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SARS‑CoV‑2 alters neural 
synchronies in the brain with more 
severe effects in younger 
individuals
Helen Valsamis 1,2, Samah Abdul Baki 3, Jason Leung 4, Samer Ghosn 4, Brittany Lapin 4, 
Geetha Chari 1,2, Izad‑Yar Rasheed 1, Jaehan Park 1,2, Vineet Punia 4, Ghinwa Masri 5, 
Dileep Nair 4, Ann Marie Kaniecki 4, Muhammad Edhi 4 & Carl Y. Saab 4,6,7*

Coronavirus disease secondary to infection by SARS‑CoV‑2 (COVID19 or C19) causes respiratory 
illness, as well as severe neurological symptoms that have not been fully characterized. In a previous 
study, we developed a computational pipeline for the automated, rapid, high‑throughput and 
objective analysis of electroencephalography (EEG) rhythms. In this retrospective study, we used 
this pipeline to define the quantitative EEG changes in patients with a PCR‑positive diagnosis of 
C19 (n = 31) in the intensive care unit (ICU) of Cleveland Clinic, compared to a group of age‑matched 
PCR‑negative (n = 38) control patients in the same ICU setting. Qualitative assessment of EEG by two 
independent teams of electroencephalographers confirmed prior reports with regards to the high 
prevalence of diffuse encephalopathy in C19 patients, although the diagnosis of encephalopathy 
was inconsistent between teams. Quantitative analysis of EEG showed distinct slowing of brain 
rhythms in C19 patients compared to control (enhanced delta power and attenuated alpha–beta 
power). Surprisingly, these C19‑related changes in EEG power were more prominent in patients below 
age 70. Moreover, machine learning algorithms showed consistently higher accuracy in the binary 
classification of patients as C19 versus control using EEG power for subjects below age 70 compared 
to older ones, providing further evidence for the more severe impact of SARS‑CoV‑2 on brain rhythms 
in younger individuals irrespective of PCR diagnosis or symptomatology, and raising concerns over 
potential long‑term effects of C19 on brain physiology in the adult population and the utility of EEG 
monitoring in C19 patients.

Coronavirus disease (COVID19, abbreviated here as C19) is caused by infection with the SARS-CoV-2 virus. 
Most people infected with the virus will experience mild to moderate respiratory illness, and individuals with 
underlying medical conditions, especially older people, appear to be more vulnerable (World Health Organi-
zation, https:// www. who. int/ health- topics/ coron avirus# tab= tab_1). Irrespective of these risk factors, and for 
incompletely understood reasons, some will become seriously ill and manifest severe neurological symptoms 
requiring admission to an intensive care unit (ICU). Although evidence related to the presence of SARS-CoV-2 
in the central nervous system (CNS) is sparse, and direct viral invasion of the CNS is difficult to  estimate1,2, the 
significant impact of the virus on the CNS and its contribution to neurological sequelae are uncontested, partly 
as a result of immune-mediated or autoimmune reactions leading to neuro-inflammation3.

Neurological symptoms of C19 include loss of smell and  seizures4,5, and more broadly defined symptoms such 
as brain ‘fogginess’, dizziness, extreme fatigue, and  sleepiness6,7. In cases where electroencephalography (EEG) 
has been performed on C19 patients, predominant observations converge on generalized slowing and diffuse 
 encephalopathy8–19. Invariably, however, these observations have been based on visual interpretation of the EEG, 
a method that is known to be qualitative and time consuming. Conventional EEG systems require significant 
training and expertise for accurate visual interpretation of EEG, in particular for the removal of artifacts which 
exacerbate inter-rater variability and sampling  bias20–22. These concerns are more salient when dealing with C19 
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patients, especially in the ICU. Even though subjective interpretation of EEG led many studies to conclude that 
EEG patterns are significantly altered in C19  patients8–19, primarily in frontal  lobes8,12,19 and within distinct low 
frequency bands of  delta12 and  alpha15, detailed, quantitative and objective characterization of these patterns 
has only been achieved in two studies with low sample  sizes14,23. A few studies have even suggested that EEG is 
visually normal with scarce  abnormalities24 or indistinguishable from other pathological  conditions25. Moreover, 
widely held assumptions about milder neurologic symptoms in the pediatric population have been  challenged26,27. 
Lack of adequate control groups in several EEG studies is a major  concern14, especially with regards to age which 
is a significant variable in EEG  research28,29. Hence, there is an urgent unmet need for the standardization of 
quantitative EEG analysis for the discovery of objective, physiological markers that could help in the diagnosis, 
prognosis and monitoring of therapy in critically ill patients with  C1914,23,24.

