constrained state 
can be distributed in a time slice of the microdomains with the same probability, when the overall behavior of k 
particles is counted, their average speed will inevitably slow down. Consequently, in a certain period, the loca-
tion distribution of the particles does not follow the Poisson distribution based on time with the same strength as 
the poisson distribution for the population based on location, the “slow down” effect will be retained according 
to the location characteristics; in other words, the degrees of freedom of particles will be reduced or affected by 
the second or third type of constraint effect. The particles in various boxes partitioned by k move at their average 
relative speed, and the centroids of boxes containing k particles each are, on average, located at the center of each 
box. Among all boxes of the same type (i.e., containing k particles), the average relative speed of each k-particle is 
the same and must conform to the diffusion form of Eq. (8) determined by the diffusion coefficient for particles 
of this type. Therefore, according to the particle numbers k in the previously partitioned boxes, from 1 to ∞ , we 
study the corresponding term R(M, k) , which is the component vector of M . First, we investigate the diffusion 
of individual terms, and then, we add them together to characterize the overall slowing behavior of diffusion.

Here, all the particles in each box containing k particles are regarded as forming a k-particle of a larger mass 
level, and together, all k-particles in all boxes containing k particles in microdomain V are called the k-particle 
swarm in that microdomain. Based on the above discussion, it can be considered that the average relative speed 
of each (k-)particle in the k-particle swarm is the same, and all of them have the same diffusion coefficient. 
According to the relationship given in Eq. (28) (the diffusion coefficient is inversely proportional to the mass of 
a k-particle, or the number of 1-particles forming a k-particle), if the diffusion coefficient of a 1-particle swarm 
is D1 , then the diffusion coefficient of a k-particle swarm is

where 
1

k
 is called the diffusion coefficient factor.

When the particles are in the constrained state of Iu or in a completely random state, the diffusion behavior 
of interest is that of a 1-particle swarm. It is consistent with the Schrödinger equation when the target particle 
swarm moves along the average speed of u. Therefore, the diffusion coefficient is

The diffusion equation determined by this coefficient describes the dynamics of the probabilistic diffusion of 
a target object (or the aggregation after collapse) of mass m on the basis of the apparent diffusion rate (after 
deceleration) determined by the 1-particles forming it (before collapse); however, the distribution character-
istics of the target object in its dispersion space are determined by the diffusion behavior of the 1-particles in 
the background field. When the particles are in the constrained state of IIIu , according to the above discussion, 
the case of k > 1 must be considered. Then, the diffusion coefficient of a k-particle swarm can be obtained by 
substituting Eq. (32) into Eq. (31), namely,

This is equivalent to the proportional decline in the apparent diffusion rate of a target object (or the aggrega-
tion after collapse) of mass m due to the slowdown in the speed of the k-particles forming the target object. The 
meaning of the diffusion equation determined by this diffusion coefficient is similar to the case for 1-particles as 
considered above, that is, the dynamics of the probabilistic diffusion of a target object (or the aggregation after 
collapse) of mass m are described on the basis of the apparent diffusion rate (after deceleration) determined by 

(28)D = κb

(

κa√
m

)2

=
κa

2κb

m
.

(29)κa
2κb =

�

2
.

(30)D =
�Ŵ2

2m
.

(31)Dk = D1 ·
1

k
,

(32)D1 = −
�Ŵ2

2m
.

(33)Dk = −
�Ŵ2

2m
·
1

k
.



11

Vol.:(0123456789)

Scientific Reports |         (2023) 13:2759  | https://doi.org/10.1038/s41598-023-29940-y

www.nature.com/scientificreports/

the k-particles forming it (before collapse); however, the distribution characteristics of the target object in its 
dispersion space is determined by the diffusion behavior of the k-particles in the background field.

By taking the second partial derivative of R(M, k) (this is the plane vector sum in the boxes containing k 
moving particles, namely, the k-particle swarm, which is one of the component vectors in the entire microdomain 
V ) with respect to location (x, y, z), ∇2R(M, k) can be obtained. It should be emphasized that the absolute sizes 
of the two (infinitesimal) microdomains VA and VB , which are selected to compare their differences, are equal 
when calculating the derivative of the vector M . After multiplying ∇2R(M, k) by the diffusion coefficient for 
the k-particle swarm (Eq. 33) and then adding the products together from k = 1 to ∞ , the complete generalized 
diffusion expression (including coefficients) can be obtained as follows:

