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Bioinformatics construction 
and experimental validation 
of a cuproptosis‑related 
lncRNA prognostic model 
in lung adenocarcinoma 
for immunotherapy response 
prediction
Linfeng Li 1,2,3, Qidong Cai 4, Zeyu Wu 4, Xizhe Li 1,2, Wolong Zhou 1,2, Liqing Lu 1,2,  
Bin Yi 1,2, Ruimin Chang 1,2, Heng Zhang 1,2, Yuanda Cheng 1,2, Chunfang Zhang 1,2,3 & 
Junjie Zhang 1,2,3,5*

Cuproptosis is a newly form of cell death. Cuproptosis related lncRNA in lung adenocarcinoma (LUAD) 
has also not been fully elucidated. In the present study, we aimed to construct a prognostic signature 
based on cuproptosis‑related lncRNA in LUAD and investigate its association with immunotherapy 
response. The RNA‑sequencing data, clinical information and simple nucleotide variation of LUAD 
patients were obtained from TCGA database. The LASSO Cox regression was used to construct a 
prognostic signature. The CIBERSORT, ESTIMATE and ssGSEA algorithms were applied to assess 
the association between risk score and TME. TIDE score was applied to reflect the efficiency of 
immunotherapy response. The influence of overexpression of lncRNA TMPO‑AS1 on A549 cell was also 
assessed by in vitro experiments. The lncRNA prognostic signature included AL606834.1, AL138778.1, 
AP000302.1, AC007384.1, AL161431.1, TMPO‑AS1 and KIAA1671‑AS1. Low‑risk group exhibited 
much higher immune score, stromal score and ESTIMATE score, but lower tumor purity compared 
with high‑risk groups. Also, low‑risk group was associated with a much higher score of immune cells 
and immune related function sets, indicating an immune activation state. Low‑risk patients had 
relative higher TIDE score and lower TMB. External validation using IMvigor210 immunotherapy 
cohort demonstrated that low‑risk group had a better prognosis and might more easily benefit from 
immunotherapy. Overexpression of lncRNA TMPO‑AS1 promoted the proliferation, migration and 
invasion of A549 cell line. The novel cuproptosis‑related lncRNA signature could predict the prognosis 
of LUAD patients, and helped clinicians stratify patients appropriate for immunotherapy and 
determine individual therapeutic strategies.

Lung cancer is one of the most common malignancies worldwide, with the high incidence and mortality. In 2020, 
there was an estimated 2,206,771 newly diagnosed cases and 1,796,144 deaths,  respectively1. Lung adenocarci-
noma (LUAD) is the most frequent histological subtype, taking up 40–50% of lung cancer cases. To date, immune 
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checkpoint inhibitors (ICIs), such as PD-1/PD-L1 and CTLA4, have yielded promising results in  LUAD2–4. How-
ever, major clinical response is only achieved in a small subset of patients. Novel molecular feature stratification 
of LUAD patients that could accurately predict the efficacy of immunotherapy is urgently needed, and this may 
help clinicians formulate personalized immunotherapy in the clinic.

LncRNA is a kind of RNA with a molecular weight of more than 200  nucleotides5. Nowadays, with the 
development of high-throughput sequencing, researchers discovered a growing body of lncRNAs that can be 
deemed as prognostic and stratification  biomarkers6–8. Besides, accumulating evidence suggested that lncRNAs 
implied the potential of evaluating the immune cell infiltration and predicting the effect of  immunotherapy9,10. 
However, studies concerning lncRNAs as LUAD prognostic biomarkers and their roles in immune regulation 
and immunotherapy are still insufficient. Further study is warranted.

Recently, a new form of programmed cell death (PCD) was discovered by Tsvetkov et al., termed cuproptosis. 
Cuproptosis was dependent on mitochondrial respiration and tricarboxylic acid (TCA)  cycle11. In the present 
study, we aimed to explore the biological significance of cuproptosis-related lncRNAs in LUAD and constructed 
a prognostic model. We also evaluated the connection between risk score and tumor microenvironment (TME), 
tumor mutation burden (TMB) and immunotherapy response. These results might provide us new insights in 
stratifying patients suitable for immunotherapy and improving the prognosis of LUAD patients.