Rhythmic brain activity or ‘oscillation’ in discrete frequency bands, a fundamental characteristic of spontane-
ous activity in mammalian brain covering large scale neural networks, is a hallmark of mental states in  health30–32 
and  disease33. The study of spontaneous brain oscillations reveals subtle, emergent properties of dynamic and 
high-speed brain function related to mental states in real-time. Therefore, we postulated that the analysis of EEG 
oscillations in C19 patients with CNS symptoms could provide proof of concept data to guide the discovery of 
future novel markers of the disease. A comprehensive and detailed assessment of oscillations, including power 
amplitude in distinct frequency bands and temporal coupling between bands, cannot be achieved reliably by 
visual inspection alone. Therefore, our laboratory has developed a computational pipeline for the automated, 
rapid, high-throughput and objective analysis of EEG oscillations. This pipeline is based on a support vector 
machine (SVM) algorithm for the accurate detection of EEG artifacts, which has been validated in rodent, non-
human primate and human  subjects34.

In this retrospective study including 69 subjects, we investigated the quantitative changes in EEG oscillations 
of patients with a PCR-positive diagnosis of C19 (n = 31) in the ICU at Cleveland Clinic, compared to a group 
of PCR-negative (n = 38) patients in the same ICU. Clinical reviews of EEG by visual inspection conducted by 
clinical fellowship trainees and board certified electroencephalographers at two independent sites (Cleveland 
Clinic, OH and King’s County/SUNY, NY) confirmed prior reports with regards to the high prevalence of diffuse 
encephalopathy in C19 patients, albeit to the same degree observed in age-matched control patients. Moreover, 
diagnoses of encephalopathy at the individual subject level were not fully consistent across both sites. Quan-
titative EEG analysis, however, showed distinct slowing of EEG in C19 subjects compared to control subjects, 
which was more severe in subjects below age 70, such that power distribution in younger subjects in the low 
frequency bands (< 35 Hz) was indistinguishable from that in subjects above age 70. These results were further 
corroborated using an unbiased approach based on machine learning, whereby the accuracy of several algorithms 
for the binary classification of patients as C19 versus control using EEG power features was consistently higher 
for patients below age 70, raising concern about the long-term effects of C19 in younger age population and the 
utility of EEG monitoring in C19 patients of all ages.

Results
The mean length of hospitalization prior to the EEG recording was not statistically significant between C19 
positive patients (4.7 ± 1.3 days) and C19 negative patients (3.1 ± 1.2, p = 0.34). All channels rejected in our study 
were based on qualitative inspection, and none were rejected based on automated identification of artifacts. In 
the Ct group, 2 EEG recordings contained 2 rejected channels, and 1 recording contained 5 rejected channels; 
in the C19 group, 1 EEG recording contained 2 rejected channels. Mean artifact-free EEG epoch durations per 
subject in C19 and Ct groups were 663 ± 20 s and 698  ± 23 s, respectively. Neuropsychiatric comorbidities were 
identified in both groups but with low prevalence (n = 6 out of 38 in C19 group and n = 3 out of 31 in Ct group).

Visual interpretation of EEG by two independent teams of trained electroencephalographers at Cleveland 
Clinic and SUNY resulted in normal or encephalopathy diagnosis using standard clinical criteria including dif-
fuse delta slowing (Table 1). Overall, this qualitative diagnosis was inconsistent among both teams, and more so 
for the C19 group (14 inconsistent diagnoses out of 31 or 45%) versus control (7 inconsistent diagnoses out of 
38 or 22%). When subjects were age-matched (Sup Fig. 1), quantitative analysis of the mean EEG power showed 
distinct and significant differences in C19 compared to the control group (Fig. 1), including an increase in delta 
(0.52 ± 0.01 in C19, 0.40 ± 0.01 in Ct, p < 0.001), and a decrease in alpha (0.12 ± 0.007 in C19, 0.18 ± 0.01 in Ct, 
p < 0.01) and beta power (0.038 ± 0.002 in C19, 0.048 ± 0.002 in Ct, p < 0.01). Analysis of power in individual 16 
channels further showed that power changes were not localized to particular brain areas (Fig. 2).