The diffusion calculated in this way is the generalized diffusion from the whole (infinitesimal) microdomain VA 
to VB . Equation (34) can be simplified as follows:

where T2(M) =
(

∂M

∂x

)2

+
(

∂M

∂y

)2

+
(

∂M

∂z

)2

 . By combining the left-hand side of Eq. (8) with Eq. (35), 

a complete expression for the generalized diffusion equation for vectors is obtained:

Therefore, the expression for the generalized diffusion coefficient with the two types of special constrained 
effects is given as

The diffusion coefficient here is not a constant but rather a natural exponential function that varies with the 
relative vector density of moving particles. Hence, the generalized diffusion equation and the generalized diffu-
sion coefficient Ɖ for vectors in the constrained state of IIIu have been determined. In this constrained state, the 
ratios of norms of the spatial equivalent vectors in a microdomain can be determined in accordance with the 
Poisson distribution, while the norms and directions of the spatial equivalent vectors in the complex plane can 
be determined in accordance with Eq. (36). Thus, the basic effective information for a spatial (moving) particle 
swarm in the constrained state of IIIu has been derived.

The slowing down of diffusion based on spatial location is the only manifestation of the statistical effect of 
location aggregation (the second type of constrained state) in diffusion. Obviously, the second type of special 
constrained state effect of particles can be reflected according to the treatment method in Eq. (34). As mentioned 
above, the statistical effects include the location and direction aggregation in the constrained state of IIIu . For 
the case of velocity direction aggregation, because the particles are in the system with a speed of u, the diffusion 
coefficient will be affected by the Ŵ effect, and the statistical effect of this case is also added to the equation. To 
brief, all of the statistical (constrained) effects in the constrained state of IIIu have been incorporated into Eq. (34).

Verification of Eq. (36). The derivation of Eq. (36) demonstrates that M is a relative vector, and the square 
of its first derivative is the higher-order infinitesimal of its second derivative. Also, the initial value of M could 
be a real, which is a relative density value relative to the T-domain. If the norm of the initial value (viz., the initial 
norm) is sufficiently small, Eq. (36) can be approximated as the form of Schrödinger equation without an exter-
nal field when the Ŵ effect is not considered. For example, while solving the diffusion problem of a 3-dimensional 
Gaussian wave packet formed by randomly moving particles, if the initial norm is less than 10−2 , the solutions 
of the two equations are nearly identical (Fig. 6a, and the relative difference is less than 1% ; note that the values 
of ‖M‖ which respect the mass density have been compared here). When the initial norm is sufficiently large, 
the particle swarm exhibits a certain degree of aggregation with time from the initial Gaussian wave packet. 
As shown in Fig.  6b, this aggregation is apparent at approximately t = 0.276 . As the initial norm increases, 
increasingly prominent aggregation processes appear. When the initial norms are 0.250, 0.500, 0.625 and 0.750, 
the radial distribution profile at the time of the most visible aggregation in each process (such as the red line in 
Fig. 6b) is taken to obtain the profile set, as shown in Fig. 6c (each profile is normalized according to the initial 
norm). It is speculated that when the initial norm increases to a certain value, a completely nondiffusive particle 
swarm may arise. Consequently, we have

and M does not vary with time t  at this point. In the case of spherical symmetry, the boundary conditions of 
Eq. (38) can be given by

(34)−
�Ŵ2

2m

∞
∑

k=1

[

1

k
· ∇2R(M, k)

]

.

(35)−
�Ŵ2

2m eM

[

∇2M − T2(M)
]

,

(36)i
∂M

∂t
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�Ŵ2

2m eM

[

∇2M − T2(M)
]

.
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(38)∇2M − T2(M) = 0,
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where r is the distance to the spherical center; rc is the radius of inner boundary; re is the radius of external 
boundary; Mc is a density constant. Then, the analytical solution can be obtained by solving the simultaneous 
equations of Eqs. 38 and 39:

See Part 3 of the Supplementary Information for the detailed Mathematica code of the solution process. Thus, 
given rc =

1

6000
 , re = 30 and Mc = 3+ i , the radial distribution of the mass density ( ‖M‖ ) projected on the 

plane can be obtained, as illustrated in Fig. 6d.
For the universe, one of the scenarios corresponding to the particles in the constrained state of IIIu is galaxies 

or galaxy clusters, which are affected only by gravitation. The results predicted by Eq. (40) are consistent with 

(39)
{

M(r) = Mc, r = rc,
M(r) = 0, r = re,

(40)M(r) = ln r − ln

[

r
(

rc − re e
Mc

)

rcre
(

eMc − 1
) + 1

]

+ ln

[

eMc (rc − re)

rcre
(

eMc − 1
)

]

.