Methods
Data collection and processing. The RNA-sequencing data, clinical information and simple nucleotide 
variation of LUAD patients were retrieved from TCGA database (https:// portal. gdc. cancer. gov/, accessed April 8, 
2022). Nineteen cuproptosis-related genes (CRG) were mainly collected from previous study, including LIPT1, 
GLS, NFE2L2, NLRP3, LIAS, ATP7B, ATP7A, SLC31A1, FDX1, LIPT2, DLD, DLAT, PDHA1, PDHB, MTF1, 
CDKN2A, DBT, GCSH and  DLST11. Pearson’s correlation analysis was performed to screen cuproptosis-related 
lncRNAs (p < 0.001, |R2|> 0.4). The following R packages were used in this section: ggplot2, dplyr and ggalluvial.

Construction of LncRNAs Prognostic Model. All patients were randomly separated into training or 
test cohort with a ratio of 1:1. Uni-Cox analysis was applied to screen cuproptosis-related lncRNAs associated 
with overall survival (OS) in the training cohort, with p < 0.01 considered as significant prognostic factors. Then 
least absolute shrinkage and selection operator (LASSO) regression analysis was used to narrow down the can-
didate lncRNAs. Multi-Cox regression analysis was used to construct the risk model and evaluate contribution 
of each lncRNA as prognostic factors in OS of LUAD cohort. The risk model was calculated as the mathematic 
formula:

where n,  Xi, and βi represented total number, FPKM value and regression coefficient of lncRNAs, respectively. 
High-/low- risk group was divided with the median risk score as cutoff value. Subsequently the patients in the test 
cohort were also divided into high-/low- risk group based on the defined cut-off value. KM analysis was utilized 
to evaluate the OS difference in different risk groups. Receiver operating characteristic (ROC) curve was applied 
to evaluate the diagnostic performance of the model. Uni-cox and multi-cox analysis were applied to evaluate the 
association between clinicopathological factors and OS. The following R packages were used in this section: sur-
vival, ggplot2, caret, glmnet, dplyr, ggalluvial, survminer, pheatmap, timeROC, tidyverse, ggExtra, pec and rms.

The association between risk score and TMB. Waterfall plot analysis was performed to investigate the 
association between risk score and TMB. Survival analysis was also performed based on TMB and TMB plus 
risk score. The following R packages were used in this section: maftools, limma, ggpubr, survival and survminer.

Functional enrichment analysis. Principal component analysis (PCA) and scatter diagrams were per-
formed. The differentially expressed genes (DEGs) between different risk groups were analyzed by GO and 
KEGG  pathways12,13, setting the standards of |logFC|> 1 and adjusted p < 0.05. The following R packages were 
used in this section: limma, scatterplot3d, ggplot2, circlize, ggpubr, colorspace, stringi, RColorBrewer.

The association between risk score and TME. The immune, stromal and ESTIMATEs scores, and the 
tumor purity was calculated to evaluate the association between risk score and TME. The relative abundances of 
immune cells were calculated to illustrate the relationship between risk score and immune status. Single sample 
gene set enrichment analysis (ssGSEA) was applied to investigate the expression differences in immune-related 
functional gene sets in high- and low-risk groups. The following R packages were used in this section: estimate, 
CiberSort, ggpubr, ggExtra, GSEAbase, limma, corrplot, and ggplot2.

Prediction of therapy response. Package “PRRophetic” was used to predict the  IC50 of the drugs of dif-
ferent groups. Several critical genes associated with the ICIs response were investigated between different risk 
groups. We employed TIDE database to evaluate the individual likelihood of immune escape. The following R 
packages were also used in this section: ggpubr, limma, pRRophetic and ggplot2.

Model comparison and validation. The diagnostic performance of risk model was compared with the 
existing models collected from literature for LUAD prognosis  prediction14–16. The clinical and treatment data of 

Risk score =

n∑

i=1

Xi × βi
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IMvigor210 cohort was downloaded from http:// resea rch- pub. gene. com/ IMvig or210 CoreB iolog ies for model 
validation. The following R packages were used in this section: survival, caret, glmnet, survminer and timeROC.

Cell culture. A549 cell line was bought from the Chinese Academy of Science Cell Bank (Shanghai, China), 
and cultured using RPMI‐1640 (Gibco) medium. LncRNA TMPO-AS1 cDNA was incorporated into the 
pcDNA3.1( +) vector (Invitrogen) for overexpression of TMPO-AS1 in A549 cell line. The Plasmid was verified 
by DNA sequencing.

