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Uncertainty in vulnerability 
of networks under attack
Alireza Ermagun 1*, Nazanin Tajik 2 & Hani Mahmassani 3

This study builds conceptual explanations and empirical examinations of the vulnerability response 
of networks under attack. Two quantities of “vulnerability” and “uncertainty in vulnerability” are 
defined by scrutinizing the performance loss trajectory of networks experiencing attacks. Both 
vulnerability and uncertainty in vulnerability quantities are a function of the network topology and 
size. This is tested on 16 distinct topologies appearing in infrastructure, social, and biological networks 
with 8 to 26 nodes under two percolation scenarios exemplifying benign and malicious attacks. 
The findings imply (i) crossing path, tree, and diverging tail are the most vulnerable topologies, (ii) 
complete and matching pairs are the least vulnerable topologies, (iii) complete grid and complete 
topologies show the most uncertainty for vulnerability, and (iv) hub-and-spoke and double u exhibit 
the least uncertainty in vulnerability. The findings also imply that both vulnerability and uncertainty 
in vulnerability increase with an increase in the size of the network. It is argued that in networks with 
no undirected cycle and one undirected cycle, the uncertainty in vulnerability is maximal earlier in 
the percolation process. With an increase in the number of cycles, the uncertainty in vulnerability is 
accumulated at the end of the percolation process. This emphasizes the role of tailoring preparedness, 
response, and recovery phases for networks with different topologies when they might experience 
disruption.

From the six handshakes  rule1,2 and the random graph  theory3 to the theory of evolving  networks4, much research 
in network science is grappling with comprehending the nexus of network structure and function. This, in part, is 
due to the need to understand the overall system’s response under peculiar circumstances. Malicious and random 
attacks induced by nature or humans are pertinent  examples5–7. As our daily lives depend on the functioning of 
networks ranging from infrastructure (e.g., power grids, transport, gas, water) to social (e.g., communication, 
social media) and biological (e.g., neural, metabolic), research has proliferated to examine the vulnerability of 
networks under  percolation5–16.

Vulnerability is critical when pondering on the ability of a network to provide continuity in its operation. It 
refers to the magnitude of network performance loss relative to its pre-disruption performance in the presence of 
disruptions and the absence of response  resources17. Recent events including the spread of COVID-19 through 
individuals over the networks of contacts in  202018, the shutdown of the New York City subway system following 
Hurricane Ida in  202119, and the power outage experienced by 2 million Texan households induced by a massive 
winter storm in  202120 have shown how the vulnerability response of systems exacerbates the effect of attacks on 
our daily lives, with severe social and economic consequences.

Much of the previous research has contributed to examining the vulnerability of networks through the lens 
of percolation in which links are removed or become non-functional uniformly at random or in order of their 
 degrees10–12,21–25. It includes sequential single link  removal16,26, sequential multiple link  removal6,7, randomly 
chosen multiple link  removal5,6, and targeted multiple link  removal5,6. Examples of examining the vulnerability 
of networks under random, targeted, and cascading  disruptions5,6,15 exist in traffic networks (e.g., Sioux Falls)6,16, 
public transit networks (e.g., bus and subway network in Beijing, China)7, power grid networks (e.g., Continental 
European Transmission Network)5, and complex networks (e.g., Erdős-Rényi and Barabási-Albert scale free 
networks)15. Little is known about the vulnerability response of networks with different topologies and sizes 
under different attack scenarios. This study is a natural continuation of previous research and contributes to 
understanding the vulnerability response of networks by (i) introducing the concept of “uncertainty in vulner-
ability” and (ii) visualizing and measuring the vulnerability of networks with different topologies and sizes when 
links are removed in order of their degrees. This happens by starting with the highest degrees and working down, 
then using the lowest degrees and working up while recalculating the residual network flow in each iteration.
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Here, our overarching goal is to equip scientists and practitioners with the knowledge and tools necessary to 
understand the vulnerability response of networks in relation to the network topology. We define two quanti-
ties to characterize the vulnerability response. The first quantity, V(G(N , L)) , is the vulnerability of a network 
under benign and malicious attacks and indicates how performance loss happens when links are removed by 
percolation. The second quantity, U(G(N , L)) , is the uncertainty in vulnerability and simply measures the area 
between the upper and lower bounds of performance loss trajectories. It implies the threshold of uncertainty in 
the network performance degradation. Both vulnerability and uncertainty in vulnerability quantities are a func-
tion of the network topology and size. This is tested on 16 distinct topologies appearing in infrastructure, social, 
and biological networks with 8 to 26 nodes under two percolation scenarios exemplifying benign and malicious 
attacks. Vulnerability and uncertainty in vulnerability quantities are established next, results and discussion 
follow, and materials and methods are described thereafter.

