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Predicting monthly hospital 
outpatient visits based 
on meteorological environmental 
factors using the ARIMA model
Lu Bai 1,2,7, Ke Lu 3,7, Yongfei Dong 1,2, Xichao Wang 1,2, Yaqin Gong 4, Yunyu Xia 5, 
Xiaochun Wang 5, Lin Chen 6, Shanjun Yan 6, Zaixiang Tang 1,2,8* & Chong Li 3,8*

Accurate forecasting of hospital outpatient visits is beneficial to the rational planning and allocation 
of medical resources to meet medical needs. Several studies have suggested that outpatient visits 
are related to meteorological environmental factors. We aimed to use the autoregressive integrated 
moving average (ARIMA) model to analyze the relationship between meteorological environmental 
factors and outpatient visits. Also, outpatient visits can be forecast for the future period. Monthly 
outpatient visits and meteorological environmental factors were collected from January 2015 to July 
2021. An ARIMAX model was constructed by incorporating meteorological environmental factors as 
covariates to the ARIMA model, by evaluating the stationary R2 , coefficient of determination R2 , mean 
absolute percentage error (MAPE), and normalized Bayesian information criterion (BIC). The ARIMA 
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12
 model with the covariates of SO2 , PM2.5 , and CO was the optimal model. Monthly 

outpatient visits in 2019 can be predicted using average data from past years. The relative error 
between the predicted and actual values for 2019 was 2.77%. Our study suggests that SO2 , PM2.5 , 
and CO concentration have a significant impact on outpatient visits. The model built has excellent 
predictive performance and can provide some references for the scientific management of hospitals to 
allocate staff and resources.

Abbreviations
ARIMA	� Autoregressive integrated moving average model
DLNM	� Distributed lag nonlinear model
GLM	� Generalized linear model
SARIMA	� Seasonal autoregressive integrated moving average model
SARIMAX	� Seasonal autoregressive integrated moving average model incorporating covariates
AR	� Autoregressive
MA	� Moving average
BIC	� Bayesian information criterion
MAPE	� Mean absolute percent error
UCL	� Upper confidence limit
LCL	� Lower confidence limit
COVID-19	� Corona Virus Disease 2019

Due to the rapidly aging population growth, China’s healthcare resources are relatively scarce and unevenly dis-
tributed, creating a huge gap between supply and demand1. There is a growing interest in the optimal management 
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of healthcare resources, which makes accurate forecasting of future healthcare demand and resource availability 
even more critical. The pressure on outpatient clinics is increasing every year due to the increase in the number 
of patients and the growing complexity of health conditions. The ability to forecast outpatient visits is critical to 
avoid overcrowding and provide quality patient care. Accurate and reliable forecasting of the number of different 
types of outpatient visits helps to scientifically allocate key medical resources such as medical equipment, and 
hospital beds1. So, accurate forecasting of outpatient visits is beneficial for the reasonable planning and allocation 
of healthcare resources to meet medical needs or anticipate potential medical resource shortages.

Some meteorological environmental factors influence the number of outpatient visits2,3. The distributed lag 
nonlinear model (DLNM) and generalized linear model (GLM) models have been commonly used in previous 
studies to explore the relationship between meteorological environmental factors and outpatient visits. The 
DLNM is a model that can accommodate both nonlinear exposure–response relationships and the lagged effects 
of exposure factors. It is more suitable for studying the effects of meteorological factors, air pollution, or environ-
mental conditions on human health4. Some previous studies using the DLNM model showed that DTR (diurnal 
temperature range) had a significant impact on outpatient visits for the common cold5. The temperature had a 
significantly negative effect on the number of daily outpatients. Daily outpatient visits for eczema were found to 
have strong positive associations with changes in PM10 levels6. The GLM model was also applied to analyze the 
exposure–response relationship between air pollutants and daily outpatient visits. GLM model can combine the 
time-series regression analysis with the family of Poisson distribution and natural splines, and estimates both 
short-term and long-term relationships between air pollutants and outpatient visits. For example, Wang et al. 
found at lag 0 day, the RR of respiratory outpatients increased by 0.37% with a 10 µg/m3 increase in PM2.5 , O3 
was not significantly associated with respiratory outpatient visits during the warm periods, but was negatively 
associated during the cold periods7. However, neither the DLNM model nor the GLM model can predict the 
number of outpatient visits.