Furthermore, when power within individual frequency bands was plotted against age, and moving averages of 
these plots were fit to polynomial trend lines, a crossover in power amplitude was noted around age 70 (Fig. 3). 
Noting that this crossover timeline was approximate (because it was generated based on matching requirements 
within 5 years of age), age 70 was then used to divide subjects within a group as younger (i.e. below 70 age) 
or older groups (i.e. above 70 age), and to subsequently test the effect of age on power changes in C19 patients 
compared to control.

Results indicate that the power changes observed between age-matched C19 and control groups is further 
accentuated when the analysis is restricted to only younger subjects (Fig. 4), whereby delta and theta are signifi-
cantly increased in the C19 group compared to control (0.522 ± 0.009 in C19, 0.334 ± 0.012 in Ct, p < 0.001 for 
delta, and 0.241 ± 0.007 in C19, 0.195 ± 0.003 in Ct, p < 0.001 for theta), whereas alpha and beta are significantly 
decreased (0.118 ± 0.006 in C19, 0.210 ± 0.015 in Ct, p < 0.001 for alpha, and 0.040 ± 0.001 in C19, 0.061 ± 0.002 
in Ct, p < 0.001 for beta). Analysis of power within individual channels did not show localized changes (Sup 
Fig. 2), and phase-amplitude coupling between gamma and lower frequency bands was not changed (Sup Fig. 3). 
On the other hand, older C19 subjects showed a different pattern of power changes relative to younger sub-
jects, such as decreased theta (0.247 ± 0.010 in C19, 0.286 ± 0.008 in Ct, p < 0.05) as well as increased beta and 
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gamma (0.036 ± 0.001 in C19, 0.028 ± 0.001 in Ct, p < 0.05 for beta, and 0.024 ± 0.001 in C19, 0.018 ± 0.0007 in 
Ct, p < 0.001 for gamma). However, no statistically significant power change was observed at the single channel 
level (Sup Fig. 4). These data prompted a comparison within C19 group between younger versus older subjects, 
which showed no significant change in power except a decrease in gamma in younger subjects (0.019 ± 0.0006 in 
younger, 0.024 ± 0.001 in older, p < 0.01), results that were consistent with the lack of statistically significant power 
change at the single channel level (Sup Fig. 5). A summary of mean power changes in all channels is provided 
in Table 2. Lastly, statistical analysis of potentially confounding clinical variables between groups using exact 
logistic regression to predict C19 status from each parameter separately, with linear age added to each model, 
revealed no significant difference (Sup Fig. 6).

Table 1.  Qualitative assessment of EEG by two independent teams at Cleveland Clinic and SUNY for the 
diagnosis of encephalopathy (n = 38 control, n = 31 C19).

Control (n=38) C19 (n=31)
id Age Cleveland Clinic SUNY id Age Cleveland Clinic SUNY

