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Absence of microbiome 
triggers extensive changes 
in the transcriptional profile 
of Hermetia illucens during larval 
ontogeny
Laurence Auger 1,2*, Sidki Bouslama 1,2, Marie‑Hélène Deschamps 3, Grant Vandenberg 3 & 
Nicolas Derome 1,2

Black soldier fly larvae (BSF, Hermetia illucens) have gained much attention for their industrial use 
as biowaste recyclers and as a new source of animal proteins. The functional effect that microbiota 
has on insect health and growth performance remains largely unknown. This study clarifies the role 
of microbiota in BSF ontogeny by investigating the differential genomic expression of BSF larvae in 
axenic conditions (i.e., germfree) relative to non-axenic (conventional) conditions. We used RNA-seq 
to measure differentially expressed transcripts between axenic and conventional condition using 
DESeq2 at day 4, 12 and 20 post-hatching. Gene expression was significantly up or down-regulated 
for 2476 transcripts mapped in gene ontology functions, and axenic larvae exhibited higher rate of 
down-regulated functions. Up-regulated microbiota-dependant transcriptional gene modules included 
the immune system, the lipid metabolism, and the nervous system. Expression profile showed a 
shift in late larvae (day 12 and 20), exposing a significant temporal effect on gene expression. These 
results provide the first evidence of host functional genes regulated by microbiota in the BSF larva, 
further demonstrating the importance of host-microbiota interactions on host ontogeny and health. 
These results open the door to optimization of zootechnical properties in alternative animal protein 
production, biowaste revalorization and recycling.

The study of microbial ecology in relation to animal production is widely investigated for its economic impor-
tance as interactions between hosts and their associated microorganisms are critical for the establishment of 
optimal biological processes including growth, development, and health1. As human population steadily grows 
and, consequentially, food demand, particularly for animal proteins, the black soldier fly (BSF) Hermetia illucens 
has gained increased importance as a prime candidate for industrial production of alternative animal protein, 
biowaste revalorization and recycling2. The investigation of host-microbiota interactions in H. illucens offers 
insight in how these biotic factors affect the insect’s physiology and can be used to optimize industrial rearing 
and bioconversion efficiency. Research to date on H. illucens microbiome has been focused on characterizing 
the taxonomic composition of the larval digestive tract’s bacterial and fungal communities, and the effect of 
diet on community assembly3–8. Still, the microbiota’s impact on life-history traits and biological processes of 
H. illucens is poorly understood. In this study, we developed a rearing method to produce axenic (i.e., germfree) 
H. illucens larva (BSFL) and used a transcriptomic approach to document the functional repertories that are 
regulated by the host’s microbiota.

Germfree animal models have been used to investigate the effect of microbiota on its host genomic expres-
sion by inferring that the genes differentially expressed in an axenic model are modulated by the microbiota. 
The time-dependent progression of gene expression profile is common to all organisms across evolution9,10. In 
germfree Drosophila, microbiota has a greater overall impact on the transcriptome in older flies. About 70% 
of the changes in gene expression conserved across species fail to occur in axenic flies, including the expected 
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time-dependant decline in the expression of stress response genes and the increase of innate immune genes’ 
expression11,12. The germfree Drosophila also exhibits up-regulation of genes involved in metabolism, oxidative 
stress, lipid metabolism, and immune response in presence of microbiota, while genes encoding factors involved 
in transporters are down-regulated11. The sustained expression of stress response genes in germfree insects may 
be caused by the well-known ability of endosymbionts to detoxify xenobiotics for their insect host13.

While current germfree models are informative, Insecta is the most diverse Class of eukaryotes, occupying 
all ecological niches and exhibiting broad differences in life-history traits. Therefore, knowledge from other fly 
species models may not simply be generalized to H. illucens. Insect species in different niches are not exposed 
to the same free-living microorganisms, hence they are expected to have a distinct microbiota composition, 
such as the microbiota dissimilarities observed between Drosophila melanogaster and Aedes aegypti12,14,15. Given 
the fundamental changes that the microbiota operates on its host, investigating the effect of host-microbiota 
interactions on the host is of great significance to understand the mechanisms behind H. illucens’ sought-after 
abilities, such as its bioconversion rate and antimicrobials properties, and to guide rearing approaches and to 
optimize exploitation potential.

Here we report on how the presence or absence of a microbiota changes the transcriptome profile of the host 
during larval development (day 4, 12 and 20 post-hatching) by comparing relative abundance of transcripts 
expressed in larvae reared in axenic vs in non-axenic (referred to as conventional in this paper) conditions.

