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Impact of time to full enteral 
feeding on long‑term 
neurodevelopment 
without mediating by 
postnatal growth failure 
in very‑low‑birth‑weight‑infants
Shin Ae Yoon 1,7, Myung Hee Lee 2,6,7 & Yun Sil Chang 3,4,5*

This study aimed to determine if time to achieve full enteral feeding (TFF) directly impacted long-
term neurodevelopmental delay (NDD) and whether long-term postnatal growth failure (PGF) was a 
mediator of this association in very-low-birth-weight (VLBW) infants. Using prospectively collected 
cohort data from the Korean Neonatal Network, we included eligible VLBW infants who achieved 
TFF at least once and classified enrolled infants into four groups using exposure severity (P1 to P4 
as TFF < 16, 16–30, 31–45, and > 45 postnatal days, respectively). After adjusting for confounding 
variables, survival without NDD was significantly decreased in P4 infants compared with that in P2 
infants. P1 infants had a lower risk of weight and height PGF than P2 infants; however, P4 infants 
had higher risks of height and head circumference PGF than P2 infants. Weight and height PGF were 
significantly associated with an increased risk of NDD. In mediation analysis, early and delayed TFF 
revealed direct positive and negative impacts, respectively, on the risk of NDD without mediation by 
PGF. TFF impacted survival without NDD, and PGF did not mediate this association in VLBW infants. 
Additionally, these results can be translated into evidence-based quality improvement practice.

Achieving full enteral feeding in very-low-birth-weight (VLBW) infants implies a successful transition from 
parenteral to enteral feeding and the establishment of optimal postnatal nutrition during neonatal intensive 
care. Therefore, time to achieve full enteral feeding (TFF) in VLBW infants is an important clinical course index 
targeted for quality care1,2. Delayed TFF is related to postnatal growth failure (PGF)3–5, prolonged hospital stay3, 
and poor brain growth6. Therefore, various attempts have been made to achieve early TFF without increasing 
the risk of necrotizing enterocolitis (NEC), such as determining optimal timing to initiate postnatal enteral 
feeding or safely increase enteral feeding volume in VLBW infants7–10. Nevertheless, many neonatologists have 
doubts regarding the direct impact of TFF on long-term growth and neurodevelopment of VLBW infants beyond 
in-hospital mortality and morbidities3,5,6. In addition, there is doubt concerning mediation of the relationship 
between delayed TFF and poor neurodevelopment by long-term growth. Furthermore, there are conflicting data 
on the relationship between TFF and long-term growth4,5,11, TFF and neurodevelopment12,13, and long-term 
growth and neurodevelopment3,14–16 in preterm infants.
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In this study, we hypothesized that TFF would be associated with long-term survival without neurodevelop-
mental delay (NDD) among VLBW infants as the primary outcome as well as decreased risk of long-term PGF 
as the secondary outcome. In addition, we hypothesized that decreased long-term PGF mediates the relationship 
between the early achievement of full enteral feeding and improved survival without NDD.

To test this hypothesis, we categorized VLBW infants who achieved full enteral feeding at least once accord-
ing to TFF using the large national cohort of the Korean Neonatal Network (KNN)17.We evaluated and com-
pared long-term neurodevelopmental and growth outcomes at 18–24 months’ corrected age (CA) according to 
TFF adjusted with significant confounders derived from their basal characteristics and short-term morbidities. 
Then, we finally conducted mediation analysis of the effect of TFF on NDD when mediated by PGF at CA 
18–24 months.