Cell counting Kit‑8 (CCK‑8) assay. The cell viability of A549 cell was monitored by CCK-8 (Biosharp). 
We seeded the A549 cell (3*103 /well) in the 96-well plates, and determined OD450 at 0, 24, 48, 72 and 96 h, 
respectively.

Transwell assay. Briefly, 1 ×  103 A549 cells were suspended and added into the upper chamber, while 
RPMI-1640 medium was added into the lower chamber. Cells were incubated at 37 °C for 24 h. Nonmigrating 
cells were then removed. Migrated cells at the lower surface of the membrane were stained with 1% crystal violet 
for 15 min, and then assessed.

Would healing assay. Briefly, confluent satellite cells were serum deprived overnight and then sterile tips 
were used to scratch on the monolayer. Then media 2% FBS was added to cells for 24 h. The cells were photo-
graphed immediately after scratch and at the end of the experiment.

Statistical analysis. Wilcoxon test was employed for co-expression analysis and differential analysis. Chi-
square test was used to investigate the correlation between risk score and clinicopathological features. The Spear-
man correlation analysis was used for risk score and immune score. The Fisher exact test was used for the dif-
ferential analysis of TIDE scores. All analysis was two-sided, with *p < 0.05 considered significant. The flowchart 
was mapped using software EdrawMax (Version 10.5.2, https:// www. edraw soft. com/ edraw- max/). Statistical 
analysis and data visualizations were carried out in R software (R version 4.1.0, Index of /src/base/R-4 (r-project.
org)). Image processing was performed using Adobe Illustrator (CC 2017).

Results
Cuproptosis‑related lncRNAs screening in LUAD patients. Figure 1 showed the design of the pre-
sent study. A total of 5172 cuproptosis-related lncRNAs were screened when setting the criteria of p < 0.001 and 
|R2|> 0.4. The Sankey diagram of 19 CRGs and lncRNAs was presented in Fig. 2A.

Construction of risk model using screened lncRNAs. A total of 507 valid clinical data samples of 
LUAD were collected. The baseline characteristics of training and test cohorts were summarizeds in Table 1. No 
statistically significant differences were observed between training cohort and test cohort.

Uni-Cox survival analysis identified 14 cuproptosis-related prognostic lncRNAs in the training cohort (Table 2 
and Fig. 2B–D). Subsequently, seven genes cuproptosis-related lncRNA were selected to construct the prog-
nostic score using their regression coefficients, including AL606834.1, AL138778.1, AP000302.1, AC007384.1, 
AL161431.1, TMPO-AS1 and KIAA1671-AS1 (Table 2). The associations between prognostic lncRNAs and 
CRGs were shown in Fig. 2E. KM analysis confirmed that low-risk group patients had a better prognosis than 
those in the high-risk group, with p <0.001(Fig. 3A). The heatmap results indicated that the expressions of 
AL606834.1, AL161431.1 and TMPO − AS1 were upregulated in the high-risk group, while others were down-
regulated (Fig. 3B). The survival time and living status were displayed in Fig. 3C,D ranked by the distribution of 
the risk score. Using the same median cutoff value, similar results were observed in the test cohort (Fig. 3E–H) 
and total cohort (Fig. 3I–L).

Moreover, uni- and multi-cox analysis demonstrated that risk score, stage and radiotherapy were independ-
ent prognostic factors (Figure S1A&B). The AUC values of the risk model at 1, 2, and 3 years were 0.679, 0.676 
and 0.668, respectively (Figure S1C ~ E). The above results suggested that the risk score system might be used 
as a novel method for stratifying LUAD patients. Then the nomogram was constructed to predict the 1-, 2- and 
3-year survival possibility of LUAD patients (Figure S1F&G). The AUC value of nomogram was 0.716, better 
than the risk model alone (Figure S1H). The slopes of the correction curve were close to 1, indicating a good 
prediction accuracy of nomogram.

Functional enrichment analysis of the cuproptosis‑related lncRNAs. PCA might reflect that risk 
score could accurately distinguish different risk groups, while CRGs and cuproptosis-related lncRNAs could not 
(Fig. 4A–C). GO analysis demonstrated that the biological functions were mainly involved in microtubule bind-
ing and microtubule − based movement (Fig. 4D&E). KEGG analysis revealed that DEGs were involved in cell 
cycle and complement and coagulation cascades (Fig. 4F&G).

