
1

Vol.:(0123456789)

Scientific Reports |         (2023) 13:2992  | https://doi.org/10.1038/s41598-023-29891-4

www.nature.com/scientificreports

Controllable Hartman effect 
by vortex beam in a one 
dimensional photonic crystal doped 
by graphene quantum dots
Saeideh Kevin 1*, Mostafa Sahrai 1 & Seyyed Hossein Asadpour 2

The Hartman effect is studied in a one dimensional photonic crystal doped with graphene quantum 
dots. It is shown that the Hartman effect can be switched from negative to positive by increasing the 
Rabi-frequency of the controlling field and also by manipulating the relative phase of the applied 
fields. The effect of the vortex beam on the Hartman effect is also presented. We show that the orbital 
angular momentum (OAM) and the azimuthal phase of the vortex beam do not affect the probe filed 
transmission while they change the Hartman effect from positive to negative.

Quantum mechanics predicts tunneling of a photon through a classically forbidden  barrier1–3. It takes a limited 
time for a wave packet to tunnel through a barrier. This period of time directly relates to the length of the barrier, 
i.e. the larger barrier width, the longer tunneling  time4. When the length of the barrier becomes large enough, 
the tunneling time becomes independent of the barrier length and tends to a  constant5. This phenomenon, which 
implies the superluminal light propagation, is referred to as the Hartman  effect6–8. The Hartman effect was inves-
tigated in various proposals including spin  waves9, field  emission10, graphene  systems11, quantum  networks12.

Multi-layer structures with periodic refractive indices such as one dimensional photonic crystals (1DPCs) are the 
proper media for controlling the behavior of the Hartman effect. These 1DPCs have important roles in optical devices 
that impresses the light–matter interaction such as the group velocity of a light  pulse13,14, optical  sensors15,  biosensors16,17, 
temperature  sensors18, wavelength  demultiplexer19 and other numerous  applications18,20–25. An important feature of the 
1DPCs is the existence of the photonic band gap in its transmission spectrum. An electromagnetic field propagating 
through a 1DPC is evanescent when its frequency lies within the band  gap26,27. The phase time of a propagating wave 
packet through a 1DPC with positive refractive indices is always positive, which is referred to as the positive Hartman 
effect and implies to subluminal light  propagation28. However, in some media such as a wave  guide29, the phase time 
can be negative, which corresponds to the negative Hartman effect. However, by introducing a defect layer doped with 
atoms or quantum dot structures, the Hartman effect can be controlled and even switched from negative to  positive30,31. 
We investigated (with collaborators) the Hartman effect in 1DPC with a defect layer doped with three-level  atoms30. It is 
found that the transmitted phase time can be switched from positive to negative by manipulating the Rabi-frequency of 
the applied controlling fields. We also demonstrated that the Hartman effect can be controlled by the rate of an incoher-
ent pumping field and adjusting the relative phase of the applied  fields29. In another proposal, we found that the Hartman 
effect can be controlled by the relative phase of the applied fields and also by choosing the proper incident angle of the 
probe  field31. It is interesting to investigate the position dependent Hartman effect by the orbital angular momentum 
of the light beam. It is well-known that a light beam carries an orbital angular momentum (OAM), which is a highly 
efficient parameter for controlling the propagation of the light  beam32,33. Allen et al.34 showed that a light beam with 
helical phase front carries a particular amount of OAM around the propagation axis. The only possibility to have a helical 
phase front in a light beam is the singularities along the center of the light beam. This does not possess any OAM, and 
does not exchange any energy with its surrounding. This kind of light beam, which carries a rotational current around a 
phase singularity, is called a vortex beam. One kind of these vortex beams is Laguerre–Gaussian cylindrical modes with 
a phase factor as eil� . Here, the parameters l and � denote the topological charge of the vortex beam and the azimuthal 
phase, respectively. The topological charge determines the amount of OAM carried by each photon.

In the recent decades, graphene quantum dots have been interesting candidate for new applications due to 
their unique optical properties in various subjects such as nanoelectronics and condensed matter physics. As it is 
well known that some of the most significant properties of graphene quantum dots are their large transition dipole 
moments, flexibility in their design and controllable energy  diagram35,36. In a recent study, a one-dimensional 

OPEN

1Faculty of Physics, University of Tabriz, Tabriz, Iran. 2School of Physics, Institute for Research in Fundamental 
Sciences (IPM), P.O. Box 19395-5531, Tehran, Iran. *email: s.kevin@tabrizu.ac.ir

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-29891-4&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2023) 13:2992  | https://doi.org/10.1038/s41598-023-29891-4

www.nature.com/scientificreports/

photonic crystal with a defect layer doped with graphene quantum dots has been utilized as an all-optical switch. 
It is shown that the existence of graphene quantum dots results in switching the subluminal to superluminal light 
 propagation37. Furthermore, magneto-optical properties and layered structures of graphene quantum dots have 
attracted many scientists. Recently it is shown that an enhanced refractive index with suppressed absorption of 
a weak probe field in graphene nano structures under an external magnetic field can be  obtained38.