Materials and methods
Study design and data source.  We performed this cohort study using a deidentified data set of KNN, 
approved by the Committee of Ethics and Publication of the KNN, extracted from the internet-based clinical trial 
management system (i-CREAT) of the Korea National Institute of Health. The KNN registry comprised VLBW 
infants (birth weight < 1500 g) admitted to the corresponding neonatal intensive care unit (NICU) at birth or 
transferred from other hospitals within 28  days after birth. Clinicians in over 60 KNN-participating NICUs 
prospectively collected data regarding perinatal and neonatal information (growth and neurodevelopment) at 
discharge, during NICU hospitalization, and at 18–24 months’ CA via pre-set KNN manual of operation (MOP) 
using electronic case report forms based on the i-CREAT system. These KNN registry data are annually stored 
in the Korea National Institute of Health server after completing data quality management using queries and 
site-visit monitoring17. The KNN registry was approved by the Institutional Review Board at each participating 
hospital, and informed consent was obtained from parents at enrollment in NICUs participating in the KNN. We 
confirm that all methods were performed in accordance with the relevant guidelines and regulations.

Study population.  We identified all VLBW infants registered in the KNN born between January 1, 2013 
and December 31, 2015. We excluded infants born at < 23 or > 32 weeks of gestation or infants having major 
congenital anomalies, including lethal or life-threatening birth defects requiring repair surgery or immediate 
intervention. According to the KNN MOP, TFF was defined as postnatal days (PNDs) when the enteral feeding 
volume initially reached 100 mL/kg/day of milk regardless of milk type, usually when the intravenous nutrition 
stopped in most centers. Therefore, we excluded infants who died without achieving full enteral feeding, those 
without TFF during their NICU stay, or infants with incomplete TFF data.

Due to the skewed TFF distribution of the enrolled cohort, when determining the exposure severity by divid-
ing TFF interval, we excluded data points that were more than 1.5 times the interquartile range (IQR) above the 
third quartile according to the 1.5 IQR rule18. Based on the preliminary analysis, we categorized eligible VLBW 
infants into four groups based on TFF using 15-day increments: P1, < 16 PND; P2, 16–30 PND; P3, 31–45 PND; 
and P4, > 45 PND.

Data collection.  Perinatal, neonatal, and long-term follow-up data for each infant at 18–24 months’ CA 
were obtained. Perinatal data included information on gestational age (GA), birth weight, Apgar scores at 1 
and 5  min, sex, delivery mode, small-or-GA (birth weight below the 10th percentile based on the Fenton’s 
growth chart), 19 antenatal steroid use, premature membrane rupture, histological chorioamnionitis, pregnancy-
induced hypertension (PIH), maternal diabetes mellitus, and social determinants, such as race and parents’ 
education level. In addition, neonatal data included information on intraventricular hemorrhage (IVH) (≥ grade 
3)20, culture-proven sepsis, NEC (≥ Bell’s stage 2)21, periventricular leukomalacia (PVL)22, bronchopulmonary 
dysplasia (BPD) (≥ moderate)23, retinopathy of prematurity requiring laser treatment24, duration of parenteral 
nutrition and hospital stay, cause of death, and sex- and age-specific Z-scores for height, weight, and head cir-
cumference measured at birth and discharge from NICU according to the Fenton’s growth chart19. Furthermore, 
long-term data at 18–24 months’ CA included information on weight, height, and head circumference Z-scores 
by the World Health Organization (WHO) Child Growth Standards25,26, cerebral palsy status27, visual-sensory 
impairments defined as blindness or wearing eyeglasses and hearing impairments defined as bilateral impair-
ment requiring hearing aids, and any results of tests received including implementing Bayley Scales of Infant 
and Toddler Development (BSID II, III), Korean version of the Ages and Stages Questionnaire (K-ASQ), and 
Korean-Developmental Screening Test for infants and children (K-DST). K-ASQ and K-DST are neurodevelop-
mental screening tools using parental questionnaires approved by the Korean Society of Pediatrics. K-DST has 
been nationally conducted since the late 2014 in Korea.