Analysis of TMB in LUAD cohorts. We then compared the TMB between high- and low-risk groups. 
High-risk group exhibited a more extensive TMB (Fig. 5A ~ C). The TMB of popular genes in LUAD, such as 
p53, were 54% and 27% in the high- and low-risk group, respectively (Fig. 5A&B). Previous study indicated 
that high TMB increased response rates to the immunotherapy and improved outcomes compared with lower 
 TMB17. The survival analysis confirmed that high TMB group surely exhibited better OS than the low TMB 
group (Fig. 5D). Further analysis demonstrated that low-risk patients with H-TMB exhibited the best prognosis 
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among the four subgroups (Fig. 5E). This inspired us that the combination of risk score and TMB might have a 
more accurate prognostic value for LUAD patients.

The association between risk score and TME. As shown in Fig. 6A–D, low-risk group exhibited much 
higher immune score, stromal score, ESTIMATE score, but lower tumor purity compared with high-risk groups, 
with p<0.001. Low-risk group was associated with more abundant plasma cells and resting CD4 memory T cells 
and resting dendritic cells, while high-risk group was accompanied with richer activated CD4 memory T cells 
and M0 macrophages (Fig. 6E). Besides, low-risk group exhibited a much higher score in nearly all immune cells 
and immune related function sets compared (Fig. 6F,G).

Prediction of chemotherapy and targeted therapy response in different risk groups. Six 
common drugs used in lung cancer exhibited a significant IC50 difference between high- and low-risk groups, 
including 5-fluorouracil, gemcitabine, mitomycin C, vinorelbine, paclitaxel and alectinib. Interestingly, all 6 
drugs showed a much lower  IC50 values in the high-risk group, indicating a better antitumor efficacy (Figure S2).

The association between risk score and immune checkpoint genes. Six genes, including TIGIT, 
BTLA, HAVCR2, TREM2, CD47 and CTLA4, exhibited a strong negative correlation with risk score, with 
p<0.001 (Fig. 7A–G). The low-risk group patients presented higher TIDE scores compared with high-risk group, 
indicating a much more potential of immune escape (Fig. 7H). Also, nearly all immune checkpoint-related genes 
showed a relatively high expression in the low-risk group, but except CD276 (Fig. 7I). Given the high expression 
of CTLA-4 in the low-risk group, patients might be more sensitive to respond to anti-CTLA4 immunotherapy 
(Fig. 7B).

Model comparison and validation. We compared the diagnostic performance of the risk model with the 
existing models collected from literature for LUAD prognosis  prediction14–16. The AUC values of risk model in 
the present study, Zhang’s model, Song’s model and Ren’s model were 0.679, 0.687, 0.668 and 0.674, respectively 

Figure 1.  Flowchart of the present study.
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(Figure S3A). Our model exhibited a comparable and even better diagnostic performance compared with the 
existing models.

For further validation our risk model in predicting immunotherapy response, we collected the clinical and 
treatment data from IMvigor210 cohort: http:// resea rch- pub. gene. com/ IMvig or210 CoreB iolog ies and calcu-
lated risk score of each patient. Low-risk group exhibited a better prognosis, with p < 0.05 (Figure  S3B). We 
then compared the risk score distribution of each group, including inflamed, excluded and desert. Inflamed 
subgroup exhibited relatively lowest risk scores, while desert group exhibited highest risk scores, with statically 
significant differences, which indicated a more abundant immune infiltrations in inflamed subgroup. Also, the 
immunotherapy response results demonstrated that CR/PR group had lower risk scores compared with SD/PD 
groups, with p < 0.05 (Figure SS3D). Thus, these results might indicate that low-risk group more easily benefited 
from immunotherapy.

TMPO‑AS1 overexpression promotes the proliferation, migration and invasion of A549 cell 
line. The HR value of TMPO-AS1 was the most significant among the 7 lncRNAs used for risk mode con-
struction. Thus, TMPO-AS1 was chosen for further in vitro validation. The expression level of TMPO-AS1 in 
Stage III-IV LUAD patients was significantly higher than that in Stage I-II LUAD patients from TCGA database 
(Fig. 8A). Also, high TMPO-AS1 expression patients (top 25%) exhibited a poorer prognosis than low TMPO-
AS1 expression patients (Fig. 8B). In vitro experiments further validated that overexpression of TMPO-AS1 
promoted the proliferation, migration and invasion of A549 cell line (Fig.  8C–E). In summary, TMPO-AS1 
increases the tumorigenicity of A549 cell line.

