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Wavelet‑artificial neural network 
to predict the acetone sensing 
by indium oxide/iron oxide 
nanocomposites
Reza Iranmanesh 1, Afham Pourahmad 2, Danial Soltani Shabestani 3*, Seyed 
Sajjad Jazayeri 4, Hamed Sadeqi 5, Javid Akhavan 6 & Abdelouahed Tounsi 7,8

This study applies a hybridized wavelet transform‑artificial neural network (WT‑ANN) model to 
simulate the acetone detecting ability of the Indium oxide/Iron oxide  (In2O3/Fe2O3) nanocomposite 
sensors. The WT‑ANN has been constructed to extract the sensor resistance ratio (SRR) in the 
air with respect to the acetone from the nanocomposite chemistry, operating temperature, and 
acetone concentration. The performed sensitivity analyses demonstrate that a single hidden layer 
WT‑ANN with nine nodes is the highest accurate model for automating the acetone‑detecting 
ability of the  In2O3/Fe2O3 sensors. Furthermore, the genetic algorithm has fine‑tuned the shape‑
related parameters of the B‑spline wavelet transfer function. This model accurately predicts the 
SRR of the 119 nanocomposite sensors with a mean absolute error of 0.7, absolute average relative 
deviation of 10.12%, root mean squared error of 1.14, and correlation coefficient of 0.95813. The 
 In2O3‑based nanocomposite with a 15 mol percent of  Fe2O3 is the best sensor for detecting acetone 
at wide temperatures and concentration ranges. This type of reliable estimator is a step toward fully 
automating the gas‑detecting ability of  In2O3/Fe2O3 nanocomposite sensors.

Atmosphere pollution by volatile organic  materials1 is a serious problem that threatens environmental  protection2 
and human  health3. Hence, it is necessary to fabricate reliable sensing devices to make the environment safe and 
ensure human  health4,5. So far, different kinds of sensors such as  biosensors6,  electrochemical7, and  resonant7 have 
been designed for sensing purposes. The resistance-based gas detectors that utilize metal oxide semiconductors 
for gas sensing have been popular due to their simple operation, high sensitivity, and low  cost8–10.

The study conducted in 1962 is likely the first evidence that states absorption–desorption of gas on the metal 
oxide surface changes its  conductivity11. Changing the solid measurable properties, like its resistance due to the 
solid–gas interaction is the essence of fabricating the electrochemical gas  sensors12. Electrochemical sensors have 
a wide range of applications in the food processing  industry13, diagnosis of  disease14,  medicine15,16, monitoring 
toxic  substances17, and detecting explosive  residuals18 and environmental  contaminants19.

Acetone is a highly flammable organic compound irritating the skin, throat, nose, and  eyes20,21.
In recent decades, nanomaterials are used in solar  cells22, catalytic  reactions23, heat  exchangers24, wastewater 

 treatment25, energy  application26, and system  sensing27. A diversity of mainly nanosized metal oxides, including 
tungsten  oxide28, zinc  oxide29, cobalt  oxide30, iron  oxide31, copper  oxide32, bismuth  oxide33, samarium  oxide34, 
and indium  oxide35 have already been used to fabricate acetone-detecting sensors. The pure and composite 
forms of the latest one, i.e., indium oxide  (In2O3), have been suggested as a reliable sensor for detecting gaseous 
 acetone8,21,36–38.
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Experimental analyses are often expensive, time-consuming, and often contaminated with different levels 
of uncertainty. Therefore, it is a good idea to develop a model to estimate the acetone-detecting ability of the 
 In2O3-based sensors. To the best of our knowledge, neither empirical, semi-empirical, nor intelligent methods 
have been suggested to automate the acetone-detecting ability of the nanocomposite sensors. Consequently, 
the current research applies a combination of artificial neural networks (ANN) and wavelet transform to fully 
automate the acetone-detecting ability of the  In2O3/Fe2O3 nanocomposite sensors. The hybrid wavelet transform-
artificial neural network (WT-ANN) utilizes the B-spline wavelet as a transfer function in the hidden layer 
of the ANN. Since the B-spline wavelet can be readily reshaped, it improves the ANN’s ability to correlate a 
phenomenon with even a high non-linear nature. Furthermore, the WT-ANN topology has been well-tuned 
using the genetic algorithm and trial-and-error analysis. This scenario changes the WT-ANN structure and 
B-Spline shape and monitors the prediction accuracy to find the topology with the highest accuracy. Moreover, 
this well-tuned WT-ANN helps analyze the effect of nanocomposite chemistry, acetone concentration, and 
temperature on the sensor performance.