Outcomes.  The primary outcome was survival without NDD at 18–24 months’ CA. NDD was defined as 
scores < 70 according to BSID-II or III28,29, or when critical cut-off scores for each domain were less than 2 
standard deviation (SD) under the mean value, implying referral for further assessment using the K-ASQ or 
K-DST30–32. The secondary outcomes were cerebral palsy, sensory impairments, and each domain of NDD and 
PGF at 18–24 months’ CA. We defined NDD by categorizing it into separate domains using related results from 
all available tests, namely motor, mental, and social domains (Supplementary Fig. S1 online). K-ASQ or K-DST 
is highly correlated with BSID-II or BSID-III, 33,34 however, we considered BSID-II or III as a confirmatory test 
and K-ASQ or K-DST as a screening test for NDD (Supplementary Table S1). When any of the three domains 
was abnormal, it was defined as NDD for the total domain.

Regarding growth outcomes, we compared the difference in Z-score between birth and discharge and between 
discharge and a CA of 18–24 months. We assessed PGF at discharge and at 18–24 months’ CA. Reflecting that 
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several healthy preterm infants are placed in PGF, conventionally below the 10th percentile on growth charts, 
PGF was defined as weight, height, or head circumference at each point that did not exceed a Z-score of –2 (2.3rd 
percentile) according to the WHO Child Growth Standards25,35–37, not using the changes in Z-score between 
two times. This was because when we examined the data distribution of the Z-score difference between 18 and 
24 months’ CA and discharge, infants having a Z-score < –2 at 18–24 months’ CA were largely excluded from 
the condition where the Z-score difference was < –2.

Statistical analysis.  Continuous variables were presented as means ± SD and compared using ANOVA 
with post hoc test (Scheffe) or Kruskal–Wallis test with post hoc test (Dunn) designed to control the family wise 
error rate according to Bartlett’s test of sphericity results38. Categorical variables were presented as percentages 
and frequencies and compared using the chi-squared or Fisher’s exact test. A modified Poisson regression with 
a robust error variance and a log link treating violations of Poisson distribution assumption for common binary 
outcomes were performed using a generalized linear model to estimate the relative risk (RR)39. It estimated the 
adjusted RR for potential confounders with 95% confidence intervals (CIs). Average TFF in this cohort was 24 
PNDs, falling into P2 group. Therefore, RRs for primary and secondary outcomes of each group at 18–24 months’ 
CA were compared with reference to P2 group. Furthermore, impact of PGF on NDD at 18–24 months’ CA was 
evaluated using univariate analysis, multiple logistic regression analysis, and a forest plot. Mediation analysis 
was performed using the R package, medflex for estimating direct natural effects and natural indirect effects 
through the natural effect model proposed by Lange et al.40 and Vansteelandt et al.41 All statistical analyses were 
carried out using Stata SE version 14.2 (Stata Corp.) and R version 4.1.2. All statistical tests were two-tailed, and 
P-values < 0.05 were considered statistically significant.

Results
Demographics and short‑term outcomes.  Initially, 5922 VLBW infants were identified, of which 1465 
infants were excluded using the exclusion criteria. Of the remaining infants, 63 died before NICU discharge, 
513 were lost to follow-up, and 1159 had incomplete data at 18–24 months’ CA. Subsequently, the 4457 infants 
included were classified based on TFF into four groups using the short-term data. Among them, 2722 infants 
(61.9%) had long-term data at 18–24 months’ CA (Fig. 1).

Demographic characteristics and short-term outcomes before NICU discharge are described in Supple-
mentary Table S2. Mean GA and birth weights were 285/7 ± 2.2 weeks and 1093.1 ± 261.4 g, respectively. Mean 
TFF was 24 ± 20 days. In addition, mean GA, birth weight, and Apgar scores significantly decreased in infants 
from P1 to P4. The rate of antenatal steroid use and histological chorioamnionitis increased and PIH incidence 
in infants decreased from P1 to P4. The incidence of morbidities, such as high-grade IVH, sepsis, NEC (≥ 2), 
PVL, BPD (moderate-to-severe), and retinopathy of prematurity requiring laser therapy, increased significantly 
in infants from P1 to P4. Mortality increased in infants from P2 to P4. In addition, there were no differences 
regarding causes of death among groups (P = 0.946); however, PND at death increased significantly from P1 to 
P4 (P < 0.001).