Vulnerability and uncertainty in vulnerability
We define network G = (N , L) as an undirected graph with |N | number of nodes connected by |L| number of 
links. Let us assume ϕ|L| as the network’s performance at the original state showing the total delivered demand 
throughout the network. Employing the bond percolation, we remove links in order of their betweenness cen-
trality under benign and malicious attack scenarios as depicted in Fig. 1. In the benign attack scenario, links are 
removed from lowest to highest, while links are removed from highest to lowest in the malicious attack scenario. 

Figure 1.  Performance loss trajectory of the ring and complete networks with six links. The figure represents 
the interdependencies among the network topology, redundancy level, and the delay in the network 
performance loss trajectory. Considering complete network topology, the disruption of three links (|J| = 3) does 
not change the performance of the networks from their original performance and ϕ|L|−|J| = ϕ|L| . We draw a 
similar conclusion for ring network topology with the disruption of one link.
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The betweenness centrality of links is recalculated following each removal in both scenarios as the network topol-
ogy and betweenness centrality of links does not necessarily remain identical. Departing from the original state, 
ϕ|L|−|J| becomes the network performance after the elimination of |J| number of links, where J ⊆ L is the set of 
disrupted links. Mathematically, we explain the general form of network flow models to calculate the network 
performance ϕ|L|−|J| in Materials and Methods.

Following the disruption of ith link, two regular conditions emerge:

• ϕ|L|−i = ϕ|L| : The network’s performance is unaffected by the attack if the total delivered demand through 
the network equals the total delivered demand at the original state.

• ϕ|L|−i < ϕ|L| : The network’s performance deteriorates by the attack, and the total delivered demand through 
the network is less than the total delivered demand at the original state. A singular condition is ϕ|L|−i = 0 , 
when the total delivered demand equals zero, and the network is completely disrupted.

A peculiar condition is when ϕ|L|−i > ϕ|L| and it might happen when the network’s performance is improved 
by the attack. A pertinent example is Braess’s  paradox27. Here, we do not exercise this condition as we assume 
a uniform fixed link cost and uniform demand. This assumption, however, is not restrictive as our algorithm 
generates two non-inferior trajectories that postulate the performance bounds under benign and malicious 
attacks. These proposed bounds encompass the performance loss trajectory of network topologies with different 
link characteristics.

Equation (1) mathematically examines the relative performance of the network, where �(i) ranges from 0 to 1.

When �(i) = 1 , the network consists of redundant links, and their removal does not lead to performance loss. 
Equation (2) measures the redundancy of the network, where |L| is the cardinality of the set of operational links 
at the original state, |J| is the cardinality of the set of disrupted links, and H is any possible set of disrupted links 
in network G . Simply, |J| shows the maximum number of links that can be disrupted within network G without 
deteriorating the original state performance, and J ⊆ L.

The following considerations are important:

• The maximum value of Re(G(N , L)) equals one. This is obtained when |J| = 0 or the network has no redun-
dancy.

• The minimum value of Re(G(N , L)) equals lim|N |→+∞

(

1− |N |−2
|N |

)

≈ 0 . This is obtained when network G 
is a complete network with a considerably large set of nodes or a high redundancy level.

Following the relative performance and redundancy definition, we formally define vulnerability under benign 
and malicious attacks in Eqs. (3) and (4), where �b is the relative performance in the presence of the benign 
attack and �m is the relative performance in the presence of the malicious attack in network G with |L| number 
of links. Sb is the area below network performance loss trajectory under benign attack and Sm is the area below 
network performance loss trajectory under malicious attack.

Immediately, the uncertainty in vulnerability can be introduced by Eq. (5). This is the link-normalized area 
between performance loss trajectories under benign and malicious attacks. It represents the uncertainty in vul-
nerability response when the network experiences random attacks falling between two extreme attack boundaries. 
This quantity is always non-negative as Sb > Sm and Vm(G(N , L)) > Vb(G(N , L)) . As �m(i) ≤ �(i) ≤ �b(i) , it 
can simply be proved that Vm(G(N , L)) ≤ V(G(N , L)) ≤ Vb(G(N , L)).