BSFL feed on organic waste that usually contains heavy bacterial loads including potential pathogens, which 
suggests H. illucens’ immune system is very efficient at controlling infection. The larva encodes up to 50 putative 
antimicrobial peptides (AMPs)—a record equalled only by one other insect Harmonia axyridis, an invasive bee-
tle—that can reduce the abundance of potential pathogens in their environment (i.e., Salmonella and Escherichia 
coli)16–19. Gut microbiota is usually adapted to the specific environment it colonizes, exploiting stable resources 
generated by the host and in turn, providing protection to the host by competition with invasive pathogenic 
microorganisms (i.e., colonization resistance)20. In Drosophila melanogaster, the taxonomic composition of the 
gut microbiota modulates the induction of innate immune gene products21,22. Therefore, the first objective was 
to test if the transcriptional activity of genes in immune system processes were lowered in the axenic BSFL 
compared to conventional BSFL.

The microbiota associated with BSFL in compost has an increased activity of metabolic functional groups 
associated with carbohydrate-active enzymes23. Starvation has also been identified as a factor that alters BSFL’s 
gut microbiome24. These studies highlight the potential link between the expression of metabolic genes in the 
BSFL and the gut microbiota. While many insects are selective feeder, the polyphagous BSFL must adapt to a 
wide range of food components and defences, sometimes in a single life cycle. This quick adaptation is often 
attributed to phenotypic plasticity25. However, the gut-associated microbiota has emerged as a flexible metabolic 
resource for the host, facilitating adaptation to new food-sources, known as metagenomic plasticity26,27. Therefore, 
the second objective was to test if the transcriptional activity of genes involved in carbohydrate metabolism is 
lowered in axenic BSFL compared to conventional BSFL.

Microbiota also contributes to host processes like neurophysiology and behaviour28. Like most insects, H. 
illucens interact with their environment in great part through olfaction. In adult H. illucens, bacteria associated 
with deposited eggs attract oviposition by other conspecifics29. However, microbiota-brain axis during ontogeny 
has not been investigated to date. We observed that BSFL tended to leave their growth substrate (Gainesville) 
when exposed to a more odorant one (poultry hatchery waste) (unpublished work). This suggests olfaction also 
regulates behaviour in larval stage and may be associated with microbiota. Therefore, our third objective was to 
test if transcription of genes related to development, in particular nervous system and olfaction related genes, 
are downregulated in axenic larvae compared to conventional larvae.

Microorganisms have the metabolic ability to recycle toxic components in the environment into bioavailable 
molecules for multicellular organisms30. This detoxifying ability is exploited by insect hosts to protect themselves 
from secondary defense metabolites and xenobiotics31. Generalist insects such as BSFL often switch food source 
and are therefore prone to encounter a wider array of dangerous components than specialist feeders. Gut-
associated bacteria rapidly adapt to the presence of xenobiotics in the environment by horizontal gene transfer 
of detoxifying genes from environmental bacteria or recruitment of new bacteria harboring adaptative genes32. 
Therefore, our fourth objective was to test the extent of the difference in transcriptional activity of genes associ-
ated with xenobiotic remediation and oxidative stress between axenic and conventional larvae.

Methods
We measured the differential expression of transcripts in larvae reared in axenic versus in conventional condition 
at day 4, 12 and 20 post-hatching. The metabolic activity affected by the absence of microbiota in the host was 
investigated through functional annotation of the DETs.

Production of sterile larvae in axenic condition
Eggs used in experiments were obtained from the black soldier fly colony maintained in LAboratoire de Recherche 
en Sciences Aquatiques (LARSA) at Université Laval (Québec, Canada). Flies are inbred to produce each new 
generation, producing a homogenic population.

Two experimental groups were compared: conventional (with microbiota) and axenic (without microbiota). 
Each group was carried out with 6 experimental replicates. For each replicate, 0.05 g of pooled egg clutches were 
transferred into a sterile cell strainer (SG-70ICS, MIDSCI) for sterile or control treatment.

Axenic eggs were produced using an adapted version of the protocol for the sterilisation of Drosophila larvae33. 
Eggs were submerged successively into 2.5% active hydrochloric acid, then (further steps under vertical laminar 
flow cabinet) into 70% EtOH with continuous shaking and then rinsed in 2 successive Phosphate-buffered saline 
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baths (PBS, 137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4, pH 7.0), each treatment was 3 min. 
After treatment, each egg pool was transferred until hatching on a sterile vented cell culture flask (0.3 μm filter; 
Denville®) with 50 mL agar culture media (pH 7.0 ± 0.2) composed of Brain–Heart Infusion (BHI) with added 
10% Yeast extract Peptone Dextrose. Eggs were observed every 12 h until hatching; upon hatching 150 neonates 
were transferred into new flasks (n = 5) with sterile BHI medium for the experiment.

Eggs for conventional condition followed the same manipulations as axenic eggs except that bath solutions 
were replaced by PBS 1X.

For both conditions, larvae were reared on sterile growth media (BHI) in flasks and incubated for 20 days at 
28 ± 1 °C, 70% relative humidity and 12 h:12 h photoperiodic cycle (VWR® B.O.D Refrigerated Peltier Incubator, 
VRI3P 89,510-738).