Primary and secondary outcomes at 18–24 months’ corrected age.  Most parameters represent-
ing NDD from BSID-II, BSID-III, K-DST, and K-ASQ tests increased significantly in infants from P1 to P4. In 
addition, the incidence of cerebral palsy and sensory impairments significantly increased in infants from P1 to 
P4 (Supplementary Table S3).

We included all significant variables, which are well-known significant factors affecting long-term outcomes42, 
in the model to derive adjusted RRs for primary and secondary outcomes of P1, P3, and P4 infants than those 
of P2 infants.

Among all infants, survival without NDD significantly decreased in P4 infants (RR 0.88; 95% CI 0.81–0.95) 
than in P2 infants. P1 infants had significantly lower NDD risks in the total and motor domains than P2 infants 
(P = 0.030 and P = 0.004, respectively). In addition, P4 infants had significantly higher NDD risks than P2 infants 

19 Death at discharge 
(0.9%)

11 Death at discharge
(0.8%)

13 Death at discharge
(2.2%)

20 Death at discharge
(3.6%)

4394 Survival at discharge 
513 Follow-up loss 
1159 Incomplete data 
2722 CA 18-24 mo follow-up

1465 Not eligible
565 Gestational age < 23 or > 32
209 Major congenital anomaly
633 Died before approach to target enteral feeding volume
58 Missing data

5922 VLBWIs born and registered 
in Korean Neonatal Network database 

from Jan, 2013 to Dec, 2015

4457 Eligible for study

2003 Assigned P1 1301 Assigned P2 599 Assigned P3 554 Assigned P4

1145 CA 18-24 mo follow-up 816 CA 18-24 mo follow-up 399 CA 18-24 mo follow-up 362 CA 18-24 mo follow-up

Figure 1.   Flowchart identifying the study population. We categorized these eligible infants into four groups 
based on the time to reach full enteral feeding by 15 days increment: P1, < 16 postnatal days (PND); P2, 16–30 
PNDs; P3, 31–45 PNDs; and P4, > 45 PNDs. VLBWI, Very-low-birth-weight infants; CA, corrected age.
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in motor, mental, and social domains (P = 0.004, P < 0.001, and P = 0.019, respectively). Furthermore, P1 infants 
had a lower PGF risk of weight and height than P2 infants (P = 0.023 and P = 0.007, respectively). However, 
P4 infants had a higher PGF risk of height and head circumference than P2 infants (P = 0.031 and P < 0.001, 
respectively) (Table 1).

Postnatal growth and relation between postnatal growth failure and neurodevelopmental 
delay at 18–24 months’ corrected age.  Z-scores at discharge and at 18–24 months’ CA decreased sig-
nificantly in infants from P1 to P4. Z-score differences between birth and discharge significantly decreased, 
whereas they significantly increased between discharge and at 18–24 months’ CA in infants from P1 to P4. The 
PGF rate at discharge and at 18–24 months’ CA significantly increased in infants from P1 to P4 (Supplementary 
Table S4).

Additionally, infants with NDD had a significantly higher risk of height and weight PGF at 18–24 months’ 
CA than those without NDD in all domains, including total, motor, mental, and social domains (Fig. 2).

Mediation between time to full enteral feeding and neurodevelopmental delay by postnatal 
growth failure.  A mediation analysis, based on the assumption that there was no unmeasured confounding 
factor, was performed to investigate the association between TFF and NDD that PGF did not mediate. A Poisson 
regression model with a log link function was used to elucidate the presence of significant differences between 
the pure direct and indirect effect relative risks between the three exposure levels and P2 infants. In the analysis 
of pure direct effects, P1 infants had significantly decreased NDD risks compared to P2 infants, except for PGF 
in weight. In contrast, P3 and P4 infants had significantly increased NDD risks compared to P2 infants for PGF 
in all growth parameters. In the analysis of pure indirect effects, there was no significant effect of TFF on the 
NDD that works through PGF in each growth parameter (Table 2). Therefore, mediation analysis demonstrated 
the impact that TFF had on NDD, which was not mediated by each growth parameter.