(1)�(i) =
ϕ|L|−i

ϕ|L|

(2)Re(G(N , L)) = 1−
|J|

|L|
, J ⊆ LandJ = max

ϕ|L|−|H|=ϕ|L|
|H|

(3)

Vb(G(N , L)) = 1−
Sb

|L|

Sb =

|L|
∑

i=0

(�b(i)+�b(i + 1))

2

(4)

Vm(G(N , L)) = 1−
Sm

|L|

Sm =

|L|
∑

i=0

(�m(i)+�m(i + 1))

2

(5)U(G(N , L)) =
Sb − Sm

|L|
= Vm(G(N , L))− Vb(G(N , L))
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Results
Vulnerability under attacks. We visualize the performance loss trajectory of network disruptions for 16 
topologies with different sizes in physical, social, meteorological, and biological systems documented in Sup-
plementary Information I. We depict the disruption trajectory from the original state to the complete disruption 
when the network experiences an attack for each topology. Many attack scenarios are possible. However, all 
attack scenarios fall in a range limited by two extreme scenarios of malicious and benign forming the lower and 
upper boundaries as formally established in Supplementary Information II. The malicious and benign attack 
scenarios are respectively linked to the maximum and minimum performance loss rate in each link removal step. 
We employ both attack scenarios on a range of network sizes from 8 to 26 nodes. Although this range is noted in 
existing analysis of actual networks with examples of transport  networks28,29, gas  networks30, power  networks31, 
and water  networks32, it is selected to exemplify how vulnerability and uncertainty in vulnerability is a function 
of the size of the network. We document the generalization of our findings for 16 network topologies with more 
than 26 nodes in Supplementary Information II. The propositions posed in Supplementary Information II utilize 
mathematical induction and proof by contradiction to estimate the bounds of network performance deteriora-
tion when network size goes to infinity. This assures the consistency of our conclusions regardless of the network 
size. Figure 2 visualizes the trajectory of network disruptions with 8 nodes. A complete set of trajectories are 
documented in Supplementary Information III.

Figure 3 depicts the vulnerability of sixteen network topologies with 8–26 nodes. Three observations are 
noted. First, complete and matching pair topologies have almost the least vulnerability regardless of the net-
work size. Their vulnerability quantity ranges between 0.43 and 0.47 depending on the size of the network. The 
opposites are tree, crossing path, and diverging tail topologies with the most vulnerability. Their vulnerability 
quantity ranges between 0.77 and 0.90 depending on the size of the network. It means the difference between 
the topology of networks can result in up to 2 times more vulnerable systems, accentuating the role of topology 
in the vulnerability of networks. Second, the network experiences an increase in vulnerability with an increase 
in the size of the network, although the rate of escalation is a function of the topology. The vulnerability of com-
plete grid, central ring, converging tail, and double u increases with the highest rate of 32.5%, 31.5%, 31.5%, and 
30.0%, respectively when the number of nodes increases from 8 to 26. Hub-and-spoke and matching pair, quite 
the opposite, manifest the lowest rate of change in their vulnerability with an increase in the size of the network. 
The vulnerability of hub-and-spoke and matching pair topologies increases with a rate of 2.6% and 4.0% when 
the number of nodes enlarges from 8 to 26. Third, by nature, the vulnerability of the random topology responds 
differently to the size of the network as its rewiring follows a random probability distribution. The random topol-
ogy consistently dwells amongst low vulnerable topologies, particularly when its rewiring probability is greater 
than 0.5. Propositions 1–5 in Supplementary Information II adopt these observations to prove the applicability 
of our findings by mathematical induction for networks of sizes greater than 26 nodes.