Some deep-learning models can be used for outpatient visit prediction. The LSTM (long short-term memory) 
is an attractive method and has been used for outpatient visit forecasting studies in recent years8. However, the 
main drawback of LSTM is that it has a complex training model that is prone to overfitting and requires a long 
training time. Also, LSTM cannot be used to select important predictors. Random forest (RF) and extreme 
gradient boosting (XGBoost) are used in the proposed two-dimensional hierarchical influenza outpatient visit 
forecasting model and could provide effective forecasting results. However, it is too complicated to construct a 
two-dimensional hierarchy and consider the region values for model construction9.

The ARIMA model is relatively simple and can also be used to predict the number of outpatient visits without 
using covariates1. Some previous studies have used covariates, but first, need to obtain covariate data for that 
moment and do not serve to predict the future. For instance, the ARIMA model with the covariates of atmos-
pheric pressure, wind speed and mean temperature in 2015 was adopted to predict the incidence of brucellosis 
in 201510. Some studies also examine the effect of independent covariate delay effects on outpatient visits10,11.

In this study, we retrospectively analyze the time series of outpatient visits in Kunshan from January 2015 to 
July 2021 using an ARIMA model. To explore the relationship between meteorological environmental factors 
and outpatient visits, also to develop a simple and practical model that can be used to predict outpatient visits.

Material and methods
Study site and data collection.  Kunshan City is part of Suzhou, Jiangsu Province, China. Kunshan City 
is located southeast of the Yangtze River Delta (121°E, 31°N) and belongs to the northern subtropical monsoon 
maritime climate zone. It has a warm, humid, and rainy climate, four distinct seasons, and abundant light and 
rainfall. Its annual average temperature is 17.6 °C, the annual average precipitation is nearly 1200.4 mm, and the 
annual average sunshine time is about 1789.2 h. The population of Kunshan City grew from 787 thousand in 
2015 to 1.067 million in 2020.

Meteorological data for Kunshan, including monthly average atmospheric pressure (hPa), monthly average 
temperature (°C), monthly average relative humidity (%), monthly average rainfall (mm), monthly 2-min aver-
age wind velocity (m/s), monthly average extreme wind speed (m/s), monthly average sunshine hours (h), were 
provided by the Meteorological Bureau of Kunshan City, Suzhou, Jiangsu Province. Environmental data, including 
SO2 ( µg/m3 ), NO2 ( µg/m3 ), PM2.5 ( µg/m3 ), PM10 ( µg/m3 ), CO ( µg/m3 ), and O3 ( µg/m3 ), were provided by 
the Ecology and Environment Bureau of Kunshan City, Suzhou, Jiangsu Province.

We collected outpatient data from the Affiliated Kunshan Hospital of Jiangsu University from January 2015 to 
July 2021 as our study subjects. The data were aggregated as secondary data without any personal information, 
and therefore do not require informed consent. There were no missing values in this data set.

Statistical analysis.  The ARIMA (Autoregressive Integrated Moving Average) model is the most fre-
quently used method in time series analysis, based on the Box-Jenkins Model (1960), and can be used to predict 
the future values of time series using past values and can also analyze the multiple relationships between the 
independent and dependent variables12,13. ARIMA model was composed of autoregression (AR) with a lag num-
ber denoted by p, integrate (I) with a lag number denoted by d, and moving average (MA) with a lag number 
denoted by q. AR indicates that current observations are correlated with previous ones, which provides a pos-
sibility of predicting diseases with a time trend. MA refers to the correlation between the errors as well as the 
weighted average of random disturbance terms14. Because the monthly outpatient visits in this study exhibited 
seasonality, the seasonal autoregressive integrated moving average model (SARIMA or seasonal ARIMA) was 
used. SARIMA model includes the seasonal characteristics of time series and could account for seasonal auto-
correlations and trends adequately12,14,15. The SARIMA model can be expressed as SARIMA (p, d, q)(P,D,Q)s or 
ARIMA (p, d, q)(P,D,Q)s . The parameter P represents seasonal autoregression, D represents seasonal differenc-
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ing, Q represents the seasonal moving average, and s represents the seasonal cycle. The time series of Yt could 
be written as follows:

where Yt is the predicted outpatient visits at time t, ϕp(B) is the operator of the autoregressive model, θq(B) is 
the operator of the moving average model, (1− B)d is the component of the ordinary differences, φP(B

S) is the 
operator of the seasonal autoregressive model, �Q(B

S) is the operator of the seasonal moving average model, 
(1− BS)

D is the component of the seasonal differences, at is white noise16,17. In this study, the SARIMA model 
was constructed with outpatient data from 2015 to 2018. Based on the monthly outpatient visits from 2015 to 
2018, we used the IBM Statistical Package for the Social Sciences (SPSS) Expert Modeler to find the appropriate 
model parameters.