Discussion
In this study, we demonstrated that the influence of TFF on VLBW infants during NICU stay persisted after con-
trolling for all variables known at birth or identified during NICU stay and was significantly associated with their 
survival without NDD and long-term PGF at 18–24 months’ CA. Specifically, TFF ≤ 15 PNDs in VLBW infants 
was associated with a lower risk of motor domain NDD and weight and height PGF than was TFF > 15 PNDs. 
In contrast, delayed TFF (> 45 PNDs) was significantly associated with a higher NDD risk for motor, mental, 
and social domains and height and head-circumference PGF than was earlier TFF < 31 PNDs. Furthermore, we 
revealed that long-term PGF did not mediate the association between delayed TFF and increased NDD risks 
for VLBW infants at 18–24 months’ CA. All these suggest that TFF is independently associated with long-term 
neurodevelopment without mediation by long-term postnatal growth in VLBW infants.

Apart from the suggested benefits of early enteral nutrition on modulation of the gut microbiota, metab-
olites, and immune function43,44, it was expected that better postnatal growth would be strongly associated 

Table 1.   Adjusted relative risk for neurodevelopmental and growth outcomes at 18–24 months’ corrected 
age. Abbreviations: PND, postnatal day; RR, relative risk; CI, confidence interval; NDD, neurodevelopmental 
delay. a Adjusted for gestational age, Apgar score at five min, small for gestational age, antenatal steroid use, 
and presence of pregnancy-induced hypertension, intraventricular hemorrhage (≥ grade 3), total sepsis, 
periventricular leukomalacia, bronchopulmonary dysplasia (≥ moderate), necrotizing enterocolitis (≥ 2b), and 
retinopathy of prematurity requiring laser therapy.

Variables

P1: ≤ 15 PNDs 
(n = 1145)
Adjusted RR (95% CI)a

P2: 16–30 PNDs
(n = 816)

P3: 31–45 PNDs 
(n = 399)
Adjusted RR (95% CI)a

P4: ≤ 46 PNDs 
(n = 362)
Adjusted RR (95% CI)a

Primary outcome

 Survival 0.99 (0.99, 1.00) 1 (Reference) 1.00 (0.99, 1.00) 0.99 (0.99, 1.00)

 Survival without NDD 1.03 (0.99, 1.07) 1 0.95 (0.89, 1.01) 0.88 (0.81, 0.95)

Secondary outcome

 Cerebral palsy 0.70 (0.47–1.03) 1 1.04 (0.73–1.51) 0.91 (0.59–1.40)

 Visual impairment 0.95 (0.74–1.23) 1 1.04 (0.81–1.33) 1.08 (0.84–1.39)

 Deafness 0.78 (0.38–1.58) 1 1.41 (0.66–3.02) 0.84 (0.37–1.91)

 Neurodevelopmental delay in

  Total domain 0.77 (0.59–0.97) 1.29 (1.03–1.61) 1.40 (1.12–1.76)

  Motor domain 0.62 (0.45–0.86) 1 1.51 (1.16–1.98) 1.67 (1.26–2.21)

  Mental domain 0.84 (0.62–1.15) 1 1.30 (0.97–1.74) 1.36 (1.02–1.81)

  Social domain 0.74 (0.39–1.40) 1 2.05 (1.21–3.48) 1.88 (1.11–3.18)

 Postnatal growth failure (Z-score < − 2.0)

  Weight 0.69 (0.50–0.95) 1 1.11 (0.80–1.53) 1.13 (0.81, 1.59)

  Height 0.63 (0.45–0.88) 1 0.94 (0.65–1.34) 1.43 (1.03–1.99)

  Head circumference 1.07 (0.79–1.45) 1 1.49 (1.10–2.02) 1.75 (1.28–2.39)