Experimental data for the acetone sensing by  In2O3/Fe2O3 nanocomposites
A reliable databank should be available to construct and validate  empirical39 and semi-empirical40 correlations 
and machine learning  methods41. Hence, this study has collected 119 datasets about the acetone-detecting ability 
of the  In2O3/Fe2O3 nanocomposite sensors from valid  references4,8,9,21. These laboratory-scale researches have 
monitored the sensor resistance ratio (SRR) of the  In2O3-based sensors in the air with respect to the acetone 
as a function of the nanomaterial chemistry, operating temperature, and acetone  concentration4,8,9,21. The 
ranges of independent  (Fe2O3 mole fraction in the nanocomposite sensor, operating temperature, and acetone 
concentration) and dependent (sensor resistance ratio) variables have been introduced in Table 1.

Figure 1 presents the histogram of independent and dependent variables gathered from the literature. This 
figure also reports the average and standard deviation (SD) of this collected database. Equations (1) and (2) have 
been utilized to calculate these statistical  features42.

here, V  and Vave are the variable and its average value. The number of available datasets has been shown by N.

Wavelet transform‑artificial neural network
Both machine and deep learning methods are trustful tools to conduct sensitivity  analysis43, parameter 
 forecasting44,  classification45, and  control46 purposes. As the most popular machine learning approach, an artificial 
neural network (ANN) can be constructed by combining several processing nodes (i.e., neurons or nodes) in 
some interconnected successive neuronic  layers47. The multi-layer perceptron (MLP) is a well-established ANN 
type that often includes two feedforward neuronic layers, namely hidden and  output48. Since the number of 
output nodes equals the number of dependent variables, it is always  known49. On the other hand, a suitable 
number of hidden nodes is often found by applying the trial-and-error technique.

The artificial neuron can be viewed as a combination of linear (L) and non-linear (NL) mathematical 
operations. The linear part (Eq. 3) combines the multiplication of the node’s entry vector (X) by the weight 
coefficients (W) and the bias (b).

The non-linear part is responsible for passing the linear part result through a specific equation, namely the 
transfer function (g). Equation (4) explains how the neuron’s output (out) has been achieved.

Indeed, the transfer function helps the neuron and artificial neural network to simulate non-linear problems. 
The main limitation of the MLP model is that it can only be equipped with some pre-defined transfer  functions50. 

(1)Vave =
N
∑

j=1

Vj/N

(2)SD =

√

√

√

√

√

j
∑

j=1

(

Vj − Vave
)2
/N

(3)L =
∑

WX + b

(4)Out = g(LP)

Table 1.  Acetone detecting ability of the  In2O3/Fe2O3 nanocomposite  sensors4,8,9,21.

Independent Dependent

Range of the  Fe2O3 content of 
nanocomposite (mole fraction) Range of temperature (K) Range of acetone concentration (ppm) Range of SRR (-)

0–1 453–563 8.5–1000 1.13–21
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The most widely-used transfer functions, like tangent and logarithm sigmoid and radial basis, are not non-linear 
enough to correlate highly non-linear problems precisely.

Combining the MLP and wavelet transform
Researchers have included the wavelet transforms in the MLP body as a transfer function to build the WT-ANN 
 model51,52. The B-spline wavelet is a function with tunable nonlinearity often used as a transfer function in the 
WT-ANN’s hidden layer (ghid)53. Equations (5) and (6) show the mathematical formula of the B-spline wavelet 
transfer function (BSWTF)54.

where α, β, and γ are the parameters related to the nonlinearity and shape of the BSWTF. The B-spline wavelet 
transfer functions with different α, β, and γ values have been depicted in Fig. 2. It can be observed that this 
function has enough nonlinearity to correlate even the most complex phenomena. Moreover, it is possible to 
engineer its shape by changing its shape-related  parameters55.