1 56 Enceph Enceph 39 72 Normal Normal

2 68 Normal Normal 40 46 Enceph Enceph

3 64 Normal Enceph 41 79 Enceph Normal

4 71 Enceph Enceph 42 59 Enceph Enceph

5 79 Enceph Enceph 43 69 Enceph Normal

6 78 Enceph Enceph 44 65 Enceph Normal

7 62 Normal Normal 45 55 Enceph Enceph

8 71 Enceph Enceph 46 43 Enceph Enceph

9 56 Enceph Normal 47 71 Inc Enceph

10 78 Enceph Enceph 48 64 Enceph Enceph

11 80 Enceph Enceph 49 57 Enceph Enceph

12 89 Enceph Enceph 50 66 Enceph Normal

13 69 Normal Normal 51 62 Enceph Enceph

14 85 Enceph Enceph 52 84 Enceph Normal

15 75 Normal Normal 53 79 Enceph Enceph

16 47 Enceph Normal 54 82 Enceph Enceph

17 62 Enceph Normal 55 93 Enceph Enceph

18 30 Normal Normal 56 69 Enceph Normal

19 69 Normal Normal 57 46 Enceph Normal

20 60 Normal Enceph 58 26 Enceph Normal

21 80 Enceph Enceph 59 69 Enceph Enceph

22 74 Enceph Enceph 60 74 Enceph Normal

23 85 Enceph Enceph 61 35 Normal Enceph

24 90 Enceph Enceph 62 66 Normal Enceph

25 65 Enceph Enceph 63 75 Enceph Enceph

26 78 Enceph Enceph 64 18 Normal Enceph

27 42 Normal Normal 65 59 Enceph Enceph

28 82 Enceph Enceph 66 73 Enceph Normal

29 77 Enceph Enceph 67 73 Enceph Enceph

30 80 Enceph Enceph 68 61 Enceph Enceph

31 65 Normal Normal 69 78 Enceph Enceph

32 71 Enceph Enceph

33 32 Normal Normal

34 54 Normal Enceph

35 94 Enceph Enceph

36 53 Normal Normal

37 91 Normal Normal

38 43 Enceph Normal
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Machine learning algorithms for the binary classification of subjects as C19 versus control based on EEG 
recording reached consistently higher accuracy levels when trained on datasets in the younger age population 
(Table 3), with a mean of 70.5% accuracy in younger subjects compared to a mean of 55.6% for older subjects. 
These values were obtained using EEG power features selected based on the results of statistical analysis obtained 
in these groups (for example mean delta, theta, alpha and beta for younger subjects, and theta, beta and gamma 
for older subjects). Moreover, when the same feature selection used to train a given algorithm in one group was 
applied to the other group for direct comparisons of accuracy, algorithms for the younger subjects still performed 
better than those in older ones (77.2% vs. 47.5, and 69.4% vs. 55.6%, respectively).

Figure 1.  (A) Power spectral density (mean of 16 EEG channels) in age-matched control and C19 subjects 
(n = 30 per group) in the 0–50 Hz frequency range. (B) Mean power in the frequency bands delta (1–4 Hz), theta 
(5–9 Hz), alpha (10–13 Hz), beta (14–32 Hz) and low gamma (33–52 Hz).

Figure 2.  Power spectral density in 16 individual EEG channels in age-matched control and C19 subjects 
(n = 30 per group) in the frequency bands delta (1–4 Hz), theta (5–9 Hz), alpha (10–13 Hz), beta (14–32 Hz) 
and low gamma (33–52 Hz). No statistically significant difference was noted between groups in any individual 
channel.
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Discussion
The neurological symptoms of SARS-CoV-2 range from mild headache to altered mental status and  seizures4–7. 
Assessment of these symptoms is based primarily on subjective criteria, self-reported questionnaires, and EEG 
when clinically indicated. However, the scientific literature on EEG and C19 is almost exclusively based on visual 
interpretation of EEG waveforms. This is a major concern because artifacts are ubiquitous in EEG and contribute 
to inter-rater variability and sampling  bias20–22. Moreover, EEG analysis only in the time domain, and disregard 
to age as a significant variable, are important factors that compromise rigor and confound the interpretation 
of prior  studies14. Therefore, we implemented an automated analytical pipeline for the analysis of EEG in the 
frequency domain to investigate neural oscillations in the brains of patients with C19, and compared those to 
control subjects in the same clinical environment but with a negative C19 diagnosis.

Our visual, qualitative analysis of EEG suggests that diffuse encephalopathy was highly prevalent in C19 
patients, as well as in control patients. However, diagnosis was inconsistent between two independent sites at the 
individual patient level. Although this finding confirms prior reports about the high incidence of C19-related 
 encephalopathy8–19, it highlights the challenges of EEG assessment based on visual inspection.

Our objective, quantitative analysis of the EEG data showed that the average power spectrum across EEG 
channels in C19 patients is significantly enhanced in the delta band, and attenuated in the alpha and beta bands 
compared to aged-matched control patients in the ICU with a negative C19 PCR test. Corroborating the diffuse 
characteristics of the encephalopathy, changes within these distinct frequency bands appear to be non-localized 
to individual channels. Moreover, we report that phase-amplitude coupling within individual channels is not 
significantly changed in C19 patients compared to control, indicating that the EEG changes in power do not 
necessarily translate to a generalized disruption in cross-frequency coupling between fast (gamma) and slow 
(delta-to-beta) bands, a proxy for effective brain communication.