Verification of sterility
To verify that the larvae reared in axenic conditions were truly sterile, we used traditional microbiological meth-
ods and molecular test. For the traditional approach, we sampled from each flask 3 larvae that were crushed with 
a sterile pestle in 600 μl of BHI liquid culture. Immediately after sampling and 7 days later, 100 μl of the culture 
was inoculated on a BHI agar culture media (kept 7 days at 28 °C in aerobic conditions)34. This test was repeated 
for each sampling time, using conventional larvae as positive control. Sterility was constated when no growth 
(bacterial or fungal) was observed for axenic condition and growth was observed in control; if any growth was 
found on the culture media, the corresponding flask was discarded. Since this traditional method is limited to 
culturable microorganisms, we also proceeded with a molecular test to detect bacterial contamination by PCR 
amplification of the 16S V3-V4 rRNA gene region (Primers forward: 5′—ACA​CTC​TTT​CCC​TAC​ACG​ACG​
CTC​TTC​CGA​TCT​CCT​ACG​GGR​SGCA​GCA​G—3′ and reverse 5′—ACA​CTC​TTT​CCC​TAC​ACG​ACG​CTC​TTC​
CGA​TCT​GAC​TACHVGGG​TAT​CTA​ATC​C—3′)34. Bacterial DNA was isolated by the salt-extraction method 
described by Aljanabi and Martinez35. PCR started 2 min at 98 °C, followed by 30 cycles of 10 s at 98 °C, then 
30 s at 60 °C and 30 s at 72 °C, with a final elongation of 2 min at 72 °C. The molecular test was done at day 4 
and at day 20 using ~ 50 mg of larvae, the extracted DNA from each replicate was pooled together for the same 
condition for gel electrophoresis (2% agarose), results presented in Fig. 7. Sterility was confirmed when no band 
(or a very faint band, expected to be mitochondria DNA) was visible for the axenic condition while a band was 
visible at around 465 pb for positive control (bacterial culture) and conventional larvae36. Axenic replicate with 
visible band were discarded.

Sampling process
At day 4, 12 and 20 post-hatching (hatching = day 1), a sample of 6 pooled larvae was taken from each flask. 
Sample were flash-frozen (liquid nitrogen) before storing at − 80 °C until RNA extraction. At each sampling, 10 
more larvae were sampled from each flask to measure total length using a digital caliper (live larvae were put on 
a petri dish resting on ice for measurement).

RNA extraction and sequencing
Total RNA of pooled larvae was extracted using TRIZol reagent (Invitrogen, Life Technologies) according to the 
manufacturer’s instructions with DNase I treatment to remove genomic DNA contamination. Quality of RNA 
was assessed with an Agilent 2100 Bioanalyzer and concentration was measured on a NanoDrop ND-2000 Spec-
trophotometer. Library preparation of poly(A)-enriched RNA (NEBNext® Ultra™ II Directional RNA Library) 
and RNA-Seq were done by CES Génome Québec (Montréal, Québec, Canada) on an Illumina NovaSeq 6000 
platform. Four samples were discarded because of poor RNA quality: One replicate from the conventional condi-
tion for each time point and one replicate from the axenic condition for day 12. Therefore, all following statistical 
tests are done with 5 replicates by condition by time.

DETs functional annotation
Quality RNA-seq output reads were selected using Trimmomatic with Phred-equivalent scores < 2037. Transcripts 
assembly was done with Trinity (https://​github.​com/​trini​tyrna​seq/​trini​tyrna​seq/​wiki) and read count was esti-
mated with RSEM38. Read counts were normalized and measured for differential expression with DESeq2 using 
a pair-wise comparison between both conditions for each individual time point39. Differentially expressed tran-
scripts (DETs) were filtered with alpha threshold 0.01 and an effect size threshold (log fold change, LFC > 1) to 
ensure no confounding expression levels affected the analysis of biological pathways.

Transcript isoforms produced by Trinity were processed to detect open reading frames (ORFs) and predict 
resulting proteins. All orphan transcripts were translated into amino acid sequences to predict annotation by 
BLASTP against the UniProt database, as well as BLAST against the Pfam database (http://​pfam.​xfam.​org/).

Functional annotation was made by BLASTX on transcript sequence, and BLASTP on predicted proteins from 
ORFs, against the Uniport-Swissprot database40 to retrieve KEGG (Kyoto Encyclopedia of Genes and Genomes41) 
and GO (Genome Ontology) annotation from resulting matches. Gene ontology annotation was done on the 
DETs by assigning GO terms using “Quick Go” (https://​www.​ebi.​ac.​uk/​Quick​GO/).