Estimating acetone detecting ability of the  In2O3/Fe2O3 sensor
Figure 3 presents the WT-ANN deployed to estimate the acetone-detecting ability of the  In2O3/Fe2O3 sensor as 
a function of nanocomposite chemistry, operating temperature, and acetone concentration. It can be seen from 
Fig. 3 that the constructed WT-ANN constitutes an input layer and two neuronic layers of hidden and output. 
These layers are fully interconnected in a feedforward manner. The hidden layer has the B-spline wavelet transfer 
function, while the output layer equips with the linear transfer function.

This figure states that the vector of independent variables (X) is fully connected to the hidden layer’s nodes by 
weighted links ( WI→H ). Some mathematical processes based on Eq. (7) have been imposed on the entry vector 
of X to the hidden layer to achieve the outlet vector ( HLout).

(5)ghid(x) =
√
aφ(ax/γ )γ exp (2π iβx)

(6)φ(k) =
{

1 k = 0

sin (πk)/πk k �= 0
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Figure 1.  Histograms of the  Fe2O3 content of nanocomposite sensors (A), operating temperature (B), acetone 
concentration (C), and SRR (D).
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The adjustable coefficients between the input and hidden layers are WI→H , a, and b. Equation (7) approves 
that the B-spline wavelet transfer function has been incorporated in the hidden layer of the WT-ANN.

Since the WT-ANN’s output layer has the linear transfer function, it is possible to achieve the predicted 
sensor resistance ratio (SRRpred) by multiplying the OutHL and the weighted connections between the output and 
hidden layers ( WH→O).

It should be noted that the WH→O shows the adjustable coefficients between the output and hidden layers.
All WT-ANN coefficients have been tuned during the cross-validation step employing an appropriate 

optimization  algorithm57,58. The literature has extensively explained the tuning procedure of the WI→H , WH→O , 
a, and  b51.

Results and discussions
Determining the best structure of the WT‑ANN
The BSWTF  parameters53 and the number of hidden  nodes51 are those structural properties of the WT-ANN that 
should be selected appropriately. This study uses the genetic  algorithm59 and the trial-and-error techniques to 

(7)OutHL = ghid
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∑
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}
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Figure 2.  The general shape of the B-spline wavelet incorporated in the WT-ANN model.
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find these two structural properties, respectively. The deviation between actual and predicted SRRs is an objective 
function that must be minimized to construct the WT-ANN appropriately. The root mean squared error (RMSE), 
absolute average relative deviation (AARD%), MAE (mean absolute error), and coefficient of regression  (R2) 
measure this deviation. Equations (9)–(12) express the formula of MAE,  R2, MSE, and AARD%,  respectively60,61.

The actual measurements, WT-ANN predictions, and average values have been shown by the superscripts 
of act, pred, and ave, respectively.

Simple flowchart of our study

Figure 4 is an understandable flowchart to explain the processes followed to design the well-tuned WT-ANN 
model for estimating the acetone detecting ability of the  In2O3/Fe2O3 sensors. This flowchart mainly includes 
three separate parts as follows:

 I. Constructing the WT-ANN model (green part)
 II. Five-fold cross-validation (red part)
 III. Comparing the WT-ANNs performance to select a model with the highest prediction accuracy (blue 

part)

This flowchart also has two internal and external loops for adjusting the BSWTF parameters and WT-ANN 
coefficients, respectively.
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The best WT‑ANN topology
It is obvious that at least one hidden node is required to build a WT-ANN with one hidden neuronic layer. 
Moreover, there is a rule of thumb to find the maximum allowable hidden nodes in the WT-ANN  body62. The 
literature states that the numbers of the cross-validation datasets (here, 101 samples) should be at least two times 
the model’s tunable  coefficients62. Therefore, the WT-ANN models may be built with a maximum of ten hidden 
nodes. Table 2 presents the highest accurate predictions obtained by different WT-ANN topologies differing 
with respect to the number of hidden nodes and BSWTF shape. The accuracy of the WT-ANN models over the 
cross-validation and testing groups and all database has been monitored by four statistical matrices. It can be 
concluded that the WT-ANN with α = β = 0.5 and γ = 1.0 and nine hidden nodes (highlighted by the gray color) is 
the highest precise model for estimating the acetone detecting ability of the  In2O3/Fe2O3 nanocomposite sensors.