These results related to oscillations, obtained in a fully-automated approach that enhances rigor and repro-
ducibility, corroborate prior observations using visual inspection of the EEG, although past studies did not 
provide consistent and numerical estimates for these changes, nor accurate localization to specific channels and 
brain areas. According to a systematic review and meta-analysis, the proportion of abnormal EEG in C19 sub-
jects is as high as 96%16. Non-specific, generalized background or diffuse slowing has been reported in several 

Figure 3.  (Left panel) Power values (mean of 16 channels) were plotted as a function of age in control and 
C19 subjects, superimposed over 3-steps moving averages in each group, for delta, theta, alpha, beta and low 
gamma bands. Of note, X-axis values represent the average age for each pair of subjects based on the matching 
requirements of maximum 5 years difference (i.e. X-axis is non-linear). (Right panel) Moving averages shown 
in left panel were fitted with polynomial trend lines, which were convergent or intersecting around age 70 
for alpha, beta and gamma (vertical lines). This formed the basis of group selection by age below and above 
70 years.
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studies as the most common  finding10,11,18, whereby EEG abnormalities correlate with encephalopathy, disease 
 severity8,9,17, and risk for novel  seizures13, including psychogenic non-epileptic  seizures5. In particular, delta 
waves with absence of epileptic activity have been  documented12, as well as alpha coma patterns suggestive of 
SARS-CoV-2 neurotropism for the brainstem ascending reticular  system15. Although some studies suggested 
that SARS-CoV-2 could preferentially and directly target the frontal  lobes19, with EEG abnormalities localized 
to frontal  electrodes8,12, our results did not confirm these qualitative observations. The mechanisms underlying 
these observations are largely unknown; however, it has been suggested that metabolic  hypoxia18, immune-
mediated neuro-inflammation3, as well as severe stress and sleep  disturbances5, are likely contributing factors.

Further analysis revealed evidence for age-dependent variations in power, with a clear threshold for differ-
ential effects around 70 years. Analysis of power in the younger age group (below age 70) showed significantly 
enhanced power in the delta and theta bands, and attenuated power in the alpha and beta bands, compared to 
the older population (above age 70). These power changes in younger individuals were not localized to individual 
channels, but more prominent in magnitude when compared to all ages combined. In older subjects, the power 
patterns were different from those in younger subjects, with significantly attenuated power in theta, and enhanced 

Figure 4.  (A) Power spectral density (mean of 16 EEG channels) in age below 70 (younger) control and age 
below 70 (younger) C19 subjects (n = 18 per group). Histograms show power in individual frequency bands. (B) 
Same as (A) for age above 70 (older) control and age above 70 (older) C19 subjects (n = 12 per group). (C) Same 
as (A–B) for age above 70 (older) C19 subjects (n = 19) and age below 70 (younger) C19 subjects (n = 12).

Table 2.  Summary of per cent power changes in Figs. 1 and 4.

Age-
matched Ct 
versus C19

Younger Ct  
versus  C19

Older Ct  
versus  C19

Younger  
versus  older 
C19

%  + /− % + /− %  + /− %  + /−

Delta 30  + 56  + ns O ns O

Theta ns O 23  + − 13 − ns O

Alpha − 33 − − 43 − ns O ns O

Beta − 20 − − 34 − 25 + ns O

Gamma ns O ns O 30 + − 19 —
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power in beta and gamma. However, these changes within the older population were less severe compared to 
those in the younger population, and were not localized to individual channels. Lastly, when power distribu-
tion in younger age C19 patients was compared to older ones with C19, no change in power was noted in lower 
frequency bands below 35 Hz, although gamma was significantly higher in older patients (results summarized 
in Table 2). To date, no study has investigated the age-dependency of C19 on dynamic brain physiology. Our 
results highlight the fact that the changes in EEG patterns affect younger subjects more than older ones, which is 
surprising given the general dogma that older individuals are at higher risk of developing severe C19 symptoms. 
Vulnerability of pediatric patients with multi-system inflammatory syndrome has been previously  documented26, 
whereby long-term EEG monitoring after healing is  recommended27. Hence, our results emphasize the need for 
continuous, long-term EEG monitoring for C19 patients in the ICU regardless of age, whereby we have shown 
that EEG power distribution in the low frequency range of patients below age 70 is indistinguishable from that 
above age 70. They further raise critical questions about reversibility and the potential long-term effects of C19 
in younger individuals. Interestingly, the pattern of results regarding EEG slowing bares some resemblance to 
individuals with cognitive impairment secondary to Alzheimer’s  disease35,36. However, the prevalence of dementia 
and/or Alzheimer’s in our study is negligible.