Gene set enrichment analysis (GSEA) of GO terms was done by performing a hypergeometric test to inves-
tigate biological functions and pathways associated with DETs42. This allows the detection of DETs with a low 
individual effect but belonging to coordinated groups of expression profiles43. GO terms were filtered for signifi-
cance threshold (p-adjusted value < 0.01, false discovery rate, FDR < 0.01) to conserve only relevant terms. GO 
terms were also compared between conditions at each time point to remove shared terms to focus our analysis 
on the biological difference between conditions.

https://github.com/trinityrnaseq/trinityrnaseq/wiki
http://pfam.xfam.org/
https://www.ebi.ac.uk/QuickGO/
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Associated pathways were further examined with a list-based pathway enrichment analysis in KEGG 
database41 providing a dataset of transcript abundance for each pathway.

Results
Larvae exhibited dwarfed growth on culture media
Sterilised eggs successfully hatched on sterile culture media. Larvae in both conditions survived using only 
BHI culture medium as feed for up to 20 days (end of experiment). However, larvae in both conditions did not 
show the expected growth. Compared to parent colony (i.e., larvae reared on the reference Gainesville diet (50% 
bran, 20% corn, 30% alfalfa, 70% RH44 )) both conditions had significantly smaller larval length (p-value < 0.05, 
SE = 3.129) with no difference between experimental conditions (p-value > 0.1, conventional min = 1.8 mm, 
max = 2.2 mm, IC95 mean = 2.08, SE = 0.056; axenic min = 1.1 mm, max = 1.4 mm, IC95 mean = 1.34, SE = 0.04; 
Gainesville min = 5.1 mm, max = 17.7 mm, IC95 mean = 12.18, SE = 0.70) (Fig. 1).

Expression profile is characterized by rearing condition
We found 150,214 transcripts overall with a differential expression in pair-wise comparison at each time point 
between both conditions. To ensure the biological significance of these results, they were filtered by an effect size 
threshold (log-fold change, LFC > 1), resulting in 1 792 transcripts with a differential expression of abundance 
(adjusted p-value < 0.01) between axenic and conventional larvae at day 4, 12 and 20.

Conventional larvae had consistently more DETs up-regulated than axenic larvae (Fig. 2). A decrease in 
the number of significant DETs was observed as time progressed. This was not caused by sequencing bias, as 
before filtering for significance we initially found 66 106, 103 412 and 115 826 transcripts DE at day 4, 12 and 
20, respectively.

Cluster analysis of the expression profile patterns resulted in two major clusters; the major effect factor was 
the rearing condition (Fig. 3). Further sub-clustering was observed for day 4 in each condition, underlining the 
difference in expression profile in early larval development compared to later stages.

To further explore sample transcriptome profiles, we did a Jaccard non-metric multidimensional scaling 
ordination analysis based on expression profile45. Results separated larvae into axenic and conventional condition 
distinct clusters, consistent with the previous differential analysis of gene expression (Fig. 4). Time was used as 
a fitted numeric variable. Axenic larvae had greater variation in their expression profile for early development 
(day 4) while later stages converged toward a more homogenous profile. Conventional larvae had the reverse 
tendency, growing towards a more heterogenous group in time.

Functional analysis of DETs
The function of the up-regulated DETs was investigated by functional annotation with the public database Uni-
Prot Swiss prot using an e-value cut-off of 1e−3. We found matches for 886 (49.4%) of the DETs. Of the matched 
transcripts, 590 (66.6%) matched best to genes from Neoptera infraclass of the Insecta class. No transcript anno-
tated to fungal genes with BLASTX.

The 20 most enriched ontologized terms following filtrations are presented in Fig. 5. Day 12 axenic larvae 
showed a preponderance of transcripts associated with the negative regulation of immune system processes. At 
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day 20, GO terms related to catabolic processes, oxidoreduction and lipid process, as well as oxidative stress were 
enriched significantly in the axenic condition compared to the conventional condition.

Day 4 conventional larvae had a contrasting tendency with multiple enriched transcripts that included the 
term “positive regulation” (signaling the activation or increase in frequency of related process), for diverse biologi-
cal processes including positive regulation of immune system. Furthermore, olfactive processes, ketone biosynthetic 
process and ecdysteroid metabolic process were enriched. Nervous system process was amongst the most signifi-
cantly enriched GO terms in conventional larvae. The 12-days-old larvae had multiple enriched catabolic and 
metabolic processes, along with behaviour and locomotion. At day 20, lysozyme activity and terms pertaining to 
biosynthesis and degradation of glycogen were enriched. Interestingly, the peptidoglycan muralytic activity was 
also enriched; muropeptides are involved in symbiotic associations, microbial interactions, and pathogenesis 
in animals and plants46.

Persistently up‑regulated transcripts
Some of the DETs were found to have sustained up-regulation in a specific condition at all times (day 4, 12, and 
20); annotated DETs persistently expressed in larvae in each condition are presented in Table 1. Axenic larvae 
exhibited continuous over-expression of digestives enzymes whereas conventional larvae showed consistently 
up-regulated genes related to transport, immune system, and structure.

Biological pathways enrichment
Pathways enrichment for the 1792 DETs focussed on 12 pathways distributed in four KEGG categories, namely 
Metabolism, Environmental Information Processing, Cell Processes, and Organismal Systems (Fig. 6).