A similar examination on uncertainty in vulnerability leads to conclusive findings derived from Fig. 4. First, 
hub-and-spoke, double u, and ring topologies have the lowest uncertainty in vulnerability, regardless of the size 
of the network. Their uncertainty in vulnerability quantity ranges between 0 and 0.22 depending on the size 
of the network. On the contrary, the uncertainty in vulnerability of complete grid topologies ranges from 0.26 
to 0.51, depending on the size of the network. Ignoring the hub-and-spoke topology with no uncertainty in 
vulnerability, the difference between the topology of networks can result in more than 2 times more uncertain 
systems. Second, like the pattern detected in vulnerability trajectories, the network experiences an increase in 
the uncertainty in vulnerability with an increase in the size of the network. However, the rate of escalation is a 
function of the topology. The uncertainty in the vulnerability of diamond and double u increases with the highest 
rate of 178.4% and 128.8%, respectively, when the number of nodes increases from 8 to 26. Hub-and-spoke and 
single depot topologies manifest the lowest rate of change in their uncertainty in vulnerability with an increased 
rate of 0% and 17.4% when the number of nodes enlarges from 8 to 26. A comparison between vulnerability and 
uncertainty in vulnerability reveals that (i) the increase rate in uncertainty in vulnerability is significantly more 
than the increase rate in vulnerability when the network size increase and it is not topology-dependent, (ii) the 
hub-and-spoke topology experiences the least increase in vulnerability and no changes in uncertainty in vulner-
ability with an increase in the size of the network, and (iii) the complete topology exhibits the most vulnerability 
and uncertainty in vulnerability. Our conclusions are drawn under the link percolation assumption, while the 
node percolation can be more debilitating in certain instances. For example, the hub-and-spoke topology is 
extremely vulnerable to an attack on the hub node. Proposition 6 in Supplementary Information II adopts these 
examinations and uses proof by induction to generalize our findings for networks of sizes greater than 26 nodes.

Uncertainty in vulnerability distribution. We argue that uncertainty in vulnerability is not a uniform 
area and is a function of the topology, as observed in Fig. 2, and the size of the network. This happens due to an 
unequal difference between performance loss under benign and malicious attacks following each link removal. 
An illustrative example suffices. Looking at the performance loss trajectory of the complete topology depicted 
in Fig. 2, it is noticed that both trajectories overlap earlier in the percolation process. The uncertainty in vulner-
ability, therefore, equals zero. Moving forward in the percolation process, a sudden gap is created, showing the 
difference between the performance loss when the complete network is under benign and malicious attacks. The 
gap widens but eventually narrows as more links are removed from the network. Mathematically, it is calculated 
by Eq. (6). Here, �b(i) is the network performance after the ith link is disrupted under the benign attack, and 
�m(i) is the network performance after the ith link is disrupted under the malicious attack.

(6)R(i) = �b(i)−�m(i)i = 1, . . . , |L|
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Figure 5 shows the trajectory of R(i) for different network topologies with 8–26 nodes. Two observations 
are noted. First, the rate of change reaches its maximum at the beginning of the percolation process when the 
number of disrupted links is approximately equal to 5 for network topologies with no undirected cycle. Similar 

Figure 2.  Disruption trajectory of 16 network topologies with 8 nodes. The x-axis represents the number of 
removed links. The y-axis represents the normalized network performance. Three observations are noted. First, 
topologies with no redundancy, such as Diverging Tail, Tree, Crossing Path, and Hub-and-Spoke, follow similar 
disruption trajectories with no delay in network performance devolution. For these topologies Re(G(N , L)) 
equals 1. Second, topologies with one undirected cycle, such as Central Ring, Converging Tail, Ring, and 
Double U, have one unit of delay in network performance degradations. After disconnecting the cycle, they 
follow disruption trajectories like the topologies with no redundancy. The redundancy measure for such 
networks equals |N |−1

|N |
 . Third, in the presence of a malicious attack, the increase in the minimum number of 

undirected cycles in the network increases delays in the network performance degradations at the beginning of 
the disruption process. The minimum number of cycles in a network equals the minimum existing node degree 
in the network minus one. The number and length of delays in the middle of the disruptions process depends, 
respectively, on the existence of nodes with a minimum degree greater than two in the residual network.
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but not identical, the rate of changes reaches its maximum when the number of disrupted links is approximately 
6 for network topologies with one undirected cycle. It means one undirected cycle does not affect the trajectory 
of R(i) , but shifts it forward by one link. Second, as the number of cycles increases, the maximum rate of change 
shifts, meaning that the maximum uncertainty about the decrease in the network performance would occur 
later in the percolation process.