The results of our data-driven and statistically-guided machine learning algorithms further demonstrate that 
the accuracy of binary classification is consistently higher for younger individuals. Machine learning is based 
on the recognition of patterns and their representation (in our case without prior knowledge of data attributes 
other than binary labeling attached to C19 positive versus C19 negative input categories). In general, the more 
clearly delineated patterns are in the features used to train an algorithm (for example separation in numerical 
values between labels), the higher the algorithm’s performance. This suggests that the EEG features in younger 
adults are more distinct, and changes are more pronounced in C19 positive versus C19 negative labels, whereas 
in older individuals these features seem to be less distinct between labels. This assumption is well supported by 
the statistical analysis of the quantitative EEG.

The limitations in this study include the retrospective design, which was constrained by the need to collect 
EEG data from critically ill patients with a highly infectious disease during a pandemic, and the inability to 
control important variables such as medication and underlying medical conditions, although it is noteworthy 
that the significant EEG slowing in this study withstood this variability. Though there may have been some dif-
ferences between the C19 and the age-matched cohorts in terms of anesthetics, systemic dysfunctions, etc. the 
small sample size precludes adjusting for all of these variables in our analysis, noting that both cohorts had a 
fairly well-matched length of hospitalization and mental status despite these possible differences, which cor-
relates with the depth of EEG slowing on naked eye clinical examination. Moreover, interaction between several 
clinical conditions and age were excluded. While non-neuropsychiatric medical conditions can affect the depth 
of EEG slowing, we are not aware of specific EEG findings (e.g. focal or generalized slowing) that correlate with 
various other medical comorbidities, for example depression or anxiety. Moreover, our conclusions might not 

Table 3.  (Upper row) Accuracy results of machine learning algorithms trained on EEG power features 
selected based on statistical tests performed in Figs. 1 and 4 (for example in Fig. 1 mean delta, theta, alpha 
and beta for younger subjects, and theta, beta and gamma for older subjects). (Bottom row) Feature sets used 
to train algorithms in a given group were applied to the other group for direct comparison. Only models with 
accuracy > 50% are shown.
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generalize to C19 patients outside of an ICU setting with less severe neurological symptoms. These attenuat-
ing gaps will be addressed in future prospective studies, whereby our quantitate methodology suggests a valid 
approach for developing diagnostic, prognostic and therapy monitoring of CNS symptoms secondary to C19 
using machine learning and quantitative EEG. EEG is a cost-effective and non-invasive technique which can be 
potentially used as a bed-side tool to correlate with and monitor cognitive abilities, or predict risk-factors and 
future C19 long-haul at initial period. In addition, our analytical pipeline may prove useful for the objective and 
rapid evaluation of EEG findings in individuals who sustain lasting cognitive changes as seen in “long Covid”.

Methods
Study population. The study was approved by the Cleveland Clinic Institutional Review Board and the 
SUNY Downstate Health Sciences University Institutional Review Board & Privacy Board, which waived the 
requirement for patient consent. All methods were performed in accordance with relevant guidelines and regu-
lations. We cross-matched the Cleveland Clinic C19 registry with the Cleveland Clinic EEG database (Ebase, 
Cleveland, OH) from April 20th, 2020 until August 20th, 2020. The main indication for EEG was concern for 
non-convulsive seizure contributing to altered mental status, or motor events concerning for seizure. All hospi-
talized C19 adults (≥ 18 years of age at the time of diagnosis of C19) who underwent an EEG during wakefulness 
resting states were included in the study population, excluding patients in coma, stupor or intubation. Patients 
were not instructed to have eyes open or closed. Patients were excluded if they did not undergo EEG evalua-
tions during their admission for C19 infection. We identified n = 69 ICU patients (n = 31 C19; n = 38 Control, 
age-matched to C19 within 5 years of age) who underwent a 20-min screening EEG and at least 24 h continu-
ous EEG monitoring. All C19 patients had at least one SARS-CoV-2 positive test prior to the initiation of EEG 
or during EEG monitoring. Patients who tested positive for SARS-CoV-2 were admitted for symptomatic C19 
disease, and not incidentally testing positive or testing positive from a previous infection. Patient’s mental status 
was assessed at bedside by registered EEG technologists at the start of EEG. They classify patients into awake, 
lethargy, stupor and coma states based on their level of responsiveness to standard stimulation and physical 
examination: ‘awake’ is able to confirm orientation to place, person, time, answer a general knowledge question 
and follow eye opening/closing on command; ‘lethargy’ is responsive to verbal questions/commands but is slow 
to respond and has inconsistent response; ‘Stupor’ is no response to verbal commands but responsive with eye 
opening and other movements on physical stimulation; ‘Coma’ is no eye opening in response to physical stimu-
lation. A complete list of underlying conditions and comorbidity for every patient is shown in Table 4. Other 
exclusion criteria included acute or worsening chronic brain pathologies, hemorrhage or tumors and acute onset 
of systemic diseases.

