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A physics‑informed neural network 
based on mixed data sampling 
for solving modified diffusion 
equations
Qian Fang 1,2, Xuankang Mou 1,2 & Shiben Li 1*

We developed a physics‑informed neural network based on a mixture of Cartesian grid sampling and 
Latin hypercube sampling to solve forward and backward modified diffusion equations. We optimized 
the parameters in the neural networks and the mixed data sampling by considering the squeeze 
boundary condition and the mixture coefficient, respectively. Then, we used a given modified diffusion 
equation as an example to demonstrate the efficiency of the neural network solver for forward and 
backward problems. The neural network results were compared with the numerical solutions, and 
good agreement with high accuracy was observed. This neural network solver can be generalized to 
other partial differential equations.

Partial differential equations (PDEs), especially second-order PDEs, have been extensively used in physics, 
engineering, finance, and other fields. Some simple PDEs can be solved analytically, but most complex PDEs rely 
on numerical solutions, which are usually divided into forward and backward problems. Common numerical 
methods include finite  difference1–6, finite  element7–13, and Lagrange  multiplier14–18. These conventional methods 
have been extensively applied to solve forward PDEs in various practical problems. However, the deep neural 
network (DNN) provides another solution for complex nonlinear PDEs without the domain discretization used 
in numerical methods and is thus suitable for forward and backward  problems19–23.

DNN is exhibiting major advancement in solving PDEs and has attracted increasing attention in various 
research areas due to its universal  approximations24–27. However, a large amount of labeled data is usually required 
for training DNN-based models to solve PDEs, and such data are often unavailable in many physical applications. 
To overcome this disadvantage, researchers have proposed a novel DNN-based neural network called the physics-
informed neural network (PINN) help to reduce the needed training time in a physics-informed manner; 
in this network, physics-informed loss functions are constructed based on PDE  residuals20,28–31. Generally, 
residual design plays an important role in PINN approximations, so residual DNN is a highly effective type 
of neural  network32–34. PINN can encode any underlying physics law such that the differential operators in 
the governing PDEs can approximated by automatic  differentiation35,36. With such advantages, PINNs have 
been applied extensively to solve complex PDEs in various application areas in recent  years37–47. On the one 
hand, an increasing number of studies are being conducted to examine the approaches for building improved 
PINN models by incorporating such models into other methods. For example, Karniadakis et al. introduced a 
systematic PINN model for the first time and presented a series of PINN variants, including Bayesian  PINN48, 
fractional  PINN49, extended  PINN50, parareal  PINN51, non-Newtonian  PINN52, hp-variational  PINN53, and 
nonlocal  PINN54. These extended PINN models were constructed to approximate various forward PDEs, either 
linear or nonlinear, in application areas ranging from engineering to finance. On the other hand, PINN models 
have also been extended to backward problems, such as advection-dispersion  equations55, stochastic  problems56, 
flow  problems57, and conservation  laws58. In these backward problems, the training data are inputted into DNNs 
to screen the unknown parameters in the PDEs by constructing PINN loss functions.

In DNN, data sampling is another important factor for solving second-order or higher-order  PDEs21,59–61. 
Latin hypercube sampling (LHS) filters the variance associated with the additive components of a transformation, 
and it is a powerful sampling method for data analysis in nearly every field of computational science, engineering, 
and  mathematics62–65. In LHS, because the sample space is divided into a series of subspaces that are randomly 
paired, the LHS algorithm iterates to determine optimal pairings on the basis of some specified criteria. To solve 
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PDEs using neural networks,  LHS28 and simple random sampling (RS)66,67 can be used to sample data sets. LHS 
and RS are usually employed to solve PDEs in regular domains. However, other sampling methods based on 
domain decomposition or irregular domains have also been developed to solve  PDEs50,68,69.

In this study, we developed an improved LHS method, namely, GLHS, where LHS and Cartesian grid sampling 
(GS) are merged and optimized to deal with a data set under the periodic boundary condition that commonly 
appears in the theory and simulation of polymer chains under bulk conditions. We are aware that in polymer 
physics, especially in self-consistent field theory (SCFT), the modified diffusion equation (MDE), which is a 
parabolic-type second-order PDE, is a key equation in SCFT for Gaussian and wormlike  chains70–72. Several 
classical numerical methods have been developed to solve MDEs in SCFT and have achieved great success in 
reproducing the microstructures and properties of self-assembled polymer  chains73–78. Recently, Chen et al. 
trained the traditional DNN to solve the MDE in diblock copolymer systems and the static Schrodinger equation 
in quantum systems, and the efficiency of the solver was  analyzed67,79. In this work, we developed a PINN with 
residual units, which combines with the GLHS, to solve the forward and backward MDEs used in polymer 
physics.

Several important issues are addressed in the current study. In the following section, we describe the PINN 
with residual units and mixed sampling method. Then, we solve the forward and backward problems in MDEs as 
examples to examine the PINN solver based on the mixed data sampling by optimizing the parameters in PINN 
and mixed data samplings. We also compare the PINN to the numerical results and the traditional NN to verify 
the accuracy and efficiency of the PINN. The research summary is presented in final section.

Neural network and data sampling
PINN with residual units. We describe PINN with residual units, as shown in Fig. 1. To solve the complex 
problems in network convergence caused by gradient disappearance or network degradation in the traditional 
neural  network80,81, we apply the neural network based on residual units to solve second-order PDEs. We 
describe a residual unit in Fig. 1a, where the input layer (IL) is a neural network layer with weight, biases, and an 
activation function. For this network layer, the output of tensor Xi−1 fed into the network is

where Wi ∈ R
ni−1×ni is the weight parameter in the network layer, bi ∈ R

ni is the bias parameter in the network 
layer, and ni represents the network width of the current layer, that is, the number of neurons. The activation 
function σ(· · · ) , which is nonlinear, is the key factor in the universal approximation of the neural network. In 
general, the activation function selects nonlinear functions, such as sigmoid and tanh. Here, we choose tanh as 
the activation  function22,66, i.e.,

The output layer (OL) is an ordinary network layer with weights and biases. For input tensor Xi−1 , its output 
can be expressed as

(1)IL(Xi−1) = σ(Wi
X
i−1 + b

i),

(2)σ(X) = Tanh(X) =
eX − e−X

eX + e−X
.

(3)OL(Xi−1) = W
i
X
i−1 + b

i
.