Discussion
The risk model consisted of 7 lncRNAs, of which AL606834.1, AL161431.1 and TMPO-AS1 had been previously 
reported. The high expression of AL606834.1 was associated with poor prognosis and unfavorable immune 
response in LUAD  patients18. Down-regulation of AL161431.1 might suppress the proliferation, migration of 
A549 cells, and induced cell  apoptosis19. TMPO-AS1 was regarded as an oncogenic lncRNA and reportedly 
participated in the occurrence of various  tumors20–22. In vitro studies, high expression of TMPO-AS1 was demon-
strated to function as a sponge of ceRNAs and inhibit miRNA expression by targeting and binding with miRNAs. 

Figure 2.  Construction of the Cuproptosis-related LncRNAs Prognostic Signature (A) The Sankey diagram 
shows the connection degree between cuproptosis-related genes and lncRNAs in LUAD patients. (B) Forest 
plots showing the results of the univariate Cox regression analysis between cuproptosis-related lncRNAs and 
overall survival. (C&D) LASSO regression analysis with a tenfold cross-validation for the prognostic value 
of the screened lncRNAs. (E) The correlation between lncRNAs screened by multivariate Cox regression and 
cuproptosis-related genes.

http://research-pub.gene.com/IMvigor210CoreBiologies


6

Vol:.(1234567890)

Scientific Reports |         (2023) 13:2455  | https://doi.org/10.1038/s41598-023-29684-9

www.nature.com/scientificreports/

This might lead to the overexpression of downstream genes, and facilitate tumor  initiation22. Relatively little is 
known about other 4 lncRNAs. Further studies to investigate the role of these lncRNAs are needed.

By immune infiltration analysis, the abundance of immune cells, including B cells, DCs, mast cells and neu-
trophils were richer the in low-risk group. The B cells are carriers of humoral immunity, and they can secrete 

Table 1.  Baseline characteristics of the LUAD patients. LUAD: lung adenocarcinoma; NA: not available;

Characteristics Training cohort Testing cohort Total P value

Age

  ≤ 65 118 121 239 0.7573

  > 65 132 126 258

 Unknown 4 6 10

Gender

 Female 144 128 272 0.1977

 Male 110 125 235

Stage

 Stage I 133 139 272 0.3311

 Stage II 65 55 120

 Stage III 41 40 81

 Stage IV 9 17 26

 NA 6 2 8

T Category

 T1 94 75 169 0.3865

 T2 128 143 271

 T3 22 23 45

 T4 9 10 19

 Tx 1 2 3

N Category

 N0 162 165 327 0.0837

 N1 51 44 95

 N2 35 36 71

 N3 1 1 2

 Nx 5 7 12

M Category

 M0 176 162 338 0.9102

 M1 8 17 25

 Mx 70 74 144

Table 2.  Results of univariate Cox analysis and LASSO analysis. Bold biomarker: lncRNAs used for prognostic 
signature construction; HR. 95 L: hazard ratio 95% low limit; HR. 95 H: hazard ratio 95% high limit; NA: not 
avaliable.