Vulnerability and uncertainty in vulnerability bivariate analysis. We prove that the vulnerability 
quantity falls into the interval (0.33, 1) and the uncertainty in vulnerability quantity falls into the interval [0, 0.66) , 
regardless of the network’s topology. The proof is represented in Supplementary Information II. Immediately, we 
define four domains clustering network topologies with (i) High vulnerability-Low uncertainty in vulnerability 
(HL), (ii) High vulnerability-High uncertainty in vulnerability (HH), (iii) Low vulnerability-Low uncertainty 
in vulnerability (LL), and (iv) Low vulnerability-High uncertainty in vulnerability (LH). Figure 6 depicts the 
results for vulnerability under malicious attack. We draw similar results for vulnerability under benign attacks 
in Supplementary Information IV.

In small-sized networks with 8 nodes, it is observed that all topologies are in either LL or HL, with the com-
plete grid topology as an exception. This means the uncertainty in the vulnerability of networks is low regardless 

Figure 3.  Vulnerability of networks with different topologies and sizes.

Figure 4.  Uncertainty in the vulnerability of networks with different topologies and sizes.
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of the topology. In particular, it is observed that (i) diverging tail, crossing path, tree, double u, ring, central ring, 
converging tail, grid, and random topologies locate in the HL region, (ii) diamond, scale-free, matching pair, 
single depot, complete, and hub-and-spoke fall in the LL region, and (iii) complete grid resides in the LH region. 
No network topology is detected in the HH region for networks with 8 nodes. With an increase in the size of the 
network, a steady increase in both vulnerability and uncertainty in vulnerability is recognized to the extent that 
no network topology remains in the LL region. The rate of escalation, however, depends on the network topol-
ogy. The lowest rate goes to hub-and-spoke with a slight increase in vulnerability and no change in uncertainty 
in vulnerability when there is an increase in the size of the network. The highest shift is noticed for the diamond 
topology, which moves from the LL region to the HH region.

Diverging tail, crossing path, tree, double u, ring, central ring, converging tail, and single depot remain in 
the HL region. Still, the vulnerability and uncertainty in vulnerability increase with an increase in the size of the 
network. Grid, complete grid, and diamond move to the HH region as the network size increases. This shift is 
due to the ascending increase in the number of links with an increase in the size (i.e., number of nodes) of the 
network as illustrated by the β measure in the following:

• For the grid topology, β = 2− |N |
n(|N |−n) where n < |N | ∧ n(|N | − n) = |N | . As the number of nodes |N | 

increases from 4 to infinity, β increases from 1 to 2, indicating an ascending increase in the number of links.
• The complete grid network topology closely resembles the complete topology. Mathematically, we show the 

resemblance by measuring the difference between β of complete and complete grid topologies. 

Figure 5.  Trajectory of R(.) for 16 network topologies with 8 to 26 nodes but hub-and-spoke as its performance 
loss trajectory under benign attack is the same as its performance loss trajectory under malicious attack. (a) 
Regardless of topological characteristics, the rate of change in networks with no cycle follows a polynomial 
trajectory with a degree of four. (b) The existence of one cycle would not change the regression function but shift 
the trendline one unit forward. (c) The network topologies follow polynomial functions with the degree of five. 
As the number of cycles increases, the skewness of the regression function decreases. Among networks with the 
number of cycles ≪

∑|N |
i=3

(

|N |
i

)

 , complete grid networks have the lowest skewness. (d) The network topologies 
follow polynomial trendlines with a degree of five. The completeness of network topology means negative 
skewness.
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Figure 6.  Bivariate analysis between vulnerability and uncertainty in vulnerability measures for different 
topologies and network sizes. The correlation falls into the top left area with high vulnerability and low 
uncertainty in vulnerability (HL region) when: (i) the number of cycles equals zero or the network redundancy 
Re(G(N , L)) = 1, or (ii) the number of cycles equals one or the network redundancy Re(G(N , L)) =

|N |−1

|N |
 . As 

complete and matching pair networks manifest, the vulnerability measure decreases when the number of cycles 
increases and the correlation approaches the bottom right area with low vulnerability and high uncertainty 
in vulnerability (LH region). The decrease in the network size when |N | ≤ 12, decreases the uncertainty in 
vulnerability measure and moves the correlation into the bottom left area with low vulnerability and low 
uncertainty in vulnerability (LL region). However, when |N | ≥ 14 , the fewer number of links than PN2  , the 
higher the vulnerability measure of the network, and the correlation falls into the top right area (HH region).
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�β = βComplete − βGridComplete =
|N |(|N |−1)