Figure 1.  PINN with residual units. (a) The composition of residual unit; (b) PINN based on residual units; 
(c) The forward solution for the partial derivatives with physical constraints; (d) The backward solution for the 
partial derivatives with physical constraints.
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The residual unit is constructed by combining IL and OL, as illustrated in Fig. 1a. First, input tensor Xi−1 in 
the residual unit goes through IL and OL to obtain

Second, input tensor Xi−1 is connected by jump identity, and the output is obtained by the tanh activation func-
tion after accumulation with f (Xi−1) , namely,

This residual unit design enables us to transmit the input data directly from the lower network layer to the higher 
layer. This process differs from the common stacking of two neural network layers. Therefore, the residual unit 
can facilitate the optimization process of the neural network and solve the problem of network degradation to 
a certain extent.

Parameterized parabolic-type PDEs, such as MDE, can be expressed in a general form as follows:

where u(r, t) denotes the solution with respect to the time and space variables, N[u(r, t); �] represents the dif-
ferential operator parameterized by � , � is the spatial definition domain, and ut denotes the partial derivative 
with respect to time t.

In accordance with the universal approximation of neural  networks19,82, the solution u(r, t) in PDE can be 
equivalently expressed through DNN. In the current study, we use a PINN with residual units to solve PDE, as 
shown in Fig. 1b, instead of a common neural network. In such a PINN, the initial variables are inputted into the 
input layer and sent to several residual units (Fig. 1a), where the solutions are assessed by the physics-informed 
loss functions. Then, we obtain the solution u(r, t) in the output layer.

We illustrate the calculations for the partial derivatives with physical constraints in the solution process in 
Fig. 1c and d, and the chain derivative rule based on automatic differentiation is  used35. In the PINNs, the forward 
and backward solutions in the PDEs are learned by optimizing the loss functions with physical information. The 
forward solution process for the PDE in the neural networks is shown in Fig. 1c. The physical constraints of the 
differential equation can be defined as

The representation network needs to learn that the judgment mode of the solution of the differential equation 
is Ŵe → 0 , which simultaneously satisfies the physical constraints with the periodic boundary condition (PBC) 
Ŵp → 0 , and the initial condition Ŵi → 0 . Then, we can define the total loss function as

where θ0 denotes an intermediate variable that includes the parameters appearing in Ŵe , Ŵp , and Ŵi . The learning 
task stops in the forward process when J0(θ0) → 0 . For the reverse problem, as shown in Fig. 1d, the network 
needs to satisfy Ŵe → 0 and the constraints created by existing data in the network Ŵb → 0 , which will be 
described in detail in solving MDE section. In the backward process, the gradient of a certain underlying output 
can be expanded as

Equation (9) shows that the gradient of the bottom output of the network can be decomposed into two terms. 
The first term indicates that the wrong signal can be directly transmitted to the bottom without any intermedi-
ate weight matrix transformation, thus alleviating the problem of gradient dispersion to a certain extent. The 
gradient will not disappear even if the weight of the intermediate layer matrix is small. The residual unit, which 
has been successfully applied to image  recognition32,34, provides an efficient tool to solve the backward problems 
in PDEs in the current study.

Mixed GS and LHS method. The basic problem in solving PDEs by using a neural network is to produce 
results that satisfy the physical conditions in the differential equations, where the data points in the defined 
domain are fed to the neural network. Thus, selecting appropriate data points in the training process of DNNs 
is crucial. In the current work, we adopt a mixed sampling method (GLHS), i.e., mixture of Cartesian GS and 
LHS, in the PINN solver.

For the GLHS method, we assume that the number of data points in Cartesian GS is αN  , where N is the 
total number of data points and α is a proportionality coefficient, i.e., α ∈ [0, 1] . All the data are located in the 
domain R� . We allocate the αN  data points to the grid points where the n-dimensional Cartesian grids are 
equally divided into INT( n

√
αN  ) grids in one dimension. INT(· · · ) denotes the integer part of the number. This 

condition means that a total of NG = [INT( n
√
αN)]n data points are sent to the grid in an n-dimensional space, 

where one data point corresponds to one grid point. Then, the remaining data points, NL are sampled by the 
LHS method, where NL = N − [INT( n

√
αN)]n . In LHS, the NL data points are sent to NL equal subdomains for 

RS, where each subdomain corresponds to one LHS data  point62,64. To effectively describe the GLHS method, 
we show a simple example in Fig. 2, where α = 0.5 , N = 20 , n = 2 . For simplicity, we use the definition domain 
�1 = [0, 1; 0, 1] as an example (other examples are given in Fig. S1 of Supplementary information). The blue 

(4)f (Xi−1) = W
i+1σ(Wi

X
i−1 + b

i)+ b
i+1

.

(5)g(Xi−1) = σ(f (Xi−1)+ X
i−1).

(6)ut + N[u(r, t); �] = 0, r ∈ �, t ∈ [0,T],

(7)Ŵe = ut + N[u(r, t); �].

(8)J0(θ0) = Ŵe + Ŵp + Ŵi ,

(9)
∂J1

∂Xi−1
=

∂J1

∂g

∂g

∂Xi−1
+

∂J1

∂g

∂g

∂f

∂f

∂Xi−1
.
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dots represent the Cartesian grid data points, and the crossed dots denote the data points in LHS. Clearly, 3 data 
points exist in the Cartesian grid sampling, and 11 data points are present in LHS, where the domain is divided 
into 11 subdomains in one dimension and each data point in a subdomain is randomly sampled, as shown in 
Fig. 2a. We expect that the extracted random data are evenly distributed in the definition domain, so a linear 
cumulative density function, CDF(x) = �−1x , is used in each dimension for LHS. Then, the total data points 
in two dimensions are calculated by the Cartesian product, i.e., total of 9 data points in the Cartesian grids. 
Meanwhile, 11 data points are randomly paired into two dimensions via a cumulative linear density function, 
�1 = [0, 1; 0, 1] , as shown in Fig. 2b. Finally, the Cartesian grid and LHS data are randomly mixed to obtain 
GLHS data as the final input data for PINN.