5

Vol.:(0123456789)

Scientific Reports |         (2023) 13:2990  | https://doi.org/10.1038/s41598-023-29646-1

www.nature.com/scientificreports/

with better neurodevelopment in cases of early TFF in VLBW infants. Furthermore, delayed TFF is associ-
ated with an increased extra-uterine growth retardation incidence at discharge4,5,45 and increased risk of poor 
neurodevelopment12. However, data regarding this association is conflicting. Furthermore, extra-uterine growth 
restriction categorization at an approximate term was not associated with abnormal neurodevelopment16. In 
a previous study, an earlier enteral feeding strategy to get an earlier TFF was not associated with long-term 
growth improvement at 2 years in extremely-low-birth-weight infants11. A recent prospective study observed 
no difference in 2-year neurodevelopment between VLBW infants achieving early TFF and those in the slower 
enteral feeding advancement group with slightly delayed TFF13. However, in both studies11,45, TFF of rapid and 
slow feeding groups fell into P1 group of our study. Nonetheless, it might be too early to demonstrate the effect 
of early enteral transition on long-term growth or neurodevelopmental outcomes. Many observational studies 
have revealed a positive correlation between postnatal growth and neurodevelopmental outcomes46–48. How-
ever, interventional studies that aimed to promote postnatal growth in preterm infants did not reveal consistent 
beneficial effects of faster postnatal growth on subsequent neurodevelopment15,49. This discrepancy between 
observational and interventional studies might be derived from the confounding effects of various neonatal 
morbidities of infants, affecting both long-term growth and neurodevelopment, which should be considered 
more in observational studies.

In this study, we revealed a firm association between TFF and long-term neurodevelopment and between TFF 
and long-term growth after adjusting for confounding factors, such as significant neonatal morbidities. We also 
demonstrated, for the first time to our knowledge, that long-term PGF did not mediate this association between 
TFF and long-term neurodevelopment.

TFF is inextricably related to immaturity and related illnesses, including short-term morbidities, and is thus 
regarded as an index of the clinical course for VLBW infants during NICU stay. Nonetheless, there are significant 
variations in clinical practice50 concerning determination of TFF, such as when the enteral feeds were initiated51,52, 
how fast they advanced9,44,45,53,54 types of milk that were provided55,56, and how feeding intolerance was managed 
by the medical staff57 in each unit. Therefore, compelling evidence on the positive impact of early TFF during 
NICU stay on long-term neurodevelopmental outcomes, which is independent of and not mediated by long-term 
growth, would provide an important rationale for quality improvement strategies targeting early TFF in VLBW 
infants during neonatal intensive care.

Total Domain

Weight

Height

Head circumference

Motor Domain

Weight

Height

Head circumference

Mental Domain

Weight

Height

Head circumference

Social Domain

Weight

Height

Head circumference

Z-score < -2SD

115/1528

110/1455

151/1294

131/1655

124/1579

167/1404

135/1666

125/1586

169/1407

121/1412

122/1371

165/1263

n/N

NDD(-),

72/438

65/422

75/368

56/311

51/298

59/258

52/300

50/291

57/255

22/110

21/110

31/96

n/N

NDD(+),

2.41 (1.76-3.31)

2.22 (1.60-3.09)

1.93 (1.42-2.62)

2.55 (1.81-3.58)

2.42 (1.70-3.44)

2.19 (1.57-3.06)

2.37 (1.68-3.36)

2.42 (1.70-3.45)

2.10 (1.50-2.94)

2.66 (1.61-4.41)

2.41 (1.44-4.02)

3.17 (2.00-5.01)

OR(95% CI)

Unadjusted

1.85 (1.29-2.66)

1.89 (1.31-2.74)

1.26 (0.88-1.78)

2.11 (1.42-3.13)

2.42 (1.62-3.61)

1.45 (0.99-2.14)

1.73 (1.17-2.56)