2|N |
−

8n(|N |−n)−6|N |
2|N |

=
|N |
2 − 2−4n2

|N |
− n+ 5

2 . K n ow i n g  t h at 

(|N | − n) = |N | is held for complete grid topologies, ∂�β
∂|N |

= |N |2 + 8|N | + 8|N |n− 4 > 0, |N | ≥ 2 demon-

strates that the function is strictly ascending and ∂
2�β

∂|N |2
= 8n2−4

|N |3
> 0, n > 1 demonstrates that the function 

is strictly concave. As the network size goes to infinity, the complete grid topology deviates from the complete 
topology and approaches the grid topology as lim|N |→∞ βGridComplete = 4 and lim|N |→∞ βGrid = 2.

• For the diamond topology, we notice that the network size increases the number of redundant links by (k − 1) , 
where |N | = 4k − 1 , and β = 1+ k

4k−1.

A similar pattern is noticed for the scale-free network topology. The scale-free topology switches from LL to 
the HH region as the network size increases. We speculate that the shift is due to the positive correlation between 
the number of hubs and the size of the network in the scale-free topology. An increase in the number of hubs 
increases the disruption scenario alternatives and the uncertainty in vulnerability. Matching pair, complete, 
and random network topologies move to the LH region as they experience a higher increase in uncertainty in 
vulnerability than in vulnerability with an increase in the size of the network.

Discussion
Without in-depth knowledge of the network response under attacks, there is a risk of underestimating the 
stochasticity of disruptive impacts on the network performance. This might cause a loss of control over the 
network devolution trajectory, and makes room for unexpected cascading failures like what was induced by a 
massive winter storm in Texas in 2021. Understanding the complexity of network response under attack calls 
for a holistic approach to visualize and quantify the vulnerability trajectory of networks when experiencing the 
loss of performance. We have introduced two quantities of vulnerability (V) and uncertainty in vulnerability 
(U) , and visually examined the transition of complex networks from an original performance state to a complete 
disruption for sixteen distinct topologies. Our selected topologies exist in biology, economy, sociology, and civil 

Figure 6.  (continued)
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infrastructures. Without loss of generality, we have examined networks with 8 to 26 nodes to ponder the nexus 
of vulnerability response and the size of the network.

Ranking network topologies by their vulnerability, we have determined crossing path, tree, and diverging 
tail are the most vulnerable networks. At the same time, complete and matching pairs exhibit almost the lowest 
vulnerability under the malicious attack. The largest gap in vulnerability exists between tree and complete topolo-
gies to the extent that the vulnerability of the tree topology is almost 2 times the complete topology. We have also 
determined that the vulnerability of networks increases with an increase in the size of the network and notice 
a slight change in the vulnerability ranking of networks. Ranking network topologies by their uncertainty in 
vulnerability have indicated a low correlation between our two quantities. Ipso facto, uncertainty in vulnerability 
is not necessarily a function of vulnerability when different topologies are considered. We have recognized that 
complete grid and complete topologies show the most uncertainty in vulnerability, unlike hub-and-spoke and 
double u. Similar to the vulnerability, uncertainty in the vulnerability of networks increases with an increase 
in the size of the network. This finding has practical implications in network inauguration or expansion as it 
provides insights on (i) how the vulnerability of a network topology changes with an increase in the size and (ii) 
how the vulnerability of a network can be regulated by shepherding the network growth into the desired topology.

The findings have demonstrated that the vulnerability response of networks to an increase in size falls into 
two categories depending on the network’s topology. For the first category, vulnerability increases at a faster rate 
than the corresponding uncertainty in vulnerability. The hub-and-spoke and single depot topologies are the only 
examples. The uncertainty in vulnerability of the hub-and-spoke topology equals zero regardless of the network 
size. For the second category, uncertainty in vulnerability increases at a faster rate than the corresponding vulner-
ability. The remaining network topologies, except the random topology, fall in this category. As suggested by its 
name, random is the only topology with unstable behavior. Although the uncertainty in vulnerability increases 
with an increase in the size of random networks, their vulnerability fluctuates and is not a function of the size.