In this paper, we investigate the propagation of a light pulse passing through the 1DPC doped by graphene 
quantum dots as a defect layer. We use the transfer matrix  method39,40 to study the effect of controlling param-
eters such as Rabi-frequency, relative phase, angular momentum, and azimuthal phase of the applied fields 
on behavior of the Hartman effect. Transmission behavior of the weak probe field is also discussed to find the 
physical mechanisms of the obtained results.

In “Pulse propagation in 1DPC”, the density matrix equation of motions for the graphene quantum dots and 
propagation equation of a light pulse in 1DPC via the transfer matrix method (TMM) are introduced. The results 
are presented in “Results and discussion”, and finally the paper is concluded in “Conclusion”.

Pulse propagation in 1DPC
Consider a quarter-wave stack with (AB)2ADA(BA)N and N = 10 . In this proposal A and B layers are consid-
ered as SiO2 and TiO2 with refractive indices 1.47 and 2.28,  respectively41,42. The optical path length of layers 
are nSiO2dSiO2

= n
TiO2

d
TiO2

= �0
4  , where �0 = 500 nm is the central wavelength of the applied probe field. The 

optical path length of the defect layer is nDdD = �0
2  . In this study the defect layer of the 1DPC is doped by the 

ensemble of the nitrogen graphene quantum dots (GQDs). The proposed GQDs behave as three-level ladder-type 
quantum  system43. As depicted in Fig. 1, the lower level, intermediate level and the upper level are labeled by 
|1� , |2� , and |3� . A coupling laser field with Rabi-frequency �c = Ecµ13

/

2� drives the transition |1� ↔ |3� , while 
another driving laser field with Rabi-frequency �d = Edµ23

/

2� applies to the transition |2� ↔ |3� . Further-
more, a weak tunable probe field with Rabi-frequency �p = Epµ12

/

2� couples levels |1� and |2� . Here, Ei(i = c, 
d, p) are the amplitudes of the corresponding fields, and  µij(i, j = 1, 2, 3) are the electric dipole moments of the 
corresponding transition. The Rabi-frequencies are complex quantities, so the respected phase of the applied 
fields are related to the Rabi-frequencies via relations �p =

∣

∣�p

∣

∣e−iϕp , �d = |�d |e
−iϕd , and �c = |�c|e

−iϕc . 
Here, ϕi(i = p, d, c) are the phase of the applied fields. Redefining the density matrix element as ρ12 = ρ̃12e

−iϕp , 
ρ23 = ρ̃23e

−iϕd , ρ13 = ρ̃13e
−i(ϕd+ϕc) , ρii = ρ̃ii(i = 1, 2, 3), and using the Liouville  equation, the density matrix 

equation of motions are obtained  as44,45

(1)

˙̃ρ22 =i�p(ρ̃12 − ρ̃21)− i�d(ρ̃23 − ρ̃32)− γ21ρ̃22

+ γ32ρ̃33,

˙̃ρ33 =i�d(ρ̃23 − ρ̃32)+ i�ce
−i�ϕρ̃13 − i�ce

i�ϕρ̃31

− (γ21 + γ32)ρ̃33,

˙̃ρ21 =− i�p(ρ̃22 − ρ̃11)− i�ce
−i�ϕρ̃23 + i�d ρ̃31

− (i�p − Ŵ21)ρ̃21,

˙̃ρ31 =− i�pρ̃32 − i�ce
−i�ϕ(ρ̃33 − ρ̃11)+ i�d ρ̃21

− (i(�p +�d)− Ŵ31)ρ̃31,

˙̃ρ32 =− i�d(ρ̃33 − ρ̃11)+ i�ce
−i�ϕρ̃21 + i�pρ̃31

− (i�d − Ŵ32)ρ̃32,

Figure 1.  Diagram of a GQD.
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The relative phase of the applied fields define as �ϕ = ϕc − ϕd − ϕp . In addition, the frequency detunings 
of the probe, driving and coupling fields are �p = ωp − ω12 , �d = ωd − ω23 , and �c = ωc − ω13 , respectively. 
Here, ωi(i = p, d, c) indicate the frequencies of the corresponding applied fields. The frequencies are selected 
in a way that the central frequencies satisfy the relations ωc = ωd + ωp and �c = �d +�p . The parameters γij 
and Ŵij are the spontaneous decay rates and dephasing broadenings from level   |i� to level 