We present an example to illustrate the advantages of the GLHS method in Fig. 3, where three types of 
sampling, namely, RS, LHS, and GLHS, are compared. In each sampling type, two types of two-dimensional 
definition domains, i.e., �1 = [0, 1; 0, 1] and �2 = [0, 0.1; 0, 0.1] , are used as examples. A total of 2,000,000 and 
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Figure 2.  The data sampling distribution of GLHS. Take a total of 20 data, 2 dimensions, each dimension in 
the domain of [0,1] as an example. The blue dots represent the Cartesian grid data points and the crossed dots 
denote the data in LHS. (a) The data sampling on each dimension; (b) The overall data distribution after mixing.
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Figure 3.  Comparison of three types of sampling. The blue Y-axis on the left of the figure represents the 
number of data N1,ij in 100 equal square data collections area of �1 = [0, 1; 0, 1] , and the purple Y-axis on the 
right represents the number of data N2,ij in 100 data collections area of �2 = [0, 0.1; 0, 0.1] . The box represents 
the data distribution within the range of 25%-75% of N1,ij and N2,ij . The solid line in the box is the median line 
of data distribution, the line cap represents the maximum and minimum value of data distribution. The red 
dotted line represents the ideal number of data distributions, 20,000 and 200 respectively.
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20,000 data points are randomly imported into the two definition domains. To examine the uniformity of the 
data distribution in �1 and �2 , we divide the two definition domains into 100 equal square data collection areas 
and labeled the number of data points in each data collection area as N1,ij and N2,ij over all the regions in �1 and 
�2 . The subscripts i and j denote the ij-th collection area in the two dimensions. We plot more detailed data 
distributions in the two-dimensional definition domains in Fig. S2 of Supplementary information. Thus, 100 
data collection areas are distributed in each definition domain for RS, LHS, and GLHS. We sort N1,ij and N2,ij 
into a sequence on the basis of their values and label the N1,ij and N2,ij in the middle 25–75% of the sequence as a 
square box with dotted lines, as shown in Fig. 3a–c. Among the three sampling types, RS has the largest box and 
GLHS has the smallest one in the �1 domains, indicating that GLHS possesses the most uniform data distribu-
tions in the definition domain.For the �2 domains, GLHS also has the most uniform data distribution, but the 
data points at the middle of the sequence have values below 200, which is the average number of data points for 
the collection data in �2 domains. This result may due to the reason that the amount of input data is not large 
enough in the �2 domains. Recently, simple LHS with point transformation was used to increase the uniformity 
of data  distribution83. In this study, we observe that GLHS has an obvious advantage over RS and LHS, although 
RS and LHS have similar sampling procedures in the uncertainty  analysis62.

Solving for forward and backward MDE
In polymer physics, MDE is a key equation in self-consistent field theory and has been numerically solved by 
many  methods70,71. We adopt MDE as an example to illustrate the use of PINN based on GLHS in solving forward 
and backward problems. First, we present the general form of forward and backward MDE. Second, we discuss 
the efficiency of GLHS and PBC loss functions in solving for MDE. Lastly, we discuss the forward and backward 
problems in MDE solutions by using PINN based on GLHS.

Problem setup. As an example, we take a simple form of forward and backward MDE with the initial 
conditions and PBCs, which can be expressed as

where the initial condition is u(x, 0) = 1 and the periodic boundary condition is u(0, t) = u(L, t) . Here, only two 
dimensions are used; L is the period in the x dimension. And when � is a given parameter, such as � = 7 used 
in this work, the problem becomes a forward problem. When � is an unknown parameter, solving the equation 
becomes a backward problem. MDE is a linear, second-order, parabolic-type PDE in which the forward problem 
is addressed by  DNN28,79. However, the backward problem in MDE still needs to be understood. Here, we use 
PINN based on GLHS to solve the forward and backward problems in MDE.

Optimization scheme for GLHS and PINN. The neural network and sampling method should be 
optimized when used to solve a special PDE. In this study, the core issue in GLHS is how to find the optimizing 
mixture coefficient α as the special PDE; meanwhile, depth D and width W in the neural network are also 
important parameters in PINN and should be optimized. Given that the two types of parameters are independent, 
we adopt the independent variable method to optimize the GLHS and PINN parameters.

The primary issue in GLHS, which is how to find optimizing mixture coefficient α as the special PDE, is 
solved in PINN. We further describe the GLHS by comparing it with other mixture sampling methods in solving 
MDE using PINN, as shown in Fig. 4. For a comparison, we adopt two types of mixture samplings, namely, the 
mixture of random sampling and grid sampling, as shown in Fig. 4a, and GLHS in Fig. 4b, respectively. The data 
used are from solving for MDE in Eq. (10) with PBC of L = 1.0 , where the number of residual units is 6 and the 
width of neural network layer is 20 in PINN. Then, we use a total of N = 301× 301 data points in the mixture of 
random and grid samplings as well as GLHS, where the number of data points in Cartesian GS is αN . To explain 
the efficiency of the sampling method, we employ sampling standard errors as follows:

where ui is the PINN solving value and u0i is the numerical value solved by the Crank-Nicholson method, which 
has been used for MDE in previous simulation  calculations74,84–86. The sum takes over all the discrete data points 
in the definition domains used in the Crank-Nicholson method, and N is the total number of discrete data points.

In the mixture of random and grid sampling case, the results indicate that it is difficult to optimize σ and t 
as α varies; t is the corresponding training time, as shown in Fig. 4a. In particular, when standard error σ has 
the minimum value, training time t is the longest. In the GLHS case, σ can reach its minimum value and the t 
minimum value simultaneously, as shown in Fig. 4b. We optimize GLHS with α = 0.5 which indicates that the 
minimum error and training time can be achieved when the data numbers in GS are equal to those in LHS. Fig-
ure 4 also show the results of RS ( α = 0.0 in Fig. 4a), LHS ( α = 0.0 in Fig 4b) and GS ( α = 1.0 in Fig. 4a and b) 
by using PINN. We can find that in terms of t and σ , these three sampling methods are not good choices for data 
samplings, comparing to the GLHS with α = 0.5 . These results agree with those data distributions described in 
Fig. 3. We note that the LHS has been used in  PINN28. Here, we try to use the GLHS instead of LHS to enhance 
the efficiency for solving PDEs in PINN.

PBC is important in PDE, especially when handling a bulk polymer system. The boundary condition has been 
strengthened in previous studies when designing the structure of neural  networks36,87,88. Thus, we consider PBC 

(10)∂

∂t
u(x, t) =

∂2

∂x2
u(x, t)− � sin(2πx)u(x, t),

(11)σ =

√

√

√

√

N
∑

i=1

(ui − u0i)2

N − 1
,
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optimization when choosing the proper network parameters. As illustrated in Eq. (10), PBC in spatial period 
L can be regarded as u(0, t) = u(L, t) . The PBC in numerical methods can be done by setting the calculation 
cell size to L, which satisfies u(0, t) = u(L, t)72,74. However, the PBC in neural networks has to satisfy the left 
condition u(x, t) = u(x − L, t) , the right condition u(x, t) = u(x + L, t) , or both, that is, the squeeze period 
condition where x ∈ [0, L] . To identify the optimized PBC among the three PBCs, we construct the following 
types of loss functions.

where xi ∈ [0, L] and ti ∈ [0,T] . Summation is performed over the two domains. Equation (12) is commonly 
used in numerical methods and listed here for comparison.