LncRNA ID Coefficient HR HR.95 L HR.95H p

AL121935.2 NA 0.199 0.076 0.524 0.001

LINC00592 NA 1.729 1.198 2.495 0.003

TSPOAP1-AS1 NA 0.547 0.362 0.829 0.004

AL606834.1 0.282428620063832 1.446 1.099 1.901 0.008

AC018647.1 NA 0.134 0.029 0.612 0.009

AL138778.1 − 1.30027751298876 0.131 0.039 0.447 0.001

MIR223HG NA 0.631 0.457 0.869 0.004

AL121933.2 NA 0.758 0.618 0.930 0.008

AP000302.1 − 0.912345907878674 0.215 0.075 0.615 0.004

AC007384.1 − 0.325560951666235 0.518 0.339 0.791 0.002

AL161431.1 0.164875028131049 1.309 1.144 1.498 <0.001

TMPO-AS1 0.337166622358203 1.667 1.211 2.295 0.002

KIAA1671-AS1 − 0.271262462650279 0.627 0.448 0.878 0.007

AC087854.1 NA 0.338 0.158 0.725 0.005
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immunoglobulins, regulate T cell response and play an anti-tumor  role23. Dendritic cells (DCs) are profes-
sional antigen presenting cells (APCs) that connect the innate and adaptive branches of the immune  system24. 
Mast cells induce the release of angiogenic and lymphangiogenic factors, and thus promote the formation of 
blood and lymphatic  vessels25. High neutrophils infiltration was reported to promote the metastasis of LUAD 
and resistance to  chemotherapy26,27. Thus, pro- and anti-tumorigenic immune cells co-existed in the LUAD tis-
sue and leaded to a complex TME. In addition to immune cells, a variety of immune system process pathways 
were highly involved in the low-risk group, such as cytolytic activity. High CYT score was accompanied with 
cytotoxic T cell markers and good prognosis in pan-cancer TCGA  datasets28. Our survival analysis results were 
also consistent with this conclusion.

TMB, TIDE score and TME have been proposed as indicators for prediction of immunotherapy  response29–32. 
Considering that high TMB is associated with a greater possibility of displaying tumor neoantigens on HLA 
 molecules33, it is rational to hypothesize that high-TMB tumor is more likely to benefit from immunotherapy. 
However, sometimes neo-antigens recognized by T cell may not originate in a high mutation setting. Large 
numbers of mutations do not contribute to the development of tumor-specific neoantigens and stimulation 
of the immune  system34. Thus, TMB might not always correlate with immunotherapy  response35. TIDE score 
is primarily calculated based on limited gene expression biomarkers to model the immunotherapy efficacy 
comprehensively. But some key biomarkers that can predict T cell infiltration and immunotherapy response, 
such as β-catenin protein level, were not incorporated into the prediction  algorithm36. As the authors proposed, 
more data types and methods supplement are necessary to improve the predictive performance of TIDE  score36. 
Another problem is that TIDE score has not been tested in a real-world cohort but only in theory, and its predic-
tive accuracy for immunotherapy response may need further validation.

Figure 3.  The correlation between the predictive signature and the prognosis of LUAD patients. (A–D) 
Training group; (E–H) Test group; (I–L) Total patients; (A&E&I) Kaplan–Meier analysisof the OS rate of 
LUAD patients. (B&F&J): Heat map showing the expression profiles of cuproptosis-associated seven-lncRNAs. 
(C&G&K): The distribution of the risk score among LUAD patients. (D&H&l): The number of dead and alive 
patients with different risk scores. Blue represents the number of survivors, and red represents the number of 
deaths.
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Figure 4.  Principal component analyses (PCA) and representative results of functional enrichment analysis. 
PCA showing the distribution differences between the high- and low-risk groups using cuproptosis-related 
genes (A), cuproptosis-related lncRNAs (B) and risk-associated lncRNAs (C). (D&E) GO analysis of biological 
functions of differentially expressed genes between the high- and low-risk groups. (F&G) KEGG analysis of 
biological functions of differentially expressed genes between the high- and low-risk groups.
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Compared with TMB and TIDE score, the immune contexture and tumor infiltration lymphocytes (TILs) are 
the direct reflections of the immune status, and tightly associated with anti-tumor  efficiency37. The expression of 
immune check point genes, such as CTLA-4 and PD-L1, have been applied and tested in the clinic to predict the 
immunotherapy response. In the present study, although low-risk group exhibited a low TMB and high TIDE 
score, TME analysis indicated a more abundant TILs, and CTLA-4 expression was also higher in the low-risk 
group. The expression of novel immune check point genes, such as TIGIT, BTLA and CD47, were negatively 
correlated with risk score, with p<0.001. External validation using real-world IMvigor210 immunotherapy cohort 
demonstrated that low-risk group also had a better prognosis. Thus, we tend to conclude that low-risk group may 
more easily benefit from immunotherapy even if the indicators’ results were a little conflicting. But this conclu-
sion may need further validation using real-world cohort. Besides, it is possible that risk score, TME, TMB and 
TIDE score could be applied jointly to achieve a more accurate and higher prediction performance in the future.