Discussion
Host-microbiota interactions must be properly addressed when trying to understand and optimize animal rear-
ing for industrial purposes. Indeed, microbiota works as an added genomic arsenal for the host that can affect 
directly or indirectly its own biological functions and processes26,47–49. Previous studies have characterized the 
taxonomic composition of bacterial and fungal communities associated with BSFL, highlighting variations cor-
relating with abiotic factors5,6,19. However, these metagenomic and metabarcoding approaches have a limited 
capacity to characterize and quantify the effect of microbiota on host functional activity. Therefore, using a 
functional investigation of the host’s active biological processes through a transcriptomic approach allowed the 
accurate identification of host-microbiota interactions and highlighted the host functions that are regulated by 
microbiota activity. Here, we delved into how the microbiota’s presence (conventional condition) or absence 
(axenic condition) changes the transcriptome expression profile of the BSFL during larval ontogeny. This enabled 
us to gain insight into the most affected metabolic processes and biological pathways with subsequent functional 
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annotation (UniProt), GO enrichment, and KEGG pathways enrichment. This study offers new insight into the 
host-microbiota interactions affecting BSFL ontogeny.

This transcriptomics study opens the way to metabolic studies, as it offers insight for more targeted studies. 
We report predicted pathways affected by the microbiota, however transcriptional activity gives little information 
on protein activity, which is the most relevant to fitness, and cannot substitute for detailed functional analysis50. 
In the future, metabolic studies are needed to carefully characterise the activity of metabolic pathways under 
axenic conditions for the BSF.

Microbiota has a major impact on early larvae expression profile
While no length difference was measured between both experimental conditions, BHI reared larvae were signifi-
cantly smaller than the parent colony reared on Gainesville substrate (Fig. 1). Since the feed source was the only 
difference in abiotic factors between the conditions of this experiment and the parent colony, we conclude the 
nutritional needs of larvae reared on BHI medium weren’t met. It is hypothesised that most of the larva micro-
biota is recruited from the environment, therefore we suspect the microbiota associated with the egg, which was 
the only microorganisms available in the conventional condition, do not reflect the natural microbiota of the larva 
and could have contributed to the dwarfed growth of the conventional condition compared to the parent colony. 
As both experimental conditions were under the same starvation stress, the differences in genomic expression 
are nonetheless relevant, the purpose of this study being to identify transcriptional differences between axenic 
and conventional larvae. Further study should be done to find a sterilisable substrate able to meet the nutritional 
needs of the larvae, to eliminate the starvation stress potential impact on the differences observed between both 
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Figure 3.   Heat map showing the DETs between axenic and conventional larvae. AH and CH refer respectively 
to axenic and conventional condition, for each time points (D4: day 4, D12: day 12 and D20: day 20), and the 
R indicates the replicate number. Transcripts with DE values of log2FC > 1 with adjusted p-value < 0.01 were 
clustered together based on expression pattern, as represented by the dendrogram at the top of the figure, 
each color coding for each combination of condition and time (yellow = Axenic day 20; red = Axenic day 12; 
green = Axenic day 4; dark blue = Conventional day 20, purple = Conventional day 4, blue = Conventional day 
12). Presented values are for unique DETs arbitrarily named with Trinity (on the right). Measured phylogeny of 
transcripts is present on the left.
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conditions. We found the standard feed used in BSFLrearing (Gainesville feed) to be very difficult to sterilise44. 
The gamma radiation method did not give desired results, and repeated autoclaving (121 °C for 30 min) changed 
the physicals property of the feed, making it unusable51.

The greater number of DETs up-regulated in conventional larvae at all time points (Fig. 2) indicates the 
microbiota-dependent co-expression of multiple genes in H. illucens. Conventional larvae had respectively 63%, 
69% and 56% of upregulated DETs at days 4, 12 and 20.

The general dampened transcriptome expression observed in axenic larvae for multiple pathways (Fig. 6) 
suggests that the absence of microbiota results in widespread down-regulation of most pathways in early life 
stages. This generalized down-regulation effect is substantiated by studies on Drosophila melanogaster and other 
germfree animal models that unveiled the far-reaching effect of microbiota activity on host expression of genes 
involved in metabolism, gut structure, immune response, and the nervous system11,52,53.

Pathway enrichment analysis also indicates that microbiota induces a more targeted effect, some specific 
transcriptional modules being only activated or strongly expressed in presence of microbiota. The up-regulated 
DETs found in axenic larvae may correspond to genes inhibited by microbiota activity.

The absence of microbiota had the most pervasive impact on transcriptome profile in early larvae (day 4). In 
both experimental groups, the expression profile of early-stage larvae was independently clustered whereas it 
converged at later time points (Figs. 2, 3). Therefore, time was an important factor of transcript abundance, lead-
ing towards a more similar, condition dependent, expression profile in later ontology. However, the expression 
profile in axenic larvae had more heteroscedasticity in early larvae (day 4) than later stages, while conventional 
larvae presented inversely (Fig. 4). This suggest that microbiota plays an important role in early development 
and may help specializing early larvae expression profiles, a congruent result with the recognized concept of a 
critical window in early life during which a healthy microbiota is essential to the normal development of the 
host, independently of organism type9,10,54.