∣

∣j
〉

 , respectively. The 
linear susceptibility defines as

where M and ε0 are the density of GQDs and the permittivity of free space with the plank constant � . The den-
sity matrix Eq. (1) should be solved in steady state condition to obtain the real and imaginary parts of χ and 
consequently the refractive index n by using the equation n2 = εB + χ(ω) . Here, εB is the electric permittivity 
of the background medium. Thus, the absorptive and dispersive properties of the defect layer can be controlled 
by manipulating the parameters such as Rabi-frequencies,  detunings and relative phase of applied fields.

Now, a probe pulse with a central frequency ω0 is normally incident upon the photonic crystal. In general, 
the electric (or magnetic) fields at two positions z and z +�z in the same layer are related by a transfer matrix 
Mj(�z,ω)  as39

where ψj(z +�z,ω) and ψj(z,ω) are the exited and entered electric (or magnetic) fields, respectively. The transfer 
matrix Mj(�z,ω) defines as

where nj(ω) is the refractive index of j th layer. In the following discussion, we introduce a matrix as  
∏N

j=1 Mj(dj ,ω) that relates the entered and exited beams of light in a photonic crystal. This term represents as

where xij(i, j = 1, 2) are the elements of this matrix. This can be used to obtain the reflection r(ω) and transmis-
sion t(ω) coefficients of a monochromatic wave pulse of frequency ω  as39,46

and

Here, ns indicates the refractive index of subtract. In order to separate the real and imaginary parts of the r(ω)  
and t(ω) , we write them in the following form     t(ω) = |t(ω)| exp[iφt(ω)]  and r(ω) = |r(ω)| exp[iφr(ω)] , where 
the real functions φr,t(ω) are the phases of the transmission and reflection coefficients, respectively. The phase 
time for transmitted and reflected pulses are obtained by the relation τr,t(ω) = ∂φr,t

∂ω
46,47. It is possible to calculate 

the transmitted phase shift by using the method that is described in  reference48. In this method, the total phase, 
which is accumulated by propagating light inside the medium, is considered as φt = tan−1(y

/

x)±mπ . In this 
equation, the integer m is defined according to the fact that φt(ω) is a monotonic increasing function. In a condi-
tion ω → 0 it is acceptable to take m = 0 . Then the transmitted and reflected phase times are obtained  from46

and

We assume that the coupling field �c carries the orbital angular momentum (�l) along the propagation axis 
 z32. Therefore, the Rabi-frequency of this field can be rewritten as

(2)χ =
2M| �µ21|

2

ε0��p
ρ21,

(3)ψj(z +�z,ω) = Mj(�z,ω)ψj(z,ω)

(4)

Mj(�z,ω)

=

(

cos[ωc nj(ω)�z] 1
nj(ω)

sin
[

ω
c nj(ω)�z

]

−nj(ω) sin[
ω
c nj(ω)�z] cos[ωc nj(ω)�z]

)

,

(5)XN (ω) =

N
∏

j=1

Mj(dj ,ω) =

(

x11 x12
x21 x22

)

,

(6)r(ω) =
[x22(ω)− nsx11(ω)] − i[nsx12(ω)+ x21(ω)]

[x22(ω)+ nsx11(ω)] − i[nsx12(ω)− x21(ω)]
,

(7)t(ω) =
2

[x22(ω)+ nsx11(ω)] − i[nsx12(ω)− x21(ω)]
.

(8)
τt(ω) =

∂φt

∂ω
=

1

|t(ω)|2

×

(

Re[t(ω)]
∂Im[t(ω)]

∂ω
− Im[t(ω)]

∂Re[t(ω)]

∂ω

)

,

(9)
τr(ω) =

∂φr

∂ω
=

1

|r(ω)|2

×

(

Re[r(ω)]
∂Im[r(ω)]

∂ω
− Im[r(ω)]

∂Re[r(ω)]

∂ω

)

,
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where � and l  are the azimuthal phase and the related OAM, respectively.
For a Laguerre–Gaussian doughnut beam, we write

where r , ωc and Ec represent the distance from the vortex core (cylindrical radius), beam waist and strength of 
the vortex beam, respectively. We assume that the two other fields have no orbital momentum, and thus Rabi-
frequencies can be defined as �d = |�d | and �p =

∣

∣�p

∣

∣.