The induction of PCD in cancer cells was considered as the most promising anti-tumor strategy. Previously 
discovered PCD types, such as ferroptosis and pyroptosis, have exhibited great significance in the treatment of 
 LUAD38,39. However, the exploitation of copper toxicity in cancer was not  successful11. An important reason why 
copper is not effective, is the absence of useful biomarkers for selecting patients appropriate for treatment. Results 
of elesclomol from phase 3 clinical trials in unselected melanoma patients demonstrated lack of efficacy, but a post 
hoc analysis confirmed evidence of anti-tumor activity in patients with low-LDH  levels40. In the present study, 
the connection between cuproptosis and lncRNA-based model was established, and the model demonstrated 
great potential for predicting OS and stratifying patients for immunotherapy. Whether the model can be used 
to predict the copper toxicity in cancer is worth further study.

Recently, with the rapid development of bioinformatics, researchers and clinicians try their efforts to uncover 
the nature of various carcinomas using TCGA and GEO databases. He et al. constructed a 5-methylcytosine-
related risk model to predict the prognosis and immunotherapy response in lung squamous cell carcinoma 
 patients41. Wang et al. applied immune-related lncRNA pairs to construct a prognostic signature to reveal the 
immune landscape of stomach  adenocarcinoma42. As for LUAD, Liao et al. analyzed the immune cell infiltra-
tion in LUAD to predict the effect of  immunotherapy43, and identified novel prognostic biomarkers of LUAD 

Figure 5.  Correlations between the risk score and somatic variants. (A, B) The mutation rates of top 15 genes 
in high- and low-risk groups. (C) Tumor mutation burden between high- and low-risk groups. (D) Correlation 
between TMB and survival probability in LUAD patients. (E) Comprehensive survival analysis based on risk 
score and TMB.
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based on cancer stem cell theory using weighted gene co-expression network  analysis44. In the present study, 
we constructed a novel risk model based on cuproptosis-related lncRNAs in LUAD, validated the risk model in 
external database, and compared the predicting performance with other existing models reported in the literature. 
The model exhibited a good and comparable performance and might be used as a novel method for predicting 
LUAD patients’ prognosis in the future.

Several limitations needed to be addressed. Firstly, the research was based on bioinformatics analysis, prospec-
tive real-world data to verify the clinical utility of the model would be more convincing. Secondly, wet experi-
ments were superficial, and molecular interactions between lncRNAs and cuproptosis-related genes needed to 
be further characterized. Thirdly, the relatively small sample size and partial missing data also caused some bias.

Figure 6.  Correlation between the risk score and tumor microenvironment in the LUAD patients. (A–D) 
Comparison of immune scores, stromal scores, ESTIMATE scores and tumor purity between the high- and low-
risk groups. (E) The abundance difference of 22 immune cells in the high- and low-risk groups. (F) Enrichment 
differences in immune function-related gene sets between high- and low-risk groups. (G) Heatmap of the TME 
score and immune gene expression of LUAD patients in different risk groups.
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Conclusion
In summary, we constructed a novel risk model based on cuproptosis-related lncRNAs, which could predict the 
LUAD patients’ prognosis and stratify patients suitable for immunotherapy. The risk model might help clinicians 
determine individual therapeutic strategies in the future.

Figure 7.  The association between risk score and immune checkpoints. (A) The correlation between critical 
immune checkpoint-related genes and risk score; Red color depicts a positive correlation, while blue color 
represents a negative correlation. The darker color intensity and larger circle represent a stronger correlation. * 
indicates p < 0.05, the correlation is significant. (B–G) Scatter plots and straight regression lines demonstrated 
the correlation between the risk score and significant genes related to immune checkpoints. (H) The TIDE score 
distribution between high- and low-risk groups. (I) The expression difference of 47 immune checkpoint-related 
genes between high- and low-risk groups.
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Data availability
RNA-sequencing data and clinical data used were downloaded from the TCGA database.

Figure 8.  The effect of TMPO-AS1 overexpression on A549 cell proliferation, migration and invasion. (A) 
Relative TMPO-AS1 expression of Stage III-IV LUAD patients compared with Stage I-II LUAD patients 
analyzed with the TCGA database. (B) Association of TMPO-AS1 expression with overall survival of LUAD 
patients. (C) The effect of TMPO-AS1 overexpression on the viability of A549 cell line. (D&E) The effect of 
TMPO-AS1 overexpression on the migration and invasion of A549 cell line. *p < 0.05, **p < 0.01. Experiments 
were repeated three times.
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