Axenic larvae exhibited an overall decreased metabolism compared to conventional larvae. This was expected 
as the microbiota is recognized for communicating with its host through the secretion of metabolic by-products, 
mainly short chain fatty acids that are crucial for normal metabolic functions55,56. Looking at KEGG pathways 
enrichment suggests that the absence of microbiota triggered a diapause state, a genetically programmed devel-
opmental arrest common in insects used to survive temporary adverse environmental conditions. This diapause 
state may be the result of an anti-stress physiological response to nutritional imbalance in sterilised BHI57. Axenic 

Figure 4.   Similarity between expression profile of DETs in axenic and conventional larvae. Ordination based on 
samples transcripts by Jaccard test with non-parametric distances (N = 5). The test is fitted with time as numeric 
variable (confidence interval = 99% inside ovals).
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conditions may have induced the diapause state earlier. For instance, conventional larvae showed enrichment 
of ecdysteroid biosynthetic process GO at day 4 and 12. In Bombyx mori, the secretory rate of ecdysteroids is 
drastically reduced during diapause58. Microbiota activity likely prevented or delayed conventional larvae from 
entering diapause by providing enough accessible nutrients to the host. To date, the extent of the regulation of 
diapause biological processes by host-microbiota interactions in this species is unclear. In Nasonia vitripennis 
(a small parasitoid wasp), microbiota has an important role in the host’s nutrient allocation during diapause by 
maintaining glucose and glycerol levels59. The time-dependant down-regulation of pattern-recognition proteins 
in this model indicates a strong repression of the host’s immune system during diapause, which we observed 
in conventional BSFL and, at lesser degree, in the axenic conditions. Conventional BSFL also had increased 
expression of aerobic glycolysis (up-regulation of ectonucleoside triphosphate disphosphohydrolase) in early 
larval stage, contrary to the increased anaerobic glycolysis observed in several other dipteran models during 
diapause60,61. The diapause state induces major physiological and metabolic changes in the host. As microorgan-
isms carry out metabolic processes for the host, it is expected that host-microbiota interactions play an important 
role in diapause processes62.

Microbiota activates immune system processes in BSFL
Early (day 4) conventional larvae had enhanced immune transcriptomic activity of AMPs (i.e., cecropins, 
attracins, diptericins and defensins) as well as enrichment of the Toll signaling pathways. In Drosophila, the 
antimicrobial response to microorganisms is regulated by two major signaling pathways, immune deficiency 
(Imd) and Toll63. The enhanced expression of diptericins (Imd pathway) in our study shows a similar response in 
the BSFL to that of Drosophila, for which a basal level of expression of the Imd pathway is known to be induced 
by the microbiota64.
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Figure 5.   Top 20 terms in the GO enrichment analysis unique to each condition. GO terms that were 
unmatched (NA) are excluded. The 20 GO terms unique to a condition with the largest DETs ratios are plotted 
in order of the ratio. The size of the dots is representative of the number of transcripts in the significant 
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Some immune response activity was uniquely enhanced in axenic larvae, mainly peptidoglycan recognition 
proteins at day 12 and 20. Previous studies have found evidence that diet components can induce in H. illucens 
the expression of AMPs in a profile similar to bacterial-dependant immune response inhibitory activities, while 
endosymbiont microbiota can inhibit the host’s immune response to ensure its own survival65. This may explain 
why some immune responses were found uniquely in axenic larvae. This mechanism may be an evolutionary 

Table 1.   Annotated DETs persistently upregulated.

Condition DET ID Accession ID BLASTX UniProt description BLASTP UniProt description

Axenic

TRINITY_DN232849_c0_g2_i1 Q90629 Trypsin II-P29 –

TRINITY_DN15398_c0_g2_i1 P54629 Trypsin eta –

TRINITY_DN17373_c0_g2_i2 P35032 Trypsin-2 –

TRINITY_DN15398_c0_g2_i3 P54629 Trypsin eta –

TRINITY_DN1426_c0_g1_i10 P40313 NA Chymotrypsin-like protease 
CTRL-1

TRINITY_DN217518_c0_g1_i1 Q75VN3 Translationally-controlled tumor 
protein homolog –