Although Table 2 shows the best topology of the wavelet transform-artificial neural network, it is better to 
use the ranking analysis to approve this matter further. The ranking places of different WT-ANN structures in 
the development and validation stages have been depicted in Fig. 5. Equation (13) has been used to calculate the 
average rank of each WT-ANN system over the RMSE, MAE, AARD%, and  R2 indices.

The ranking analysis also supports nine hidden nodes, and α = β = 0.5 and γ = 1.0 is the best WT-ANN 
topology for simulating the acetone-detecting ability of the  In2O3/Fe2O3 nanocomposite sensors.

The learning algorithm’s performance to tune the coefficients of the optimum WT-ANN (i.e., W, a, and b) 
during the five-fold cross-validation has been illustrated in Fig. 6. This figure clarifies how the mean squared 
error (MSE) between the actual SRRs and their counterpart predictions by the WT-ANN continuously declines 
by increasing the number of optimizing tries (i.e., epoch). The observed MSE eventually reaches the desired 
value of 0.009 after ~ 750 epochs.

(13)Rank = round

(

4
∑

k=1

rank4/4

)

Table 2.  The best results obtained by the different topologies of the wavelet neural network.

Number of hidden nodes BSWTF adjusted parameters Database MAE R2 RMSE AARD%

1

α = 0.25 Cross-validation 2.1 0.57102 3.43 28.64

β = 0.50 Testing 1.42 0.79069 2.18 25.86

γ = 1.50 All samples 2 0.59666 3.27 28.22

2

α = 0.35 Cross-validation 1.94 0.61594 3.29 25.8

β = 0.35 Testing 1.93 0.80285 2.63 27.73

γ = 1.25 All samples 1.93 0.62769 3.2 26.09

3

α = 0.30 Cross-validation 1.24 0.86345 2.07 17.2

β = 0.20 Testing 0.97 0.92351 1.36 17.83

γ = 1.00 All samples 1.2 0.86869 1.98 17.29

4

α = 0.15 Cross-validation 0.98 0.91765 1.63 13.83

β = 0.40 Testing 1.23 0.80449 1.83 18.66

γ = 1.15 All samples 1.01 0.90767 1.67 14.56

5

α = 0.50 Cross-validation 1.03 0.9073 1.7 15.26

β = 0.45 Testing 1.49 0.79078 2.22 22.5

γ = 1.35 All samples 1.1 0.89266 1.79 16.35

6

α = 0.10 Cross-validation 1.01 0.92789 1.53 15.02

β = 0.75 Testing 1.16 0.86314 1.66 18.07

γ = 1.65 All samples 1.03 0.92094 1.55 15.48

7

α = 0.75 Cross-validation 0.8 0.95192 1.33 10.99

β = 0.65 Testing 0.8 0.91012 1.2 12.4

γ = 1.00 All samples 0.8 0.94828 1.31 11.2

8

α = 0.25 Cross-validation 0.73 0.95681 1.12 11.72

β = 0.50 Testing 1.31 0.85726 2.5 15.41

γ = 1.50 All samples 0.82 0.93552 1.41 12.28

9

α = 0.50 Cross-validation 0.7 0.95889 1.17 10.1

β = 0.50 Testing 0.69 0.95184 0.95 10.18

γ = 1.00 All samples 0.7 0.95813 1.14 10.12

10

α = 0.30 Cross-validation 0.8 0.92995 1.42 10.7

β = 0.20 Testing 1.07 0.96622 1.57 17.1

γ = 1.20 All samples 0.84 0.93518 1.44 11.67
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Utilizing visual inspection to track the WT‑ANN accuracy
Figure 7 introduces the histogram of residual error (RE) between actual and estimated SRRs in the cross-
validation and testing stages. The numerical values of this residual error can be obtained from Eq. (15).