Expert Modeler can combine data to automatically select the optimal model11. The parameters of the SARIMA 
model (p, d, q, P, D, Q, and s) were determined. The white noise of the residual series was diagnosed by the 
Ljung-Box test. The parameters should be adjusted until the residual sequence of an appropriately fitted model 
is white noise. The stationary R2 , coefficient of determination R2 , mean absolute percentage error (MAPE), and 
normalized Bayesian information criterion (BIC) were employed to diagnose an optimal SARIMA model. The 
best model should have the highest stationary R2 , R2 , and the lowest MAPE, BIC18.

To improve the fit and predictive power of the model, meteorological environmental factors were added to 
the SARIMA model. Spearman’s rank correlations were used to analyze the relationship between meteorological 
environmental factors and outpatient visits. Statistically significant variables and correlation coefficients greater 
than 0.4 were selected as covariates of the SARIMA model separately.

The SARIMA model with covariates is also known as the SARIMAX model (or seasonal ARIMAX). The 
SARIMAX model is based on SARIMA, and X are exogenous factors. The equation for SARIMAX is:

where X represents the univariate or multivariate exogenous variables or called covariates. The other parameters 
are the same as described in Eq. (1) above19,20. In this study, SARIMAX models were developed based on spear-
man’s results, and the optimal model was selected by comparing the values of stationary R2 , R2 , MAPE, and BIC 
for different models. Data from 2019 as validation of the optimal model. The predicted values of the model were 
compared with the actual values for 2019 to verify the predictive power of the model.

For the model to be practical, we used the meteorological environmental data for the average of the cor-
responding months from 2016 to 2018 to predict the monthly outpatient visits for 2019. Compared with actual 
values for 2019 to verify whether the mean of past years could be used as a covariate to predict outpatient visits.

To calculate the loss to the outpatient visits caused by the COVID-19 outbreak, we used this SARIMAX model 
with covariates to estimate the number of hospital outpatient visits lost between January 2020 and July 2021.

The time series data analysis was performed using SPSS 25.0 and we used the packages of “tseries” and 
“ggplot2” of R 4.1.0 (the R Core Team, Vienna, Austria) (https://​cran.r-​proje​ct.​org/) to graph drawing. P < 0.05 
was used as a criterion of significance.

Ethics approval and informed consent.  This study has been approved by the Ethics Committee of the 
First People’s Hospital of Kunshan (no. 2020-03-046-K01), and it complied with the Declaration of Helsinki. 
Patient information was initially recorded for hospital quality improvement. The informed consent requirement 
was waived by the Ethics Committee of the First People’s Hospital of Kunshan due to the retrospective nature 
of the study.

Results
Statistical description.  The monthly outpatient visits from January 2015 to July 2021 were collected. A 
total of 13, 108, 742 cases in the last 79 months. The monthly trend of outpatient visits was shown in Fig. 1. As 
can be seen, Monthly outpatient visits have increased each year between 2015 and 2018. The monthly outpatient 
visits in 2019 were essentially the same as those in 2018. Monthly hospital outpatient visits tend to stabilize. The 
COVID-19 outbreak in early 2020 had a profound impact on hospital outpatient visits. As of July 2021, monthly 
outpatient visits have not returned to pre-COVID-19 outbreak levels. Every year, the number of outpatient visits 
in February decreases to a certain extent, considering that February is the Chinese Lunar New Year and Chinese 
people will be less likely to visit the doctor. Because outpatient visits from January 2020 onwards were heavily 
influenced by the COVID-19 epidemic, we only used data from 2015 to 2019 to build our prediction models. 
Data from 2015 to 2018 were used to find model covariates and built the model, with actual data from 2019 for 
validation. There was a total of 10, 368, 828 monthly outpatient visits from 2015 to 2019. Figure 2. shows the 
monthly averages of meteorological factors (atmosphere pressure, temperature, relative humidity, rainfall, 2-min 
average wind speed, maximum wind speed, and sunshine length) from 2015 to 2018. Temperature, humidity, 
and sunshine length were highest in the summer months (June–September). Figure 3. shown the monthly aver-
age SO2 , NO2 , PM2.5 , PM10 , CO , and O3 concentration from 2015 to 2018. SO2 , NO2 , PM2.5 , and PM10 showed 
the highest concentrations during the winter. CO concentrations were decreased annually since 2015. O3 con-
centrations were highest in summer months.