1.96 (1.31-2.93)

1.33 (0.91-1.96)

1.97 (1.09-3.56)

2.30 (1.27-4.17)

2.17 (1.27-3.71)

OR(95% CI)

Adjusted

0.001

0.001

0.196

<.001

<.001

0.054

0.006

0.001

0.134

0.024

0.006

0.004

P-value

2.41 (1.76-3.31)

2.22 (1.60-3.09)

1.93 (1.42-2.62)

2.55 (1.81-3.58)

2.42 (1.70-3.44)

2.19 (1.57-3.06)

2.37 (1.68-3.36)

2.42 (1.70-3.45)

2.10 (1.50-2.94)

2.66 (1.61-4.41)

2.41 (1.44-4.02)

3.17 (2.00-5.01)

OR(95% CI)

Unadjusted

1.85 (1.29-2.66)

1.89 (1.31-2.74)

1.26 (0.88-1.78)

2.11 (1.42-3.13)

2.42 (1.62-3.61)

1.45 (0.99-2.14)

1.73 (1.17-2.56)

1.96 (1.31-2.93)

1.33 (0.91-1.96)

1.97 (1.09-3.56)

2.30 (1.27-4.17)

2.17 (1.27-3.71)

OR(95% CI)

Adjusted

PGF reduces risk of NDD  PGF increases risk of NDD 

1.5 1 2 3 4 5

Figure 2.   Relationship between postnatal growth failure and neurodevelopmental delay at 18–24 months’ 
corrected age. Abbreviations: NDD, neurodevelopmental delay; OR, odd ratio; CI, confidence intervals; PGF, 
postnatal growth failure (Z-score < − 2).
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In this study, the median TFF in all VLBW infants was far more delayed than those reported in Europe, Oce-
ania, and North America (18 PNDs versus 8–15 PNDs)2. This study comprised a multicenter cohort that covers 
over 80% of VLBW infants in Korea17, including individual centers that may have different feeding protocols and 
different qualities of care. Therefore, systemic quality improvement initiatives, such as encouraging enteral feed-
ing with breast milk rather than formula in NICU58 and implementing targeted feeding protocols for individuals 
in NICU4 are necessary to reduce TFF in VLBW infants.

This study has several limitations. First, we could not identify individual NICU practices that affected TFF, 
including types of milk provided, feeding strategy, and information regarding parenteral nutrition, which might 
affect important nutritional status. Second, the lack of information regarding feeding strategies of individual 
institutes and inability to exclude unknown factors affecting growth and neurodevelopment should be considered. 
These might suggest that residual confounding is more likely than a true association, implying that smaller and 
sicker infants have delayed feeding and worse outcomes. Third, as 61% of the enrolled infants were followed up 
at 18–24 months’ CA, there was a possible bias due to loss-to-follow-up. Among the infants followed up, 73.3% 
were evaluated for neurodevelopmental outcomes, with 42.4% undergoing Bayley tests, which might decrease 
the strength of results. Finally, as K-DST and K-ASQ are parent-completed questionnaires, they had recall bias 
limitations, although these developmental screening tools were valid and correlated with BSID-II33,34.

However, the strength of this study is that, to our knowledge, it is the first to systemically evaluate an inde-
pendent association between enteral feeding completion, indicated as TFF, and long-term neurodevelopment 
with mediation analysis including long-term growth in a large prospective cohort using data collected with 
uniform criteria and of well-supervised quality17.