Results and discussion
Now, we investigate the effects of various controlling parameters including Rabi-frequencies, relative phase, 
angular momentum and azimuthal phase of the applied fields on transmitted phase time. In order to simplify 
the results, we chose the spontaneous emission γ21 = γ = 1 meV and all the other parameters are normalized 
by γ . Also, we assume all the GQDs are initially in ground state, i.e. ρ11(0) = 1 and ρij(0) = 0(i, j = 1, 2, 3). 
Furthermore, the central wavelength of the probe laser field is considered as �0 = 500 nm . In addition, 
| �µ21| = 9.6× 10−29C m,M = 5× 1015 cm−3, and �p = 0.2γ . Figure 2 shows the dependence of the transmit-
ted phase time on periodic number N of a 1DPC with a structure (AB)2ADA(BA)N . For  �c = 0.6γ , �d = 0.9γ , 
and �ϕ = 0, the transmitted phase time remains negative for all values of N, which corresponds to the negative 
Hartman effect (Fig. 2a). By increasing �d from 0.9γ to 5γ , the transmitted phase time becomes positive and 
reaches to a constant value, which implies a positive Hartman effect (Fig. 2b). Note that for the same parameters 
presented in Fig. 2a, just by changing the relative phase of the applied fields from �ϕ = 0 to �ϕ = π

2  , again the 
negative phase time changes to positive as depicted in Fig. 2c. These results show that the phase time is completely 
sensitive to the amplitude of the coupling field and the relative phase of the applied fields. Thus, the Hartman 
effect can be tuned from negative to positive just by manipulating the amplitude of the driving field and the 
relative phase of applied fields. We emphases that negative (positive) Hartman effect is corresponding to super-
luminal (subluminal) light propagation. Thus, the superluminal light propagation changes to subluminal light 
propagation just by adjusting the parameters �d and �ϕ . In order to justify the physical mechanisms, we plot 
the real part of the effective refractive index as a function of probe field detuning in Fig. 3, i.e. n2 = εB + χ(ω) . 
By increasing the Rabi-frequency of the driving field, the negative slope of the dispersion (solid line) changes to 
positive one (dashed line). In addition, by switching �ϕ  from zero to π2  , the slope of dispersion curve changes 
from negative to positive (dotted line). Note that negative (positive) slope of the dispersion curve is correspond-
ing to superluminal (subluminal) light propagation as depicted in Fig. 2. These results are confirmed by the curve 
of transmitted probe field as a function of �p(Fig. 4). We find that for �d = 0.9γ a dip appears in transmission 
curve, while it changes to a peak for �d = 5γ . This is also repeated for �d = 0.9γ and �ϕ = π

2  as depicted in 
dotted line. Now, we consider the coupling field ( �c ) as an optical vortex light that carries OAM. In this case, 
two other controlling parameters including OAM and azimuthal phase appear that can be used to control the 
Hartman effect. In Fig. 5a, for l = 2 the transmitted phase time leads to a negative constant corresponding to 
superluminal light propagation through the 1DPC. However, as shown in Fig. 5b, for l = −2 , this changes to 
a positive one corresponding to subluminal light propagation. In Fig. 6a, the three dimensional transmission 
pattern of the probe field as a function of the transverse (x − y) directions is plotted for l = 2 . It is obvious that 
the 45% of the probe field is transmitted around x = 0 and y = 0 . This is confirmed by the transmission curve 
of probe field as a function of x/ω as depicted in Fig. 6b. It is worth noting that by changing l  of the controlling 
field from 2 to − 2, the probe field transmission remains unchanged at the vicinity of x = 0 and y = 0 . This is 
an important result, where by manipulating the l  from 2 to − 2, the negative Hartman effect changes to positive 
while the probe field transmission remains unchanged. By comparing the results of Figs. 4 and 6, one can notice 
that by selecting �c as an optical vortex light, we can obtain better results in converting negative Hartman effect 
to positive than an ordinary laser field. In Fig. 6e, the absorption spectrum of the probe field is plotted. It can be 
seen that the absorption at the vicinity of x = 0 and y = 0  is low and converting the amount of l  from 2 to − 2 
does not effect it. This is the main result for neglecting the imaginary parts of SiO2  and  TiO2 refractive indices 
and taking only the real parts of them. Another important parameter is the impact of azimuthal phase on the 
Hartman effect. Figure 7a demonstrates that for � = 0 , the phase time delay reaches to a negative constant cor-
responding to negative Hartman effect. Nevertheless, as demonstrated in Fig. 7b, by setting the azimuthal phase 
to � = 2π