(1)Yt =
θq(B)�Q(B

S)at

φP(BS)ϕp(B)(1− B)d(1− BS)
D

(2)Yt =
θq(B)�Q(B

S)at

φP(BS)ϕp(B)(1− B)d(1− BS)
D
+ X

https://cran.r-project.org/
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The summary statistics for monthly meteorological factors, monthly outpatient visits, and the results of 
Spearman’s rank correlation analysis from 2015 to 2018 were described in Table 1. The averages of atmosphere 
pressure, temperature, relative humidity, rainfall, 2-min average wind speed, maximum wind speed, and sunshine 
length were 1016.20 ± 8.19 hPa, 17.62 ± 8.49 °C, 73.76 ± 5.59%, 3.68 ± 2.71 mm, 1.99 ± 0.28 m/s, 7.79 ± 0.62 m/s, 
4.56 ± 1.50 h. The summary statistics for monthly environmental factors and the results of Spearman’s rank cor-
relation analysis from 2015 to 2018 were described in Table 2. The monthly average of SO2 , NO2 , PM2.5 , PM10 , 
CO , and O3 concentration were 17.40 ± 7.13 µg/m3 , 41.58 ± 11.54 µg/m3 , 42.19 ± 15.93 µg/m3 , 71.80 ± 22.50 
µg/m3 , 872.04 ± 254.76 µg/m3 , 99.49 ± 33.51 µg/m3 . Atmosphere pressure, temperature, SO2 , PM2.5 , PM10 , CO 
concentration had statistical significance with the outpatient visits. The correlation coefficient of SO2 , PM2.5 , 
and CO concentration was greater than 0.4.

Model construction.  We used Expert Modeler in SPSS to find the appropriate model parameters. The 
monthly incidence showed a seasonal trend with a seasonal cycle of 12 months. So, SARIMA (p, d, q)(P,D,Q)s 
model was used. The Expert Modeler in SPSS determined the parameters of the model. SARIMA(0, 1, 1)(0, 1, 0)12 
model is selected with MAPE (4.446), normalized BIC (18.73), stationary R2(0.46) and R2(0.55). The series of 
residuals are white noise based on the Ljung-Box test (P = 0.943), which meets the model evaluation criteria.

SARIMAX model with meteorological environmental factors.  Atmosphere pressure, temperature, 
SO2 , PM2.5 , PM10 , CO concentration had statistical significance with the outpatient visits. The correlation coef-
ficient of SO2 , PM2.5 , and CO concentration was greater than 0.4. Therefore, they were added as covariates into 
SARIMA (0, 1, 1)(0, 1, 0)12 model to assess whether to improve the fit and predictive power, respectively. A valu-
able predictor can increase the stationary R2 and R2 of the model. When atmosphere pressure, temperature, SO2 , 
PM2.5 , PM10 , CO concentration as covariates, the stationary R2 of the model was 0.56 and the R2 was 0.63. The 
MAPE of the model was 4.305, normalized BIC was 19.47. When SO2 , PM2.5 , and CO as covariates, the station-
ary R2 of the model was 0.60 and the R2 was 0.67. The MAPE of the model was 3.793 and the normalized BIC was 
18.97. As the results, the model with the covariates of SO2 , PM2.5 , and CO was best fitted to the time series. The 
result of the Ljung-Box test also indicated that the residual error of the optimal model was white noise.

According to the above analysis results, the SARIMA (0, 1, 1)(0, 1, 0)12 model with the covariates of SO2 , 
PM2.5 , and CO was used to predict the monthly outpatient visits in 2019. The model was also validated using 
data from 2019. Table 3 shows the predicted monthly outpatient visits for 2019. The relative error between the 
predicted and actual values for 2019 was 4.80%. The fitting prediction chart was shown in Fig. 4. The actual val-
ues were all within the 95% confidence interval of the prediction. The predicted trend was essentially the same 
as the actual values, the model fitted better in the first few months, and the predicted trend was essentially the 
same as the actual values.