TRINITY_DN20544_c0_g1_i11 Q8INK6 Peptidoglycan-recognition 
protein LB –

Conventional

TRINITY_DN2418_c0_g1_i1 NA Transcription activator MBF2

TRINITY_DN143507_c0_g1_i1 O45599 Chitin-binding domain protein 
cbd-1 –

TRINITY_DN88238_c0_g1_i2 Q3BAI2 Uncharacterized protein ORF91 –

TRINITY_DN6492_c0_g1_i3 P35458 Dynactin subunit 1 –

TRINITY_DN2302_c0_g1_i1 P19967 Cytochrome b5-related protein –

TRINITY_DN685_c1_g1_i1 Q3BAI2 Uncharacterized protein ORF91 –

TRINITY_DN2104_c0_g1_i14 P91793 Defensin-A –

TRINITY_DN8022_c0_g1_i4 P18684 Diptericin-D –

TRINITY_DN130490_c0_g1_i5 P82174 Lysozyme –

TRINITY_DN49180_c0_g3_i1 Q3BAI2 Uncharacterized protein ORF91 –

TRINITY_DN19867_c0_g1_i1 Q91XA9 Acidic mammalian chitinase –

TRINITY_DN3133_c2_g1_i5 Q17040 Protein G12 –
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Figure 6.   Enriched KEGG pathways in larvae reared in axenic and conventional condition. The value 
represents the total abundance of DETs associated with the specific pathway for the condition at each time point.
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response to a dietary trigger; the antibacterial activity happened even in the absence of the targeted bacteria 
spectrum (or any bacteria), while the same response was inhibited in the presence of microbiota19. Immune 
system pathways showed higher enrichment at day four in conventional larvae, supporting previous results, but 
day 12 and 20 had higher enrichment in axenic larvae (Fig. 6). At day 12, axenic larvae had multiple enriched 
GO terms related to the regulation of immune processes and the negative regulation of immune processes 
(Fig. 5). This doesn’t correlate with an increase in immune processes. On the contrary, it suggests that the 
higher transcriptomic activity down-regulates immune processes. This is a crucial distinction that can be made 
when assessing the genomic expression through a combination of multiple tools such as differential expression 
annotation, functional enrichment, and pathway enrichment. This first discovery step opens the way and offers 
targets pathways for further research exploring the effect of the axenic condition at the protein level and better 
characterise how the immune process is modulated with the microbiota.

Xenobitotic biodegradation and metabolism
The BSFL’s unusual ability to digest pesticides, mycotoxins and other xenobiotics raises questions on the role the 
microbiota plays in these biodegradation processes66–69.

We found, through pathway enrichment analysis, that while early conventional larvae had a higher expres-
sion rate of genes implicated in the xenobiotic biodegradation and metabolism, axenic larvae had the highest 
expression level in this pathway at day 20. Axenic larvae at day 12 had multiple up-regulated DETs encoding for 
cytochrome P450, which was recently found to be responsible for the metabolization of the mycotoxin aflatoxin 
B1, for which BSFL are known to have high tolerance and no metabolic accumulation70,71. Later axenic larval 
stages (day 12 and 20) also had up-regulation of the UDP-glucuronosyltransferase-2C1 (AC: P36514), a protein 
of major importance in elimination of potentially toxic xenobiotics and endogenous compounds, not found in 
conventional larval expression profile. This higher enrichment for the xenobiotic pathway could be a metabolic 
response to the accumulation of BSFL dejections in the substrate exacerbated by the absence of microorganisms 
able to recycle them. Early conventional larvae pathway enrichment combined with late over-expression in axenic 
larvae suggest there might be a synergy of metabolic processes in host-microbiota interactions, further studies 
are needed to explore the role of microbiota in BSFL bioremediation processes.

Energy and digestive systems
Conventional larvae had higher enrichment in the digestive system, the lipid metabolism and carbohydrate 
metabolism pathways in early larvae (day 4) than larvae without microbiota (Fig. 7). Therefore, microbiota seems 
to have a positive influence on early larvae intake and transformation of nutrients into lipids.

In polyphagous insects, the major digestive enzymes carboxypeptidase A, carboxypeptidase B, aminopepti-
dase and the superfamily of serine endoproteinases (trypsin, trypsin-like enzyme, and chymotrypsins) play a 
major role in protein digestion and adsorption72. Larvae reared in axenic condition consistently had up-regulation 
of three trypsin (Trypsin eta, AC: P54629, trypsin II-P29, AC: Q90629, and trypsin-2, AC: P35032) at day 4, 12 
and 20 (Table 1). Trypsin expression has been found to be stable in BSFL, even when kept in starvation state for 