Figure 6.  Prediction results ( ‖M‖ ) of our equations in different cases. (a), Differences in density between the 
values calculated with Eq. (36) and the form of Schrödinger equation when the initial norm is 10−2 . (b), 
Diffusion pattern of the Gaussian wave packet with time predicted by Eq. (36) when the initial norm is 

1

2
 . (c), 

Comparison of the radial distributions for different initial norms. (d), Radial distribution of the density 
(projected on the plane) integrated according to Eq. (40). (e), Comparison between the profiles of NFW and Eq. 
(40) ( rc =

1

6000
 , re = 30 and Mc = 3+ i ) on the scale of r < rs . (f), Logarithmic profile of (c) as r varies from 

0 ∼ 4.
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the observation results of relaxed galaxies and galaxy clusters (multiple images method). The NFW profile, as 
an empirical formula, is generally considered to be in good agreement with the observational results, which is 
given by

Equation (41) shows that the shape of the profile is not affected by the parameters ρc and rs . The NFW profile 
was obtained by adjusting the two parameters, and the result was compared to the profile obtained with Eq. (40). 
The two profiles are almost consistent within the scale radius of rs (Fig. 6e). Therefore, Eq. (40) is in good agree-
ment with the observational results of relaxed galaxy clusters within rs , as mentioned in previous  researches11,12; 
however, Eq. (40) is not consistent with the results in the range r > rs . It is speculated that the inconsistency of 
these peripheral regions occurs because these galaxy clusters are not in completely nondiffusive states (diffusion 
is extremely slow when galaxy clusters are in these “relaxed” states because the principle masses are almost in 
nondiffusive states). The trend displayed in Fig. 6f shows that when the initial norm increases to a certain value, 
the radial distribution profiles of particle swarms diffusing from Gaussian wave packets in the range of r > rs 
are consistent with the observation results of the gravitational lens method. Furthermore, there are no cuspy 
problems emerging from Eq. (40). The central part of the particle swarm described by Eq. (40) can be a structure 
with a specific volume and a finite concentration. The peripheral distribution forms a stable “shell” to protect 
the central structure from diffusion.

Traditionally, the formation of such a mass distribution of relaxed galaxies or galaxy clusters is the result of 
gravitations. However, there is no interaction in the particles in the constrained state of IIIu described in Eq. 40, 
which generates the same effect. A previous  study6 proved that particles in the constrained state of IIIu also 
experience the effects of special relativity. In addition, such particles can produce nondiffusive particle swarms 
of different scales. Accordingly, it is speculated that galaxies or galaxy clusters (at least dark matter halos) can 
be formed by these stochastic-constrained particles. In these constrained states, particles have fewer degrees of 
freedom in denser domains. And the apparent phenomenon of universal gravitation occurs between domains 
with fewer degrees of freedom and domains with more degrees of freedom. When randomly moving particles 
produce nondiffusive particle swarms, these particle swarms can also be regarded as particles with higher masses 
and can also produce larger nondiffusive particle swarms. Moreover, particles with higher masses move more 
slowly. If the universe is composed of such particles, at the micro level, there may be faster communication 
modes, and quantum entanglement and other fast communication phenomena are expected to be explained. At 
the macro level, the whole universe is fractal and the multi-body motion problems may be resolved by solving 
the generalized diffusion equation of their parent environment.

Conclusions
Previous studies have focused on the overall behavior of randomly moving particle swarms. However, the char-
acteristics of stochastic-constrained particle swarms that form ubiquitously in these swarms remain oblivious. In 
these special particle swarms, certain particular phenomena, such as the velocity or location aggregation effects, 
need to be considered. Although general relativity describes the influence of mass on space-time or motion, it 
does not give a complete diffusion equation. This study demonstrated a generalized diffusion equation for ran-
domly moving particles in the constrained state of IIIu observed from their parent particle swarm. When the 
norm of the initial value is small, the equation can be approximated as the form of Schrödinger equation; when 
the norm is large, the equation can be used to describe the aggregation process of particles. Although our model 
describes a noninteracting particle swarm, it encompasses the apparent phenomena of universal gravitation.

In the more general case, i.e., in the third type of general constrained state, we can divide the whole system 
into countless fragments according to the time and domain. Each fragment can be approximated as in the con-
strained state of IIIu . We utilize Eq. (36) to determine the results for each segment and splice them together. 
Thus, the whole problem of the third type of general constraint can be solved.
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All data generated or analysed during this study are included in this published article and its supplementary 
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