Depending on the network topology, the structure of the residual network may or may not change under 
percolation. For instance, the tree and ring topologies maintain and lose their configuration, respectively, under 
percolation in which links are removed at random or in order of their degrees. A tree network with 8 nodes and 
7 links shrinks to two tree topologies following a link removal. However, a ring network with 8 nodes and 8 links 
metamorphoses into a tree network with 7 links following a link removal. This leads the performance loss trajec-
tory of networks to diverge or converge under benign and malicious attacks over the percolation process, forming 
a heterogeneous uncertainty in vulnerability. It means the area between the upper and lower bounds of perfor-
mance loss trajectories does not shrink or expand continually when links are removed in order of their degrees. 
We have argued that the contour of the area is a function of the network topology, and the number of cycles 
explains the heterogeneous uncertainty in vulnerability formed over the percolation process. In networks with 
no undirected cycle, the uncertainty in vulnerability is maximum earlier in the percolation process. Diverging 
tail, tree, and crossing paths are three examples. Interestingly, they also exhibit the highest vulnerability. With 
an increase in the number of cycles, the uncertainty in vulnerability is accumulated at the end of the percolation 
process. An extreme example is detected in complete, matching pair, and random topologies. Interestingly, they 
also exhibit the lowest vulnerability. Hence, we have indicated a negative correlation between the vulnerability 
and network circuity estimated by β measure. It means an increase in the number of cycles reduces the vulnerabil-
ity of networks. We have tentatively argued that a network is less vulnerable with a considerably high β. On the 
contrary, the rate of growth in the number of links over the number of nodes 

(

∂β
∂|N |

)

 is positively correlated with 
the uncertainty in the vulnerability of networks.

This immediately has practical implications. Not only are tree, crossing path, and diverging tail the most 
vulnerable topologies, but they also exhibit the highest uncertainty in performance loss earlier in the process 
when they experience a random attack. This emphasizes the time sensitivity of maintenance and recovery of tree, 
crossing path, and diverging tail topological systems when they are under attack and the role of preparedness 
to avoid the spread of the attack. We take post disruption casualty evacuation as a pertinent example of imple-
menting these implications in transport networks. Here, the search and rescue teams can identify the affected 
areas with topologies resembling tree, crossing path, and diverging tail as more probable to contain trapped 
residents. The reason is that all routes out of the affected areas can be disrupted faster than expected. Relying on 
such inferences, the teams prioritize the emergency deployment across these areas. Conversely, complete and 
matching pair networks are the least vulnerable topologies but exhibit a wider range of uncertainty in vulner-
ability at a later stage under a random attack. This is alarming. We analogize them to dormant volcanoes. They 
might not cause any concern when they are attacked, but they experience a remarkable performance loss as the 
attack continues and links become unfunctional one by one. This emphasizes the role of protection during the 
attack. Protecting transport networks under a limited budget provides another pertinent example of using these 
inferences in the interest of infrastructure network resilience. Planners and emergency managers can identify 
the minimum number of paths__ if protected__ that can maintain the transport network performance under 
random attacks. The optimal protection policy enhances the evacuation procedure and reduces the subsequent 
humanitarian logistics costs.

Potential avenues remain for future research leading to intriguing additional questions that connect the 
theoretical explorations in this work to real-world networks in specific domains. First, we have considered net-
works under uniform demand, while most real-world networks exhibit demand patterns with higher-density 
axes over both time and space and reflect underlying demand patterns. Although our analysis provides a basis 
for comparison, it might underestimate or overestimate vulnerability or exaggerate it for links intended for 
higher flows than links designed to ensure basic access. An extension of this work would consider expanding the 
notion of uncertainty in vulnerability to incorporate variability in demand patterns (e.g., best case attack under 
most favorable demand, worst case attack under least favorable demand). Second, we have adopted the linear 
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programming for maximum throughput allocation, as flow allocation rules in most networks tend to follow some 
sort of optimal principle. In certain networks, however, flow allocation follows significantly different principles, 
such as user-optimized flow rules in congestible transport networks. Third, we have considered networks with 
unlimited link capacity, whereas, in practice, capacity constraints often lead to progressive failure. The existence 
of capacitated links affects the post-disruption flow redistribution and changes the performance degradation 
trajectory and, consequently, the vulnerability bonds. While the new bounds fall into our proposed vulnerabil-
ity bounds, their patterns will provide information about the trajectory of uncertainty in the vulnerability of 
capacitated networks, including the magnitude and number of sudden performance degradations. Fourth, we 
have produced our analysis under the link percolation assumption. While much of the literature has focused on 
link percolation, equally important is node percolation, which would debilitate many links simultaneously. This 
is especially acute for certain topologies such as hub-and-spoke networks, where an attack on hub nodes could 
make an entire network unfunctional.