The training processes for the four PBC loss functions are shown in Fig. 5. The standard errors (σp) from the 
results of PINN, i.e., u(x, t), and from the results of the Crank-Nicholson numerical method, i.e., u0(x, t) are also 
listed on the right side. In Type 1, as shown in Fig. 5a, although loss function Jp1 converges to a desired value, 
standard error σp1 is too large to achieve correct solutions. For Types 2 and 3, as shown in Fig. 5b and c, loss 
functions Jp2 and Jp3 can converge to the desired values, and standard errors σp2 and σp3 are still able to converge 
to the desired values. However, when we use the squeeze period condition, loss function Jp4 and standard error 
σp4 can converge to the desired value in the training processes. Furthermore, we calculate the Pearson correlation 
coefficient, ρX,Y , between standard error σp and loss function Jp , which can be generally defined as

(12)Jp1 =
1

N

N
∑

i=1

[u(0, ti)− u(L, ti)]2,

(13)Jp2 =
1

N

N
∑

i=1

[u(xi , ti)− u(xi − L, ti)]2,

(14)Jp3 =
1

N

N
∑

i=1

[u(xi , ti)− u(xi + L, ti)]2,

(15)Jp4 =Jp2 + Jp3,

b
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Figure 4.  Comparison of training time (t) and standard error ( σ ) with two data sampling methods in the PINN 
with residual units. (a) The mixture of GS and RS at α : (1− α) ratio, where α = 0 denotes simple random 
sampling; (b) The mixture of GS and LHS, i.e., GLHS, at α : (1− α) ratio, where α = 0 denotes simple LHS 
sampling. The purple bars on the left represent the standard error of network training results, and the abscissa 
(0.001–0.5) is amplified by log10 . The yellow bars on the right represent the time spent on network training.
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where X and Y denote standard error σp and loss function Jp , respectively. σX denotes the standard error of X, 
and cov(X, Y) represents the covariance between X and Y. Then, we list the ρX,Y for the four types of PBC in 
Table 1. The data indicate that the first three types of PBC have a strongly correlation between σp and Jp , but 
σp and Jp have almost no correlations in the squeeze boundary condition. This result indicates that the squeeze 
period method is feasible and can effectively improve the training accuracy of solving PDEs with PBC in PINN.

Then, we optimize the neural network parameters, namely, the depth and width in PINN(D and 
W). D is the number of residual units, and W is the number of neural units in the layer. D, W, and the 
amount of trained data(N) have a great influence on the output accuracy of the neural network. We train 
PINN in a multi-parameter space of D, W, and N, where D ∈ [3, 4, 5, 6, 7, 8] , W ∈ [10, 15, 20, 25, 30] , and 
N ∈ [2000, 4000, 6000, 8000, 10000, 20000] , as indicated in Table 2, where only several typical combinations are 
shown. Indeed, D ×W × N = 180 combinations exist in the full parameter space of [D, W, N]. Other detailed 
combinations can be found in Figs. S3 and S4 of Supplementary information.

We use loss functions J and standard errors σ to screen the desired parameters. The optimal parameter 
corresponds to the minimum σ , which is the combination with D = 6 , W = 20 , and N = 20000 . Generally, an 
increase in N leads to a decrease in J and σ , indicating a simple relationship. However, the optimal output relies 
on the complex combination of D and W. The data in Table 2 reveal that the best optimization combination is the 

(16)ρX,Y =
cov(X,Y)

σXσY
,

Figure 5.  Comparison of training processes for four types of PBC loss functions. The red line and the red 
Y-axis on the left represent the change of the loss functions, while the purple line and the purple Y-axis on the 
right represent the standard error between the network results and analytical solutions.

Table 1.  Pearson correlation coefficient between standard error σL and loss function JL.

PB ρX,Y

Numerical 0.72590

Left PB 0.85306

Right PB 0.70024

Squeeze PB 0.02463
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parameter combination of D = 6 , W = 20 , and N = 20000 . Generally, using a number of hidden layers during 
training results in a large precision loss, but the optimization combination here shows that this is not the  case89.

Forward and backward solutions. First, we discuss the forward solutions for MDE by PINN. We use 
the optimal PINN parameters, D = 6 , W = 20 and N = 20000 , and the GLHS parameter, α = 0.5 , to solve the 
forward and backward problems in MDEs appearing in Eq. (10). We take the definition domains x ∈ [0, 1] and 
t ∈ [0, 1] , and to evaluate the accuracy of the PINN solution u, we define the relative errors with respect to the 
numerical solutions u0 as follows:

where subscripts xi and tj correspond to definition domains x and t,respectively. We plot the neural network 
results and compare them with the numerical results in Fig. 6. We adopt an overall view in the two-dimensional 
space, as shown in Fig. 6a and b. The results indicate that the PINN results have high accuracy within 10−3 dis-
tributed in the defintion domain. Then, we examine the accuracy in one-dimensional space with given x or t, as 
shown in Fig. 6c and d, respectively. The data confirm that our PINN results vary with the given x or t. Further-
more, we illustrate the data for the given x or t in Table 3, where the relative errors are also listed.

For the inverse problem in MDE, discovering the unknown parameters is difficult due to the complex physi-
cal constraints and gradient disappearance. Unlike in the case where a sparse regression method is employed 
to determine PDE by time series measurements in the spatial  domain21, in this study, we design an interleaved 
training method with discontinuous double-loss functions Ŵe and Ŵb . Loss function Ŵe is defined in Eq. 7, and 
Ŵb can be defined as

The sum over all the definition domains, u0(xi , ti),is the numerical solution and taken as the standard value. In 
this method, we search for unknown parameter � through loss function Ŵe and optimize the network solution 
through Ŵb . That is, Ŵe is optimized to screen parameter � at the first training stage. Then, we lock up the param-
eter � to optimize the network solution Ŵb and obtain a high-accuracy network solution.