EEG preprocessing. Pre-processing of EEG data, feature extraction, statistics, and machine learning were 
performed using MatLab (MathWorks, Natick, MA). EEGs were collected at a sampling rate of 200 Hz. A high-
pass filter with a passband frequency of 1 Hz and a notch filter with a stop-band of 57.5–62.5 Hz were applied to 
all recordings. All EEGs were first visually inspected to confirm signal quality for each channel; channels consid-
ered to be of low or irretrievable quality were excluded from the study. Waveforms in each channel were divided 
into 1-s epochs, and each epoch was tested for the presence of artifacts using a previously validated method 
based on automated detection of artifacts by a  SVM34. Briefly, this analytical pipeline previously achieved 85% 
accuracy when validated using external EEG datasets in variable disease conditions. Our team used similar 
computational principles to design highly accurate companion pipelines for artifact detection in awake, behav-
ing rodent and canine subjects, which generate far more complex artifacts than resting state human EEG. Epochs 
not containing artifacts were included in further analysis; all other epochs were excluded. Rejection of channels 
was based on initial qualitative inspection of visually overt artifacts, followed by automated identification of arti-
facts and rejection of channels with less than 1.5 min of artifact-free epochs. Maximum EEG recording duration 
per subject was 15 min.

Feature extraction. From the remaining artifact-free epochs of each recording, the following features were 
calculated for all channels: band-wise PSD Power Spectral Density (PSD) for all channels (average channel mon-
tage as in Fig. 1, or individual channel montage as in Fig. 2), and band-wise Phase-Amplitude Coupling (PAC).

To create the band-wise PSD, a periodogram was gathered from artifact-free 1-s epochs, and then these 
periodograms were averaged together for each channel within each subject using the: “periodogram” function 
in MATLAB which returns the two-sided periodogram, whereby:

[pxx,f] = periodogram(x,window,f,fs).
f: at least two elements, frequencies in cycles per unit time.
fs: sample rate or number of samples per unit time.
The band-wise PSD is then calculated by taking the average of all bins within each of the following five fre-

quency bands: Delta (1–4 Hz), Theta (5–9 Hz), Alpha (10–13 Hz), Beta (14–32 Hz), and Low Gamma (33–52 Hz). 
This yielded 5 PSD features for every channel included. PAC was calculated using the Modulation Index (MI) 
 method37. The center frequencies used for phase included all the even numbers from 2 to 20. The center frequen-
cies used for amplitude included all multiples of 3 from 30 to 54. MI was measured for each pair of phase and 
amplitude frequencies (90 total pairs) for each channel, including only those time points for which there were 5 
or more consecutive artifact-free eyes-open epochs. This yielded a 9 × 10 MI matrix, for every channel of every 
subject, with each row corresponding to one phase center frequency, and each column corresponding to one 
amplitude center frequency. This MI matrix was converted to band-wise PAC for the following 3 pairs of bands: 
Delta—Low gamma, Theta—Low Gamma, Alpha—Low Gamma, and Beta—Low Gamma. Other band-wise 
PAC were computed for the following 4 pairs of bands: Delta—Medium Gamma, Theta—Medium Gamma, 
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Alpha—Medium Gamma, and Beta—Medium Gamma. This conversion was accomplished by averaging across 
the appropriate regions of the MI matrix. This yielded 4 PAC features for each channel, and a maximum of 64 
PAC features per subject (4 band-pairs × 16 channels).

Statistical analyses. We used paired two-tailed t-tests to compare the band-wise PSDs between the PCR 
positive and PCR native age-matched  groups38. Our PSD data meet assumptions for conducting parametric 
tests, including homogeneity of variance, and normally distributed data. This was assessed via histograms, QQ 
plots, and Shapiro–Wilk test. Additionally, means are similar to medians for all groups. We used two-tailed 
Wilcoxon rank-sum tests to compare the band-wise PAC from the two groups for each of 4 band pairs and 
16 channels (64 tests in total). We chose to use non-parametric statistical test for PAC because values are con-
strained between 0 and 1, and are therefore less likely to follow a normal distribution, as required by Student’s 
t-test. Statistical significance was established throughout at p < 0.05. Statistical analysis of average channel EEG 
power in multiple frequency bands was adjusted according to Boneferroni correction for the number of bands 

Table 4.  Summary of clinical comorbidity for each patient. DM Diabetes mellitus, HLD Hypersensitivity lung 
disease, HPL Hyperlipidemia.