Materials and methods
Network performance formulation. The proposed formulation maximizes the total delivered demand 
in the residual network. In a network with |N| nodes, there is a total of P|N|2 = |N|(|N| − 1) origin–destination 
pairs. Assuming one unit of demand is transferred between each origin–destination pair, the total delivered 
demand equals |N|(|N| − 1) . More precisely, each node i ∈ N is the origin for each |N| − 1 other nodes sending 
one unit of demand to each destination. This yields to |N| − 1 units of demand production in total. Each node 
i ∈ N is also the destination of |N| − 1 other nodes receiving one unit of demand. This yields to |N| − 1 units of 
demand attraction in total. As a classroom example, consider a ring network with |N| = 4 and |L| = 4 . The total 
origin–destination pairs and the total delivered demand equal 12. The total demand production for each node 
equals 3, as there are 3 destination nodes for each origin. Similarly, the total demand attraction for each node 
equals 3, as there are 3 origin nodes for each destination.

As we assume one unit of demand is transferred between each origin–destination pair, the total flow passing 
each link is the same as its betweenness centrality. We represent OD as the set of origin–destination pairs, ωij as 
the total delivered flow from origin i ∈ N to destination j ∈ N− {i} , and fijhk as the flow of origin–destination 
pair 

(

i, j
)

∈ OD that passes link (h, k) ∈ L.

Equation (7) represents the objective function and maximizes the total delivered demand through the short-
est unblocked paths after eliminating |J| links. M is a sufficiently big scalar that assigns high weights to the total 
delivered flow to prevent feasible but inapplicable solutions. We explain it for a hub-and-spoke network with 
three nodes and six origin–destination pairs (i.e., OD = {(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)} ). The expected 
maximum delivered demand 

∑

(i,j)∈OD ωij equals P32 = 6 , and the total network flow equals 
∑

(h,k)∈L fijhk = 8 , 
where the flow on each link in L = {(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)} equals 2 . However, when M = 1 , the 
model excludes this solution as it results in a negative objective function (−2) . The model returns zero total 
delivered demand and zero total network flow as the optimal solution, resulting in a better objective function 
(0) . We address it by setting the value of M as |L| . In our hub-and-spoke network example, the model returns the 
first solution as optimum with the objective function value of 28.

Equation (8) sends one unit of demand from each origin, passes it through transshipment nodes, and delivers 
it to each destination. Equation (9) delivers no more than one unit of demand from an origin to a destination, 
and Eq. (10) enables each operational link (h, k) ∈ L − J to pass total network flow at once and disables each 
eliminated link (h, k) ∈ J to pass any flow across the network. As the model has no binary or integer variables, its 
solution time would decrease from exponential to polynomial. Equation (11) calculates the network performance 

(7)
maximum

�
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ϕ|L|−|J| , which is the residual network after the elimination of |J| links. We use the Dijkstra algorithm to find the 
maximum delivered demands through the shortest unblocked paths for large networks.

Vulnerability algorithm. Two greedy algorithms are proposed to explore the sequence of link removal 
procedures that respectively (i) maximizes the total unsatisfactory demand after the removal of each link, also 
called a malicious attack simulation, and (ii) minimizes the total unsatisfactory demand after the removal of 
each link, also called a benign attack. The input of each algorithm is the topological characteristics and the flow 
on each link at the original state. After removing a link, the flow is redistributed through the residual network. 
The procedure repeats until no link remains undisrupted. The Malicious-Benign Attack Simulation algorithm 
is as follow:

Data availability
The datasets used or analyzed during the current study will be available from the corresponding author on rea-
sonable request. Upon the acceptance (1) the authors will post data via a controlled repository and (2) all data 
will be available for re-use and redistribution, except for commercial use, with proper citations and acknowl-
edgement of the authors.
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