Specifically, we construct the PINN with four residual units, each of which has a full-connection layer width 
of 20 neural units, to solve the inverse problems. We optimize the network parameters and unknown parameters 
θ0(w, b, �) via the loss function J0(θ0) at the first stage. Then, we lock up parameter � and optimize θ1(w, b) by 
using loss function J1(θ1) at the second stage until the loss function reaches 10−5 , as shown in Fig. 7. We label 
the blue and brown dotted lines as � = 10 and J0(θ0) = 0 , respectively. The results indicate that parameter 
� = 10.00111 at t = 108s when J0(θ0) ≤ 10−5 , as shown in Fig. 7a. At this point, we lock up parameter � , and 
loss function J0(θ0) is automatically awitched to J1(θ1) . Then, network parameter θ1(w, b) , which determines the 
network solution, is further optimized at the second stage. We observe that the loss function is discontinuous at 
this point, as shown in the inserted part in Fig. 7b. Generally, the loss function exhibits a sudden drop when the 
optimizer switches in the training  process52. We also observe a discontinuous loss function in a small region of 
�J = 0.05 when the loss function switches. In the current study, we obtain parameter � with high accuracy. The 
absolute error of parameter � is 0.0011, the relative error is δ� = 0.011% , and the standard error is σ� = 0.0046 . 
In this work, we present a high-efficiency interleaved training method to search for the unknown parameters in 
the reverse problem in MDE, and it can be reasonably extended to other PDEs.

Comparison between PINN and NN. To illustrate the advantages of PINN with residual units, we 
compare the results from the PINN to the traditional NN by the standard error σ and training time t, as shown 

(17)δij = |
u(xi , tj)− u0(xi , tj)

u0(xi , tj)
|,

(18)Ŵb =
1

N

N
∑

i=1

[u(xi , ti)− u0(xi , ti)]2.

Table 2.  Standard error ( σ ) and loss function (J) corresponding to different parameters, depth (D), width (W), 
and number of data (N).

D W N J σ

6 20 20000 5.23× 10−5 1.1× 10−3

4 25 6000 9.84× 10−5 1.2× 10−3

3 30 8000 9.40× 10−5 1.3× 10−3

3 30 6000 1.10× 10−4 1.4× 10−3

4 25 20000 7.30× 10−5 1.5× 10−3

3 15 10000 3.88× 10−5 2.0× 10−3

8 20 6000 7.39× 10−5 2.4× 10−3

3 25 10000 1.67× 10−4 2.9× 10−3

5 25 4000 2.44× 10−4 3.2× 10−3

6 30 2000 1.96× 10−4 3.5× 10−3
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in Fig. 8. Here, the traditional NN is constructed without the residual units, which is similar to the previous 
 works22,25. For convenient comparison, the other conditions are set to be the same as in both cases, including the 
data samplings (GLHS with α=0.5), the input data number( N = 20000 ), and the width of network ( W = 20 ). 
Since the residual unit consists of two neural network layers, we take two network layers in traditional NN as a 
layer for more convenient comparison, so that there are 2D network layers in the traditional NN. Then, we only 
change the depth of PINN D to output the training times and standard errors in both cases. The results indicate 
that with the increase of the number of neural network layers, the advantages of PINN with residual units 
become more and more obvious. In particular, when D = 6, the traditional neural network encounters a gradient 
explosion, leading to the meaningless output of loss and the other parameters, as shown in Fig. 8; when D = 7 and 
8, the traditional NN can hardly be optimized bacause of the problem of gradient disapperance. This problem 
results in the extremely short training times t and large standard errors σ . In addition, even in the shallow 
networks with small D, the training time of PINN with residual units is still superiority to those of traditional 
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Figure 6.  Comparison of PINN results with numerical results. (a) The overall view in the two dimensional 
space of PINN results u(x, t); (b) Diagram of the difference between PINN results and numerical results; (c) 
The accuracy in one-dimensional space with given t = 0.00, 0.25, 0.50, 0.75, 1.00 ; (d) The accuracy in one-
dimensional space with given x = 0.00, 0.25, 0.75 . The blue dotted line represents the numerical results and the 
red line represents PINN results.

Table 3.  The relative errors corresponding to different time and space positions.

t δ x δ

0.00 8.55× 10−4 0.00 8.39× 10−4

0.25 4.95× 10−4 0.25 7.32× 10−4

0.50 8.43× 10−4 0.50 6.83× 10−4

0.75 7.31× 10−4 0.75 7.03× 10−4

1.00 6.57× 10−4 1.00 8.90× 10−4
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NN, as shown in Fig. 8. Furthermore, we have compared the efficiencies between the PINN and traditional NN 
with the other W, and the similar results were obtained, please see Tabel S1 in Supplementary information. We 
expect this PINN with residual untis based on the mixed data sampling to be applied to other works, especially 
to the three-dimensional PDEs, in the future.

Figure 7.  The training process of solving unknown parameters of inverse problem in MDE. (a) The 
optimization process of unknown parameter � ; (b) The optimization process of loss function J. The blue and 
brown dotted lines represent � = 10 and J = 0 , respectively.

Figure 8.  Comparison of training time (t) and standard error ( σ ) between PINN with residual units and 
traditional NN, Here, the width of neural network W is 20, data sampling number N is 20000, and the mixture 
coefficient of GLHS α is 0.5 in both cases. The yellow and green bars denote the training time t in the PINN and 
traditional NN cases, respectively, while the blue dots in the bars represent the corresponding standard error σ.
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Summary
We developed a PINN based on GLHS to solve the forward and backward MDEs by optimizing the corresponding 
parameters. This solver provides high efficiency and accuracy in solving forward and backward problems in one-
dimensional MDEs, and it effectively avoids the problems of gradient disappearance and network degradation 
existing in traditional feedforward neural networks. For the neural network, we properly designed residual 
units for PINN to solve MDE, and squeeze PBC was considered. For data sampling, we considered the mixture 
of GS and LHS. We believe that this method can also used in other dimensional, and we will confirm the view 
in the future.

Then, we optimized the parameters used in PINN by considering the loss function of PBC. Specifically, 
the depth and width of the neural network, D and W, were optimized. The results indicated that the squeeze 
condition is suitable for MDE. We also optimized GLHS data sampling by adjusting the mixture coefficient α . 
The results revealed that the parameter combination [D,W ,N ,α] should be optimized to [6, 20, 20000, 0.5] in 
the given MDE with high precision. We demonstrated how the hybrid solver deals with forward and backward 
problems in a special MDE. We compared the neural network solvers results to the numerical solutions and found 
good agreement. For the forward MDE, we obtained high-accuracy PINN solutions within 10−3 by analyzing 
the errors between the PINN solutions and the numerical results. For the inverse problem in MDE, we designed 
the ITM method to screen the unknown parameters. Unknown parameter � was locked up with relative error 
δ� = 0.011% and standard error σ� = 0.0046 . This PINN with residual units based on mixed data sampling GLHS 
can be generalized to other cases for other PDEs.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on 
reasonable request.