C19 (n = 31) Ct (n = 38)

id Comorbidity id Comorbidity

1 Cancer, heart murmur 1 Transient ischemic attack, HLD, stenosis, carotid artery occlusion

2 EtOH, cirrhosis, acte kidney injury, varices 2 Dysphagia, nephrolithiasis

2 Rheumatoid arthritis 3 Cardiomyopathy

4 DM, psychiatric diagnosis 4 Multiple sclerosis

5 Cardiac arrest 5 DM, HPL, gout, ca, urinary tract infection

6 HLD 6 End stage renal disease, DM, subdural hematoma

7 Asthma, DM 7 N/A

8 N/A 8 DM

9 Dyslipidemia, obesity 9 Cirrhosis

10 Heart failure, atrial fibrillation, monoclonal gammopathy of undetermined signifi-
cance (MGUS), pericardial effusion 10 Atrial fibrillation, HLD, cancer

11 COPD, headache, recurrent meningitis 11 Carotid stenosis

12 HLD 12 Melanoma, bening prostatic hyperplasia, spinal stenosis, cardiomyopathy

13 Atrial fibrillation, DM 13 Multiple sclerosis, depression, anxiety, hypothyroid

14 Prostate cancer 14 Chronic Lymphocytic Leukemia, DM, HPL, atrial fibrillation

15 DM, heart failure, deep vein thrombosis, hypothyroid, HLD 15 DM, HPL, hypothyroid, COPD, benign paroxysmal positional vertigo

16 COPD, congestive heart failure, hemicolectomy 16 Crohn’s, COPD, black lung disease, herpes simplex

17 HLD, glaucoma, AV disorder 17 Headache

18 Peripheral artery disease, osteomyelitis 18 Migraine, depression, postural orthostatic tachycardia syndrome

19 Liver failure 19 Parkinson disease

20 Autism, tuberous sclerosis 20 DM, hepatitis C

21 Cirrhosis, Crohn’s disease, vasculitis, hypothyroidism, DM, obstructive sleep apnea, 
obesity 21 HPL, hypothyroidism, paroxismal atrial fibrillation, childhood apraxia of speech, 

atrial valve replacement

22 DM 22 Peripheral vascular disease, heart transplant, HLD, DM, hypothyroidism

23 Schizoaffective, EtOH 23 HLD, COPD, giant cell arteritis

24 N/A 24 Parkinson disease, DM

25 N/A 25 Atrial fibrillation, subdural hematoma

26 N/A 26 Atrial fibrillation, HLD, GERD, complex migraine, vertigo, left common iliac art 
aneurysm

27 Alzheimer, bipolar, schizophrenia, hypothermia, DM, HLD 27 N/A

28 Cirrhosis, DM, Gerd 28 Dementia, depression, hypothoroidism, nephrolithiasis, congestive heart failure

29 HLD 29 Septic arthritis, DM, COPD, asthma, obesity, HLD

30 EtOH 30 HPL, DM, atrioventricular stenosis, atrial fibrillation

31 DM, aortic dissection 31 Cirrhosis, hepatopulmonary syndrome, liver transplant

32 DM, dementia

33 Cardiac arrest

34 N/A

35 DM, Alzheimer disease

36 N/A

37 N/A

38 Depression
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(delta, theta, alpha, beta, gamma, i.e. p values multiplied by 5), and for the number of channels multiplied by the 
number of individual channels (i.e. 5 bands × 12 channels = 60).

Classification and prediction. The features described above (band-wise PSD) were used to create a fea-
ture-set for training binary classification algorithms. In particular, only mean power values that were shown to 
be significantly different between groups were selected for algorithm training (for example mean delta, theta, 
alpha and beta for younger subjects, and theta, beta and gamma for older subjects in Fig. 1). We validated the 
classifiers using k-folds cross validation using k = 4. Classification accuracy was calculated within the k-folds 
cross validation by counting the number of out-of-sample predicted labels that matched the true label of the 
sample, and dividing this total by the number of samples (n = 24 for age below 70 group and n = 36 for age above 
70 group).

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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