Figure 7.   Molecular test of axenic condition. Gel electrophoresis (2% agarose) of 16S rRNA gene V3-V4 
regions PCR amplification. (L) DNA marker 1000 bp (NEB) (A) positive control (bacterial culture, band at ~ 450 
pb) (B) negative control (sterile water) (C) day 4 conventional condition (all replicate combined, band at ~ 450 
pb) (D) day 4 axenic condition (all replicate combined) (E) day 20 axenic condition (all replicate combined) (F) 
negative control (ultrapure water).
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an extended period of time73. Furthermore, some trypsins were up-regulated in conventional larvae, but not con-
sistently across the three time points, and they never included the three persistently up-regulated trypsins found 
in the axenic larvae. This suggests that the microbiota’s presence induce a modulation of trypsin transcription in 
the host. Conventional larvae also had higher transcription for vasotab (AC: P84843), a vasodilator identified in 
the horse fly Hybomitra bimaculata after bloodmeal. To our knowledge, we are the first to provide evidence of 
an orthologous vasotab protein in H. illucens. This vasotab protein may play a role when BSFL feed on carcasses. 
The presence of blood components in the BHI media may have triggered its expression. GO annotation showed 
axenic larvae at day 4 and 12 had up-regulation of transmembrane transport activity for carbohydrates (alpha-
glucoside, oligosaccharide, disaccharide, glucoside, sugar, and trehalose). Trehalose is the first resource used 
to produce energy in starvation conditions74. Starvation conditions lead to an increased mobilization of sugar 
and lipid nutrients from the fat body toward the hemolymph75. This supports the theory that axenic larvae were 
subjected to higher starvation stress than conventional larvae.

In low nutrient conditions, insects use their stored lipid resources by reduced glucose oxidation, combined 
with the mobilization of FA as well as lipid oxidation57. This was observed in axenic larvae at day 20, as its tran-
scriptome profile found enrichment of lipid catabolic process GO.

The use of culture media also enabled us to observe the lack of molt residues left by larvae. H. illucens has 
been reported to molt up to six times during the larval cycle before entering the pre-pupal stage76. The lack of 
molt residues under axenic conditions may be due to (1) absence of molting or (2) digestion of molt residues by 
the larvae. The former hypothesis is dubious as the transcriptome profile at day 4 included the expression of the 
cuticle protein 6 (AC: P82119), reported to be expressed in post-ecdysial nymph (UniProt). As was previously 
reported2, BSFL produce degrading enzymes targeting cellulose and chitin. We were able to further confirm 
this, as the transcriptome profiles included lytic polysaccharide mono-oxygenase, cellulose-degrading enzyme 
(Pfam: PF03067.15), probable chitinase 2 (AC: Q9W02), probable chitinase 10 (AC: Q9W5U2), and chitinase-
like protein Idgf4 (AC: QPQM7), this also supports the theory that BSFL consume their molt residues. This 
behaviour may have been exacerbated by the starvation stress; changes in behaviour are expected as adaptative 
responses to starvation in insects57.

Growth and development
Conventional larvae had indications of greater neural development, such as the enrichment of the GO periph-
eral nervous system development, sphingolipids and glycosphingolipids metabolic processes at day 4 and 12. These 
GO were completely absent from the enrichment list associated with axenic larvae at any time point. Insect 
sphingolipids are essential to cellular homeostasis, developmental processes, differentiation, and neurogenesis77. 
Glycosphingolipids include gangliosides, responsible for neuronal differentiation and signaling in the nervous 
system78. We also found in four-days-old conventional larvae up-regulation of DETs encoding for ceramide 
phosphoethanolamine (AC: 077,475), believed to play an important role in early development of nervous system 
in Drosophila79. The higher rate of nervous system development in conventional larvae may have been stimulated 
by microorganisms’ presence, or been possible because, as we have previously established, conventional larvae 
had more resources to allocate towards nervous system development, or both.

Olfaction is a vital part of how insects interact with their environment. Previous studies revealed that through 
olfactive processes, the presence of microbiota affected the behaviour of oviposition in H. illucens29. We found 
that conventional larvae had greater olfaction related transcriptomic activity than larvae without microbiota at 
days 4 and 12.

Conclusion
Our transcriptome analysis indicates that the microbiota modulates its host expression profile during ontog-
eny which suggests that the microbiota is essential to BSFL’s normal development. BSFL exempt of microbiota 
showed dampened transcriptomic activity in early (day 4) development associated pathways (Aging, Cell growth 
and death, Endocrine system, Sensory system, and Signal transduction), in digestive and nutrient intake pathways 
(Carbohydrate metabolism, Lipid metabolism, and Transport and catabolism) as well as in Immune system and 
Xenobiotics biodegradation pathways. Transcriptome expression was mostly affected in late larval stage (day 20) 
for nervous system, showing a long-term effect of microbiota on its host ontogeny.

This study revealed similarities as well as differences in the effect of microbiota in host transcriptome expres-
sion profile of the BSFL model compared to what was previously found in other insect models.

As the microbiota’s communities in BSFL are modulated by the diet on which the larvae are reared, it is 
essential to understand how the build-up of different microbial communities affect the host transcriptome 
profile along larval development. Such integrated understanding of larval development and performance opens 
the way for the development and optimization of various specialized industrial uses involving waste recycling 
and other applications.

Data availability
The raw datasets generated during the current study are freely available for non-commercial purposes in the 
NCBI Sequence Read Archive (SRA) public repository, accession: PRJNA814308 https://​www.​ncbi.​nlm.​nih.​gov/​
biopr​oject/​PRJNA​814308.
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