Received: 13 September 2022; Accepted: 10 February 2023

References
 1. Meerschaert, M. M. & Tadjeran, C. Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. 

Appl. Math. 172, 65–77 (2004).
 2. Inan, B. & Bahadir, A. R. Numerical solution of the one-dimensional Burgers’ equation: Implicit and fully implicit exponential 

finite difference methods. Pramana 81, 547–556 (2013).
 3. Alikhanov, A. A. A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 280, 424–438 (2015).
 4. Gao, G., Sun, H. & Sun, Z. Stability and convergence of finite difference schemes for a class of time-fractional sub-diffusion 

equations based on certain superconvergence. J. Comput. Phys. 280, 510–528 (2015).
 5. Moghaddam, B. P. & Machado, J. A stable three-level explicit spline finite difference scheme for a class of nonlinear time variable 

order fractional partial differential equations. Comput. Math. with Appl. 73, 1262–1269 (2017).
 6. Elango, S. et al. Finite difference scheme for singularly perturbed reaction diffusion problem of partial delay differential equation 

with nonlocal boundary condition. Adv. Differ. Equ. 2021, 115 (2021).
 7. Ying, L. Partial differential equations and the finite element method. Math. Comput. 76, 1693–1694 (2007).
 8. Jiang, Y. & Ma, J. High-order finite element methods for time-fractional partial differential equations. J. Comput. Appl. Math. 235, 

3285–3290 (2011).
 9. Gunzburger, M. D., Webster, C. G. & Zhang, G. Stochastic finite element methods for partial differential equations with random 

input data. Acta Numer 23, 521–650 (2014).
 10. Lehrenfeld, C., Olshanskii, M. A. & Xu, X. A stabilized trace finite element method for partial differential equations on evolving 

surfaces. SIAM J. Numer. Anal. 56, 1643–1672 (2018).
 11. Li, C. & Wang, Z. The local discontinuous Galerkin finite element methods for Caputo-type partial differential equations: 

Mathematical analysis. Appl. Numer. Math. 150, 587–606 (2020).
 12. Lai, J., Liu, F., Anh, V. V. & Liu, Q. A space-time finite element method for solving linear riesz space fractional partial differential 

equations. Numer Algorithms 88, 499–520 (2021).
 13. Du, S. & Cai, Z. Adaptive finite element method for dirichlet boundary control of elliptic partial differential equations. J. Sci. 

Comput. 89, 36 (2021).
 14. Xu, Y., Chen, Q. & Guo, Z. Optimization of heat exchanger networks based on Lagrange multiplier method with the entransy 

balance equation as constraint. Int. J. Heat Mass Transf. 95, 109–115 (2016).
 15. Hamid, M., Usman, M., Zubair, T. & Mohyud-Din, S. T. Comparison of Lagrange multipliers for telegraph equations. Ain Shams 

Eng. J. 9, 2323–2328 (2017).
 16. Antoine, X., Shen, J. & Tang, Q. Scalar Auxiliary Variable/Lagrange multiplier based pseudospectral schemes for the dynamics of 

nonlinear Schrödinger/Gross-Pitaevskii equations. J. Comput. Phys. 437, 110328 (2021).
 17. Lee, H. G., Shin, J. & Lee, J.-Y. A high-order and unconditionally energy stable scheme for the conservative Allen-Cahn equation 

with a nonlocal Lagrange multiplier. J. Sci. Comput. 90, 51 (2022).
 18. Yang, J. & Kim, J. Numerical simulation and analysis of the Swift-Hohenberg equation by the stabilized Lagrange multiplier 

approach. Comput. Appl. Math. 41, 20 (2022).
 19. Lecun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).
 20. Raissi, M., Perdikaris, P. & Karniadakis, G. E. Machine learning of linear differential equations using Gaussian processes. J. Comput. 

Phys. 348, 683–693 (2017).
 21. Rudy, S. H., Brunton, S. L., Proctor, J. L. & Kutz, J. N. Data-driven discovery of partial differential equations. Sci. Adv. 3, e1602614 

(2017).
 22. Brink, A. R., Najera-Flores, D. A. & Martinez, C. The neural network collocation method for solving partial differential equations. 

Neural Comput. Appl. 33, 5591–5608 (2021).
 23. Chen, Z., Churchill, V., Wu, K. & Xiu, D. Deep neural network modeling of unknown partial differential equations in nodal space. 

J. Comput. Phys. 449, 110782 (2022).
 24. Mistry, A., Franco, A. A., Cooper, S. J., Roberts, S. A. & Viswanathan, V. How machine learning will revolutionize electrochemical 

sciences. ACS Energy Lett. 6, 1422–1431 (2021).
 25. Hauptmann, A. & Cox, B. Deep learning in photoacoustic tomography: current approaches and future directions. J. Biomed. Opt. 

25, 112903 (2020).



12

Vol:.(1234567890)

Scientific Reports |         (2023) 13:2491  | https://doi.org/10.1038/s41598-023-29822-3

www.nature.com/scientificreports/

 26. Alipanahi, B., Delong, A., Weirauch, M. T. & Frey, B. J. Predicting the sequence specificities of DNA- and RNA-binding proteins 
by deep learning. Nat. Biotechnol. 33, 831–838 (2015).

 27. Lake, B. M., Salakhutdinov, R. & Tenenbaum, J. B. Human-level concept learning through probabilistic program induction. Science 
350, 1332–1338 (2015).

 28. Raissi, M., Perdikaris, P. & Karniadakis, G. E. Physics-informed neural networks: A deep learning framework for solving forward 
and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019).

 29. Owhadi, H. Bayesian numerical homogenization. Multiscale Model. Simul. 13, 812–828 (2015).
 30. Raissi, M., Perdikaris, P. & Karniadakis, G. E. Inferring solutions of differential equations using noisy multi-fidelity data. J. Comput. 

Phys. 335, 736–746 (2017).
 31. Karniadakis, G. E. et al. Physics-informed machine learning. Nat. Rev. Phys. 3, 422–440 (2021).
 32. He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. IEEE Conf. Comput. Vis. Pattern Recognit Proc. 