This figure approves an excellent performance of the optimum WT-ANN model for monitoring the acetone 
sensing by the  In2O3/Fe2O3 nanocomposites. The built WT-ANN successfully predicts the sensor resistance ratio 
by the residual error ranges from -2 to 2.5. Moreover, this analysis states that 35 cross-validation and five testing 
samples have been estimated with a residual error equal to zero.

The predicted SRRs by the well-structured WT-ANN model versus their laboratory-measured values in the 
cross-validation and testing stages have been separately indicated in Fig. 8. This figure states that the deployed 
WT-ANN model estimates the actual SRR values with acceptable accuracy. This finding can be highlighted as 

(14)MSE =
∑N

j=1
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SRRact − SRRpred
)2

j
/N

(15)RE =
(
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j
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B-spline wavelet shape.

0 100 200 300 400 500 600 700

Epoch

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

M
SE

Observed

Desired

Figure 6.  Decreasing the MSE by the learning algorithm in the cross-validation stage of the WT-ANN.



8

Vol:.(1234567890)

Scientific Reports |         (2023) 13:4266  | https://doi.org/10.1038/s41598-023-29898-x

www.nature.com/scientificreports/

a confirmation of the excellent prediction capability of the proposed WT-ANN model. Excluding five testing 
samples that are not estimated well, all other instances have been well-correlated.

Parametric study
The variation of the acetone detecting ability of nanocomposite sensors with different chemistry by temperature 
has been plotted in Fig. 9. This figure includes both experimentally reported samples and their counterpart 
estimations by the well-tuned WT-ANN model. A high level of agreement exists between the actual and predicted 
values of the sensor resistance ratios in a wide range of operating temperatures and nanocomposite chemistries.

Although pure  Fe2O3 and  In2O3 sensors have shown the minimum acetone detecting ability, their composites 
almost show better sensing performances. Generally, there is no specific trend for the acetone-detecting ability of 
nanocomposite with different chemistry. The acetone sensing ability of the  In2O3-based nanocomposites increases 
by increasing their  Fe2O3 molar content up to 15%, and after that, it decreases dramatically.

The  In2O3-based nanocomposite sensor fabricated by 15 molar percent of  Fe2O3 has the highest sensitivity 
for detecting the acetone agent in all temperature ranges. The 0.75In2O3/0.15Fe2O3 nanocomposite shows its 
maximum SRR at 473 K (200 °C). Despite this complex behavior, the constructed WT-ANN precisely identifies 
the SRR variation trend and estimates relatively all individual data samples.
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Experimental and modeling profiles of the SRR versus acetone concentration for the 0.75In2O3/0.15Fe2O3 
nanocomposite sensor have been shown in Fig. 10. This figure confirms the high compatibility between actual 
and estimated SRR values.

It can also be concluded that the acetone-detecting ability of the given nanocomposite continuously improves 
by increasing the acetone concentration. Indeed, raising the acetone concentration from 10 to 1000 ppm increases 
the SRR by more than 400%.

Conclusions
A straightforward intelligent correlation based on the wavelet transform-artificial neural network has been 
built to calculate  In2O3/Fe2O3 sensor resistance ratio in the air with respect to the acetone from nanocomposite 
chemistry, temperature, and acetone concentration. Combining the genetic algorithm and trial-and-error analysis 
approved that a WT-ANN model with only nine hidden neurons and α = β = 0.5 and γ = 1.0 is the highest accurate 
model for the considered task. The deployed WT-ANN shows an incredible performance for precisely estimating 
119 SRR data points of the nanocomposites ranging from pure  In2O3 to pure  Fe2O3. The overall MAE = 0.7, 
AARD% = 10.12%, RMSE = 1.14, and  R2 = 0.95813 have been presented by the WT-ANN for calculating the SRR 
at wide ranges of acetone concentration, sensor chemistry, and temperature. The modeling results indicated 
that 0.75In2O3/0.15Fe2O3 nanocomposite has the highest acetone sensing ability over wide ranges of operating 
conditions. The proposed WT-ANN model in this study can help full-automating the acetone detecting ability of 
the  In2O3/Fe2O3 sensor and enhance the knowledge about the sensor behavior in different operating conditions.
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Figure 10.  The effect of acetone concentration on the performance of the highest sensitive sensor (0.15  Fe2O3) 
at 473 K.
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