For the model to have the ability to predict future outpatient visits. For the covariates, we used the average of 
the corresponding months from 2016 to 2018 to predict the monthly outpatient visits in 2019. Table 4 shows the 

Figure 1.   Monthly outpatient visits from January 2015 to July 2021.
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predicted values. The relative error between the predicted and actual values for 2019 was 2.77%. The fitting pre-
diction chart was shown in Fig. 5, the model fitted well with the time series of monthly outpatient visits. Covari-
ates using the monthly averages over the past three years also provided a good predictor of outpatient visits.

We used SARIMA(0, 1, 1)(0, 1, 0)12 model with covariates to estimate the number of hospital outpatient visits 
lost between January 2020 and July 2021. Tables 5 and 6 showed the prediction values for 2020 and January to 
July 2021, respectively. The COVID-19 outbreak caused about 613, 299 outpatient visits in the year 2020. And 
from January to July 2021, the COVID-19 outbreak resulted in a loss of approximately 181, 338 outpatient visits.

Discussion
The pressure on outpatient clinics is increasing every year due to the increase in the number of patients and 
the growing complexity of health conditions. Effective forecasting of outpatient visits is beneficial to anticipate 
and prevent medical resource shortages. Accurate forecasting of hospital outpatient visits is beneficial for the 
reasonable planning and allocation of healthcare resources to meet medical demands.

In this study, we explored the relationship between seven meteorological factors, six environmental pollutants, 
and outpatient visits. We not only analyzed the impact of meteorological environmental factors on outpatient 
visits but also developed a model that could predict monthly outpatient visits. Our results shown SO2 , PM2.5 , 
and CO concentration had a more important relationship with monthly outpatient visits. The SARIMAX model 
SARIMA(0, 1, 1)(0, 1, 0)12 incorporated with these factors performed well in the prediction of outpatient visit. 
The validation in comparison with the actual values showed that our model had a better prediction with the 
relative error between the predicted and actual values for 2019 being 4.80% and the actual values were all within 
the 95% confidence interval of the prediction. We used the average of data from the previous three year’s mete-
orological environmental factors as covariates in our predictions to make our model more practically tractable. 
Our findings would be beneficial to the rational allocation of medical resources.

The ARIMA model, which is a time domain method, is considered one of the most useful models for seasonal 
time series prediction21,22. This is a very practical method because it allows the analysis not only of the outcome 
variables but also of the factors that affect them. Therefore, it is often applied in the prediction and analysis of 
influencing factors10. The time series model plays an important role in forecasting and is used to explore the 

Figure 2.   Monthly average meteorological factors from 2015 to 2018.
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effects of meteorological, environmental and socio-economic factors on outcomes while providing forecasts to 
inform management policy development.

According to the results of Spearman’s rank correlation analysis, atmosphere pressure, temperature, SO2 , 
PM2.5 , PM10 , CO concentration were found to be correlated with the monthly outpatient visits. Among them, 
SO2 , PM2.5 , and CO concentration, have a stronger relationship with monthly outpatient visits. More recently, 
research evidence has indicated that SO2 , PM2.5 , and CO concentration had related to hospital outpatient visits. 
SO2 concentration is correlated with outpatient visits of asthma23. A significant association between ambient 
PM2.5 levels and outpatient visits in child with respiratory diseases24. CO increased the total outpatient visits and 
CO exerted adverse effect on respiratory, cardiovascular, genitourinary, gastrointestinal and neuropsychiatric 
diseases25.

Figure 3.   Monthly average air pollutant concentrations from 2015 to 2018.

Table 1.   Summary statistics for monthly meteorological factors, monthly outpatient visits, and the results of 
Spearman’s rank correlation analysis from 2015 to 2018.

Mean ± SD Min Max

Quartile
Correlation 
coefficient

P (25) P (50) P (75) rs P

Monthly outpatient visits 171,094 ± 17,529 113,283 197,685 162,374 176,080 181,732 – –

Monthly average atmosphere pressure 
(hPa) 1016.20 ± 8.19 1003.08 1027.49 1007.86 1016.43 1023.69 − 0.295 P < 0.05

Monthly average temperature (℃) 17.62 ± 8.49 3.98 32.20 9.37 18.36 24.52 0.338 P < 0.05

Monthly average relative humidity (%) 73.76 ± 5.59 62.97 83.93 68.59 74.85 76.75 0.007 P > 0.05