770–778 (2016).
 33. Ruthotto, L. & Haber, E. Deep neural networks motivated by partial differential equations. J. Math. Imaging Vis. 62, 352–364 (2020).
 34. Luo, Z., Sun, Z., Zhou, W., Wu, Z. & Kamata, S. I. Rethinking ResNets: Improved stacking strategies with high-order schemes for 

image classification. Complex. Intell. Syst. 8, 3395–3407 (2022).
 35. Baydin, A. G., Pearlmutter, B. A., Radul, A. A. & Siskind, J. M. Automatic differentiation in machine learning: A survey. J. Mach. 

Learn. Res. 18, 5595–5637 (2018).
 36. Lu, L., Meng, X., Mao, Z. & Karniadakis, G. E. Deepxde: A deep learning library for solving differential equations. SIAM Rev. 63, 

208–228 (2021).
 37. Cai, S., Mao, Z., Wang, Z., Yin, M. & Karniadakis, G. E. Physics-informed neural networks (PINNs) for fluid mechanics: A review. 

Acta. Mech. Sin. 37, 1727–1738 (2022).
 38. Viana, F. A. & Subramaniyan, A. K. A survey of Bayesian calibration and physics-informed neural networks in scientific modeling. 

Arch. Comput. Methods Eng. 28, 3801–3830 (2021).
 39. Mao, Z., Jagtap, A. D. & Karniadakis, G. E. Physics-informed neural networks for high-speed flows. Comput. Methods Appl. Mech. 

Eng. 360, 112789 (2020).
 40. Zhang, E., Dao, M., Karniadakis, G. E. & Suresh, S. Analyses of internal structures and defects in materials using physics-informed 

neural networks. Sci. Adv. 8, eabk0644 (2022).
 41. Cai, S., Wang, Z., Wang, S., Perdikaris, P. & Karniadakis, G. E. Physics-informed neural networks for heat transfer problems. J. 

Heat Transf. 143, 060801 (2021).
 42. Chen, Z., Gao, J., Wang, W. & Yan, Z. Physics-informed generative neural network: An application to troposphere temperature 

prediction. Environ. Res. Lett. 16, 065003 (2021).
 43. Bai, Y., Chaolu, T. & Bilige, S. The application of improved physics-informed neural network (IPINN) method in finance. Nonlinear 

Dyn. 107, 3655–3667 (2022).
 44. Taghizadeh, E., Byrne, H. M. & Wood, B. D. Explicit physics-informed neural networks for nonlinear closure: The case of transport 

in tissues. J. Comput. Phys. 449, 110781 (2022).
 45. Jiang, J. et al. Physics-informed deep neural network enabled discovery of size-dependent deformation mechanisms in 

nanostructures. Int. J. Solids Struct. 236–237, 111320 (2022).
 46. Kissas, G. et al. Machine learning in cardiovascular flows modeling: Predicting arterial blood pressure from non-invasive 4D flow 

MRI data using physics-informed neural networks. Comput. Methods Appl. Mech. Eng. 358, 112623 (2020).
 47. Riel, B., Minchew, B. & Bischoff, T. Data-driven inference of the mechanics of slip along glacier beds using physics-informed neural 

networks: Case study on rutford ice stream, Antarctica. J. Adv. Model. Earth Syst. 13, e2021MS002621 (2021).
 48. Yang, L., Meng, X. & Karniadakis, G. E. B-pinns: Bayesian physics-informed neural networks for forward and inverse PDE problems 

with noisy data. J. Comput. Phys. 425, 109913 (2021).
 49. Pang, G., Lu, L. & Karniadakis, G. E. Fpinns: Fractional physics-informed neural networks. SIAM J. Sci. Comput. 41, A2603–A2626 

(2019).
 50. Jagtap, A. D. & Karniadakis, G. E. Extended physics-informed neural networks (XPINNs): A generalized space-time domain 

decomposition based deep learning framework for nonlinear partial differential equations. Commun. Comput. Phys. 28, 2002–2041 
(2020).

 51. Meng, X., Li, Z., Zhang, D. & Karniadakis, G. E. PPINN: Parareal physics-informed neural network for time-dependent PDEs. 
Comput. Methods Appl. Mech. Eng. 370, 113250 (2020).

 52. Mahmoudabadbozchelou, M., Karniadakis, G. E. & Jamali, S. nn-pinns: Non-Newtonian physics-informed neural networks for 
complex fluid modeling. Soft Matter. 18, 172–185 (2022).

 53. Kharazmi, E., Zhang, Z. & Karniadakis, G. E. hp-VPINNs: Variational physics-informed neural networks with domain 
decomposition. Comput. Methods Appl. Mech. Engrg. 374, 113547 (2021).

 54. Pang, G., D’Elia, M., Parks, M. & Karniadakis, G. E. nPINNs: Nonlocal physics-informed neural networks for a parametrized 
nonlocal universal laplacian operator. Algorithms Appl. J. Comput. Phys. 422, 109760 (2020).

 55. He, Q. & Tartakovsky, A. M. Physics-informed neural network method for forward and backward advection-dispersion equations. 
Water Resour. Res. 57, e2020WR029479 (2021).

 56. Zhang, D., Lu, L., Guo, L. & Karniadakis, G. E. Quantifying total uncertainty in physics-informed neural networks for solving 
forward and inverse stochastic problems. J. Comput. Phys. 397, 108850 (2019).

 57. Lou, Q., Meng, X. & Karniadakis, G. E. Physics-informed neural networks for solving forward and inverse flow problems via the 
Boltzmann-BGK formulation. J. Comput. Phys. 447, 110676 (2021).

 58. Jagtap, A. D., Kharazmi, E. & Karniadakis, G. E. Conservative physics-informed neural networks on discrete domains for 
conservation laws: Applications to forward and inverse problems. Comput. Methods Appl. Mech. Eng. 365, 113028 (2020).

 59. Han, J., Jentzen, A. & Weinan, E. Solving high-dimensional partial differential equations using deep learning. Proc. Natl. Acad. 
Sci. USA 115, 8505–8510 (2018).

 60. Ruthotto, L., Osher, S. J., Li, W., Nurbekyan, L. & Fung, S. W. A machine learning framework for solving high-dimensional mean 
field game and mean field control problems. Proc. Natl. Acad. Sci. USA 117, 9183–9193 (2020).

 61. Bar-Sinai, Y., Hoyer, S., Hickey, J. & Brenner, M. P. Learning data-driven discretizations for partial differential equations. Proc. 
Natl. Acad. Sci. USA 116, 15344–15349 (2019).