3  , the transmitted phase time tends to a positive constant implying positive Hartman effect. Thus, the 
Hartman effect can be manipulated just by adjusting the azimuthal phase of the controlling field. Again, in order 
to investigate the effect of the azimuthal phase of the controlling field on the transmission profile of the probe 
field (Fig. 8), we plot the transmission as a function of the probe field detuning �p . It is proven that the trans-
mission around �p = 0 is the same for � = 0 and � = 2π

3  . We emphasis that for a vortex beam any change of 
the orbital angular momentum number and azimuthal phase does not affect the probe field transmission while 
the Hartman effect is altered. Figure 8c shows the absorption spectrum of the probe field. It is apparent that the 
absorption at the �p = 0 is so weak and it remains the same by changing � from zero to 2π3  . Again this proves 
that neglecting the imaginary parts of the SiO2 and TiO2 , refractive indices does not influence the obtained 
result for Hartman effect.

(10)�c = |�c| exp(il�),

(11)|�c| = Ec

(

r

ωc

)|l|

exp

(

−
r2

ω2
c

)

,
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Figure 2.  The Hartman effect in a 1DPC’s with structure (AB)2ADA(BA)N for (a) �c = 0.6γ , �d = 0.9γ , 
�ϕ = 0 , (b) �c = 0.6γ , �d = 5γ , �ϕ = 0 , (c) �c = 0.6γ , �d = 0.9γ , and �ϕ = π

2
 . Here, D denotes the 

existence of QD defect layer. Other parameters are γ21 = γ31 = γ32 = γ = 1 mev, Ŵ21 = Ŵ31 = Ŵ32 = 5γ , 
�p = 0.2γ , and �d = 0.
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Conclusion
The Hartman effect in a 1DPC doped with graphene quantum dots is investigated. It is shown that the phase 
time delay tends to a constant value by increasing the number of the photonic crystal layers. Amplitude of the 
controlling field as well as the relative phase of the applied fields affect the presented Hartman effect. Orbital 
angular momentum and azimuthal phase can also be utilized to manipulate the Hartman effect if one controlling 
field is assumed to be a vortex beam. We demonstrate that while the Hartman effect is converted from negative 
to positive, the probe field transmission remains unchanged. This makes the system applicable experimentally. 
Thus, in this paper we have shown that by using a photonic crystal with a defect layer doped with graphene 
quantum dots, the Hartman effect can be controlled not only by conventional methods as manipulating the 
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Figure 3.  The real part of refractive index for �c = 0.6γ , �d = 0.9γ , �ϕ = 0 (solid line), �c = 0.6γ , 
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Rabi-frequencies and relative phases of the applied fields but also by using a vortex beam as a controlling field. 
In the lateral case, two new parameters i.e. the orbital angular momentum (l) and the azimuthal phase (�) can be 
utilized as controlling parameters of the Hartman effect. We again emphases that switching the Hartman effect 
from negative to positive and vice versa is a very effective method in creating and controllable subluminal and 
superluminal light propagation.
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Figure 5.  The Hartman effect in a 1DPC’s with structure (AB)2ADA(BA)N when only one control field �c has 
an optical vortex with OAM numbers l = 2 (a), l = −2 (b). Here �ϕ = 0, �p = 0.2γ , �d = 0.9γ , ωc = 1 µm, 
� = π

/

4, Ec = γ , and r = 1.
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Figure 6.  Three dimensional probe field transmission in transverse (x–y) plane (a), probe field transmission as 
a function of normalized position x/ω  for l = 2 (b). Three dimensional probe field transmission in transverse 
(x–y) plane (c), probe field transmission as a function of normalized position x/ω  for l = −2 (d). Probe field 
absorption as a function of normalized position x/ω  for l = 2  and l = −2 (e). Other selected parameters are 
�ϕ = 0, �p = 0.2γ ,�d = 0.9γ , ωc = 1 µm, � = π

/

4,Ec = γ , and �p = 0.
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Figure 6.  (continued)
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Figure 7.  The Hartman effect in a 1DPC’s with structure (AB)2ADA(BA)N when only one control field �c 
has an optical vortex with azimuthal phase � = 0 (a), � = 2π

3
 (b). Other parameters are �ϕ = 0, �p = 0.2γ , 

�d = 0.9γ , ωc = 1 µm, l = 2, r = 1 , and Ec = γ.
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Figure 8.  Transmission coefficient of probe field versus normalized probe filed detuning for � = 0 (a), � = 2π
3

 
(b). Absorption coefficient of probe field versus normalized probe filed detuning for � = 0 and � = 2π

3
 (c). 

Other parameters are same as in Fig. 7.
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