Conclusion
Our study showed a strong association between TFF and long-term neurodevelopment in VLBW infants. Long-
term PGF did not mediate the correlation between TFF and long-term neurodevelopment in VLBW infants. 
Therefore, our results suggest that TFF directly impacts survival without NDD. Consequently, these findings 

Table 2.   Mediation analysis between time to full enteral feeding and neurodevelopmental delay by postnatal 
growth failure. PNDs, postnatal days; CI, confidence interval; PGF, postnatal growth failure. a It is assumed 
that gestational age, Apgar score at five min, small for gestational age, antenatal steroid use, and presence 
of pregnancy-induced hypertension, intraventricular hemorrhage (≥ grade 3), total sepsis, periventricular 
leukomalacia, bronchopulmonary dysplasia (≥ moderate), necrotizing enterocolitis (≥ 2b), and retinopathy of 
prematurity requiring laser therapy are sufficient to control for confounding. b 95% confidence intervals are 
constructed using the bootstrapping method based on 1000 resamples with replacement. c Mediation analysis 
was performed using the imputation-based natural effect models of the medflex package with P2 as reference.

Mediator variables

P1: ≤ 15 PNDs P3: 31–45 PNDs P4: ≥ 46 PNDs

Relative riska

95% CIb

P valuec Relative riska

95% CIb

P valuec Relative riska

95% CIb

P valuecLower Upper Lower Upper Lower Upper

PGF in weight (n = 1932)

 Pure direct effect 0.786 0.608 1.012 .064 1.304 1.038 1.631 .021 1.401 1.119 1.769 .004

 Total direct effect 0.779 0.607 0.996 .047 1.302 1.039 1.629 .021 1.388 1.110 1.749 .005

 Pure indirect effect 0.988 0.959 1.017 .434 0.996 0.971 1.021 .740 1.008 0.972 1.046 .69

 Total indirect effect 0.979 0.923 1.039 .484 0.995 0.958 1.035 .793 0.998 0.974 1.024 .90

 Total effect 0.769 0.601 0.982 .036 1.297 1.032 1.626 .024 1.399 1.120 1.763 .004

PGF in height (n = 1843)

 Pure direct effect 0.741 0.571 0.954 .022 1.332 1.058 1.667 .013 1.334 1.041 1.710 .02

 Total direct effect 0.768 0.592 0.988 .043 1.321 1.049 1.661 .018 1.305 1.019 1.671 .04

 Pure indirect effect 0.982 0.950 1.016 .291 0.986 0.953 1.022 .427 1.033 0.982 1.088 .21

 Total indirect effect 1.018 0.978 1.060 .375 0.978 0.928 1.037 .424 1.010 0.977 1.045 .55

 Total effect 0.754 0.584 0.967 .028 1.302 1.036 1.640 .025 1.348 1.056 1.722 .02

PGF in head circumference (n = 1631)

 Pure direct effect 0.734 0.557 0.946 .022 1.328 1.022 1.714 .032 1.528 1.175 1.986 .002

 Total direct effect 0.739 0.561 0.952 .024 1.369 1.061 1.757 .015 1.477 1.133 1.923 .004

 Pure indirect effect 1.002 0.986 1.018 .853 1.009 0.958 1.064 .743 1.013 0.939 1.096 .74

 Total indirect effect 1.008 0.986 1.031 .473 1.040 0.989 1.097 .133 0.979 0.930 1.035 .45

 Total effect 0.740 0.562 0.953 .025 1.381 1.074 1.770 .011 1.497 1.157 1.941 .002

All PGF (n = 1935)

 Pure direct effect 0.752 0.584 0.962 .025 1.265 1.008 1.587 .043 1.417 1.125 1.792 .003

 Total direct effect 0.768 0.595 0.981 .038 1.277 1.023 1.598 .031 1.355 1.078 1.711 .01

 Pure indirect effect 0.990 0.961 1.021 .516 1.011 0.977 1.047 .521 1.037 0.981 1.095 .20

 Total indirect effect 1.011 0.972 1.050 .590 1.022 0.976 1.070 .365 0.992 0.953 1.032 .69

 Total effect 0.760 0.591 0.969 .029 1.292 1.033 1.619 .026 1.405 1.120 1.770 .004
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provide a rationale for translating the achievement of early TFF into quality improvement management of 
VLBW infants.

Data availability
The data that support the findings of this study are available from the corresponding author (yunsil.chang@
gmail.com) upon reasonable request.
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