 62. Helton, J. C., Davis, F. J. & Johnson, J. D. A comparison of uncertainty and sensitivity analysis results obtained with random and 
Latin hypercube sampling. Reliab. Eng. Syst. Saf. 89, 305–330 (2005).

 63. Navid, A., Khalilarya, S. & Abbasi, M. Diesel engine optimization with multi-objective performance characteristics by non-
evolutionary Nelder-Mead algorithm: Sobol sequence and Latin hypercube sampling methods comparison in DoE process. Fuel 
228, 349–367 (2018).

 64. Shields, M. D. & Zhang, J. The generalization of Latin hypercube sampling. Reliab. Eng. Syst. Saf. 148, 96–108 (2016).
 65. Chen, Y., Wen, J. & Cheng, S. Probabilistic load flow method based on nataf transformation and Latin hypercube sampling. IEEE 

Trans. Sustain. Energy 4, 294–301 (2013).
 66. Sirignano, J. & Spiliopoulos, K. DGM: A deep learning algorithm for solving partial differential equations. J. Comput. Phys. 375, 

1339–1364 (2018).



13

Vol.:(0123456789)

Scientific Reports |         (2023) 13:2491  | https://doi.org/10.1038/s41598-023-29822-3

www.nature.com/scientificreports/

 67. Li, H., Zhai, Q. & Chen, J. Z. Neural-network-based multistate solver for a static Schrödinger equation. Phys. Rev. A 103, 032405 
(2021).

 68. Gao, H., Sun, L. & Wang, J. X. PhyGeoNet: Physics-informed geometry-adaptive convolutional neural networks for solving 
parameterized steady-state PDEs on irregular domain. J. Comput. Phys. 428, 110079 (2021).

 69. Dong, S. & Li, Z. Local extreme learning machines and domain decomposition for solving linear and nonlinear partial differential 
equations. Comput. Methods Appl. Mech. Eng. 387, 114129 (2021).

 70. Matsen, M. W. The standard Gaussian model for block copolymer melts. J. Phys. Condens. Matter 14, R21–R47 (2002).
 71. Fredrickson, G. H., Ganesan, V. & Drolet, F. Field-theoretic computer simulation methods for polymers and complex fluids. 

Macromolecules 35, 16–39 (2002).
 72. Fredrickson, G. H. The Equilibrium Theory of Inhomogenous Polymers (Oxford University Press, Oxford, 2006).
 73. Matsen, M. W. & Schick, M. Stable and unstable phases of a diblock copolymer melt. Phys. Rev. Lett. 72, 2660–2663 (1994).
 74. Drolet, F. & Fredrickson, G. H. Combinatorial screening of complex block copolymer assembly with self-consistent field theory. 

Phys. Rev. Lett. 83, 4317–4320 (1999).
 75. Guo, Z. et al. Discovering ordered phases of block copolymers: New results from a generic Fourier-space approach. Phys. Rev. Lett. 

101, 028301 (2008).
 76. Song, W., Tang, P., Qiu, F., Yang, Y. & Shi, A. C. Phase behavior of semiflexible-coil diblock copolymers: A hybrid numerical SCFT 

approach. Soft Matter 7, 929–938 (2011).
 77. Jiang, Y. & Chen, J. Z. Self-consistent field theory and numerical scheme for calculating the phase diagram of wormlike diblock 

copolymers. Phys. Rev. E 88, 042603 (2013).
 78. Jiang, Y. & Chen, J. Z. Influence of chain rigidity on the phase behavior of wormlike diblock copolymers. Phys. Rev. Lett. 110, 

138305 (2013).
 79. Wei, Q., Jiang, Y. & Chen, J. Z. Machine-learning solver for modified diffusion equations. Phys. Rev. E 98, 053304 (2018).
 80. Glorot, X. & Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. J. Mach. Learn. Res. 9, 249–256 

(2010).
 81. Balduzzi, D. et al. The shattered gradients problem if resnets are the answer, then what is the question?. ICLM Proc. 70, 342–350 

(2017).
 82. Li, X. Simultaneous approximations of multivariate functions and their by neural networks with one hidden layer. Neurocomputing 

12, 327–343 (1996).
 83. Bihlo, A. & Popovych, R. O. Physics-informed neural networks for the shallow-water equations on the sphere. J. Comput. Phys. 

456, 111024 (2022).
 84. Li, S., Chen, P., Wang, X., Zhang, L. & Liang, H. Surface-induced morphologies of lamella-forming diblock copolymers confined 

in nanorod arrays. J. Chem. Phys. 130, 014902 (2009).
 85. Chen, P., Liang, H. & Shi, A. C. Origin of microstructures from confined asymmetric diblock copolymers. Macromolecules 40, 

7329–7335 (2007).
 86. Tang, P., Qiu, F., Zhang, H. & Yang, Y. Morphology and phase diagram of complex block copolymers: ABC linear triblock 

copolymers. Phys. Rev. E 69, 031803 (2004).
 87. Lagaris, I. E., Likas, A. C. & Papageorgiou, D. G. Neural-network methods for boundary value problems with irregular boundaries. 

IEEE Trans. Neural Netw. 11, 1041–1049 (2000).
 88. Sun, L., Gao, H., Pan, S. & Wang, J. X. Surrogate modeling for fluid flows based on physics-constrained deep learning without 

simulation data. Comput. Methods Appl. Mech. Eng. 361, 112732 (2020).
 89. Berg, J. & Nyström, K. A unified deep artificial neural network approach to partial differential equations in complex geometries. 

Neurocomputing 317, 28–41 (2018).

Acknowledgements
We thank for the financial supports from the Program of National Natural Science Foundation of China (Grant 
No. 21973070).

Author contributions
Methodology, M.X.; Supervision, L.S.; Validation, F.Q.; Writing-original draft, F.Q.; Writing-review and editing, 
L.S. All authors reviewed the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 023- 29822-3.

Correspondence and requests for materials should be addressed to S.L.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2023

https://doi.org/10.1038/s41598-023-29822-3
https://doi.org/10.1038/s41598-023-29822-3
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	A physics-informed neural network based on mixed data sampling for solving modified diffusion equations
	Neural network and data sampling
	PINN with residual units. 
	Mixed GS and LHS method. 

	Solving for forward and backward MDE
	Problem setup. 
	Optimization scheme for GLHS and PINN. 
	Forward and backward solutions. 
	Comparison between PINN and NN. 

	Summary
	References
	Acknowledgements