Monthly average rainfall (mm) 3.68 ± 2.71 0.59 15.71 1.95 2.66 5.27 − 0.100 P > 0.05

Monthly 2-min average wind speed (m/s) 1.99 ± 0.28 1.34 2.70 1.81 2.03 2.17 0.161 P > 0.05

Monthly average maximum wind speed 
(m/s) 7.79 ± 0.62 6.55 9.56 7.37 7.69 8.16 0.242 P > 0.05

Monthly average sunshine length (h) 4.56 ± 1.50 1.48 8.46 3.64 4.44 5.50 0.267 P > 0.05
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During the COVID-19 epidemic, the government took preventive measures including the prohibition of 
leaving home unless necessary, to reduce hospital outpatient visits to prevent cross-infection, resulting in a rapid 
decrease in hospital outpatient visits26–29. Not only did the number of outpatient visits drop sharply in the pre-
epidemic period, but the number of outpatient visits is now somewhat lower than before the outbreak. In our 
study, we projected a loss of approximately 794, 637 outpatient visits to the hospital between January 2020 and 
July 2021. To satisfy the needs of patients who cannot be seen in person due to the COVID-19 outbreak, hospitals 

Table 2.   Summary statistics for monthly environmental factors and the results of Spearman’s rank correlation 
analysis from 2015 to 2018.

Mean ± SD Min Max

Quartile
correlation 
coefficient

P (25) P (50) P (75) rs P

Monthly average SO2 concentration ( µg/m3) 17.40 ± 7.13 8.64 40.23 11.45 15.94 22.28 − 0.628 P < 0.01

Monthly average NO2 concentration ( µg/m3) 41.58 ± 11.54 19.10 70.42 33.88 39.39 50.04 − 0.209 P > 0.05

Monthly average PM2.5 concentration ( µg/m3) 42.19 ± 15.93 15.29 82.35 30.45 38.03 50.88 − 0.478 P < 0.01

Monthly average PM10 concentration ( µg/m3) 71.80 ± 22.50 30.42 123.65 53.88 72.82 88.65 − 0.386 P < 0.01

Monthly average CO concentration ( µg/m3) 872.04 ± 254.76 548.40 1874.20 697.60 806.65 923.43 − 0.626 P < 0.01

Monthly average O3 concentration ( µg/m3) 99.49 ± 33.51 40.16 164.35 64.77 107.05 125.64 0.181 P > 0.05

Table 3.   Prediction results of the SARIMAX model for outpatient visits from January to December 2019.

The year 2019 Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec

Actual value 178,355 136,162 190,283 180,753 193,458 181,247 189,379 182,779 175,834 185,584 178,152 184,325

Predicted value 177,584 130,998 191,807 190,218 203,505 194,056 197,458 195,378 185,482 192,889 191,913 196,806

Lower 95% CI 157,358 110,769 171,575 169,984 183,269 173,818 177,219 175,137 165,240 172,646 171,669 176,561

Upper 95% CI 197,811 151,228 212,039 210,452 223,741 214,294 217,698 215,618 205,725 213,133 212,158 217,052

The absolute value of error 771 5164 1524 9465 10,047 12,809 8079 12,599 9648 7305 13,761 12,481

Relative error 0.43% 3.79% 0.80% 5.24% 5.19% 7.07% 4.27% 6.89% 5.49% 3.94% 7.72% 6.77%

Average error 4.80%

Figure 4.   Prediction fitting of SRIMAX model for outpatient visits from January to December 2019. LCL, lower 
confidence interval; UCL, upper confidence interval.
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Table 4.   Prediction results of the SARIMAX model for outpatient visits from January to December 2019 
(covariates data using the average of the corresponding months from 2016 to 2018).

The year 2019 Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec

Actual value 178,355 136,162 190,283 180,753 193,458 181,247 189,379 182,779 175,834 185,584 178,152 184,325

Predicted value 176,316 128,706 187,285 185,026 197,430 186,269 187,813 183,599 171,453 175,099 172,376 174,678

Lower 95% CI 156,090 108,477 167,053 164,792 177,193 166,031 167,574 163,358 151,211 154,856 152,132 154,432

Upper 95% CI 196,543 148,936 207,517 205,260 217,666 206,507 208,053 203,840 191,695 195,343 192,620 194,923

The absolute value of error 2039 7456 2998 4273 3972 5022 1566 820 4381 10,485 5776 9647

Relative error 1.14% 5.48% 1.58% 2.36% 2.05% 2.77% 0.83% 0.45% 2.49% 5.65% 3.24% 5.23%

Average error 2.77%

Figure 5.   Prediction fitting of SRIMAX model for outpatient visits from January to December 2019 
(concentration for the corresponding months from 2016 to 2018 as covariates). LCL, lower confidence interval; 
UCL, upper confidence interval.

Table 5.   The model predicted values and 95% confidence intervals for 2020.

The year 2020 Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec

Actual value 147,112 41,368 80,346 121,662 145,272 146,677 152,858 159,268 148,064 159,970 160,501 163,174

Predicted value 182,819 144,621 198,445 189,698 203,260 191,205 198,920 189,758 181,600 189,323 181,331 188,591

Lower 95% CI 165,266 127,068 180,891 172,144 185,705 173,650 181,366 172,204 164,045 171,768 163,776 171,037

Upper 95% CI 200,372 162,175 215,999 207,252 220,814 208,760 216,475 207,313 199,154 206,877 198,885 206,145

Table 6.   The model predicted values and 95% confidence intervals from January to July 2021.

The year 2021 Jan Feb Mar Apr May Jun Jul

Actual value 153,141 118,648 161,868 160,601 172,810 170,616 175,958

Predicted value 187,038 146,684 197,943 186,984 198,352 185,864 192,115

Lower 95% CI 161,991 121,637 172,896 161,938 173,306 160,818 167,070

Upper 95% CI 212,085 171,731 222,989 212,030 223,398 210,909 217,160
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may consider telemedicine services. Telemedicine tools include simple phone calls, the use of e-mails or text 
messages, and video visits. Telemedicine is associated with comparable outcomes and offers greater efficiency 
and service for patients30. A retrospective cohort study in the United States showed telemedicine services did 
not offset the reduction in outpatient visits; however, it did compensate for the reduction in outpatient visits31. 
In terms of whether reduced access to in-person care and increased telemedicine services affected patients’ con-
ditions, a study on the management of type 2 diabetes (T2D) in older U.S. veterans showed no observed effect 
of telemedicine visits on T2D control or short-term T2D-related outcomes32. In a study of the effectiveness of 
telemedicine visits in reducing 30-day readmissions in patients with heart failure during the COVID-19 pan-
demic, it was shown that patients with heart failure who received outpatient follow-up either via telemedicine 
or in-person had better outcomes than those who received no follow-up33. A telehealth model for outpatients 
with heart failure allowed for distanced encounters without increases in subsequent acute care or mortality34. 
Telemedicine services also have challenges in physical exams, particularly otoscopy, nasal endoscopy, and naso-
laryngoscopy. Sufficient information is needed from patients and families to overcome these difficulties35. Tel-
emedicine has many advantages and benefits, and can also be used to relieve medical stress after COVID-1936.

We acknowledge that our research has some limitations. First, this study only used monthly outpatient visits 
to Kunshan City to evaluate the performance of the built models and to find important variables as meaningful 
signs for outpatient visits. The findings of this study could not be directly extended to other countries’ outpatient 
visits. Second, in addition to meteorological environmental factors, the factors that affect outpatient visits such 
as seasons, and holidays were not taken into consideration, these factors may have an impact on the relation-
ship between meteorological environmental factors and outpatient visits. Third, it is a lack of discussions and 
analyses on alternative forecasting models and reasons why they are not applicable. Another limitation of this 
study was that outpatient visit was not divided into specific outpatient departments such as surgery, dermatology, 
etc. Nevertheless, our study confirms that SO2 , PM2.5 , and CO concentration have important effects on hospital 
outpatient visits. The model built has great predictability. Can provide a reference for hospital management.

In conclusion, our study suggests that atmosphere pressure, temperature, SO2 , PM2.5 , PM10 , CO concentration 
have a significant impact on outpatient visits. Of these, SO2 , PM2.5 , and CO concentration have a more important 
relationship with outpatient visits. The model we built also allows for the prediction of monthly outpatient visits 
by using meteorological environmental data from the previous three years. The model is relatively simple and 
has low computational intensity. Also, the results can be used to support the decisions of outpatient resource 
planning and scheduling. Help hospital managers to make the right decisions to meet the expected healthcare 
demand effectively and timely.

Data availability
The datasets used and/or analyzed in this study are available from the corresponding author upon reasonable 
request.
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