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DeepInsight‑3D architecture 
for anti‑cancer drug response 
prediction with deep‑learning 
on multi‑omics
Alok Sharma 1,2,5*, Artem Lysenko 1,3,5*, Keith A. Boroevich 1 & Tatsuhiko Tsunoda 1,3,4*

Modern oncology offers a wide range of treatments and therefore choosing the best option for 
particular patient is very important for optimal outcome. Multi-omics profiling in combination with 
AI-based predictive models have great potential for streamlining these treatment decisions. However, 
these encouraging developments continue to be hampered by very high dimensionality of the 
datasets in combination with insufficiently large numbers of annotated samples. Here we proposed 
a novel deep learning-based method to predict patient-specific anticancer drug response from three 
types of multi-omics data. The proposed DeepInsight-3D approach relies on structured data-to-image 
conversion that then allows use of convolutional neural networks, which are particularly robust to 
high dimensionality of the inputs while retaining capabilities to model highly complex relationships 
between variables. Of particular note, we demonstrate that in this formalism additional channels of 
an image can be effectively used to accommodate data from different omics layers while implicitly 
encoding the connection between them. DeepInsight-3D was able to outperform other state-of-the-
art methods applied to this task. The proposed improvements can facilitate the development of better 
personalized treatment strategies for different cancers in the future.

Precision oncology is rapidly developing. However, only a very small percentage of patients can currently take 
advantage of it1. The risks of side effects can be reduced by improving the prediction rate of drug response 
from targeted therapy which would undoubtedly improve patients’ treatment. In this respect, drug prediction 
on in vivo datasets is a step towards clinical applicability. However, since in vivo data like The Cancer Genome 
Atlas (TCGA) repository (https://​www.​cancer.​gov/​tcga) has a scarcity of patient records and drug responses, 
it is difficult to train a model on in vivo datasets. Considering this challenge, Sharifi-Noghabi et al.2 trained 
their computational model on in vitro data and obtained predictability on in vivo data. In vitro projects have 
compiled datasets such as Genomics of Drug Sensitivity in Cancer (GDSC)3 and Cancer Cell Line Encyclopedia 
(CCLE)4. These datasets consist of multi-omics profiles such as gene expression, copy number alteration (CNA) 
and somatic mutations. Although gene expression datasets have shown to be very useful3,5, adding more omic 
layers could improve the predictability of pan-cancer models2. Nevertheless, the platforms of these datasets are 
different. Furthermore, there exists a scarcity of related samples in GDSC datasets. This augments the problem 
of adequately estimating a model on the training set of the data.

The application of modern machine learning (ML) methods to problems in biomarker discovery has allowed 
better prediction of response to treatment. Full scope of these advancements is too extensive to cover here, and 
the following recent review provides a more complete overview of proposed approaches6. To position this work 
among previous efforts, the field of anticancer drug response prediction can be viewed from the perspective 
of either the types of data used or the methodology applied. From the data-centric perspective, our method 
attempts to leverage patient multi-omics data, and as such, is closest to the following two approaches. In2, the 
MOLI method is proposed and learned on datasets from GDSC. It predicts response to a drug from TCGA and 
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patient-derived xenograft (PDX)7 datasets. These collated datasets have multi-omics profiles: gene expression, 
CNA, and somatic mutation. The MOLI method reported the area under the curve (AUC) on seven datasets from 
TCGA and PDX. Their average AUC over the seven datasets was 0.63. Park et al.8 also constructed training and 
test dataset from GDSC and TCGA/PDX resulting in more than seven datasets and proposed the Super.FELT 
method. The performance of their method also included the seven datasets used in2, though some of the result-
ing test samples slightly differed due to methodology. Nonetheless, their average AUC over the seven datasets 
was reported to be 0.68. When we reimplemented the Super.FELT method on the MOLI test sets, an average 
AUC of 0.65 was obtained.

From the methodological angle, our approach is distinguished by the idea of applying convolutional neural 
networks to tabular data, more specifically by converting it to images. Some of the drug response prediction 
applications with similar methodology are described as follows. Omics data as images was used with convolu-
tional neural networks (CNNs) in OmicsMapNet9. However, OmicsMapNet method was limited in that it relied 
on pathway maps for creating images. This means that the genes not mapped to particular pathways would be 
excluded. Another application of CNNs to drug response prediction was DeepIC5010, and this one-dimensional 
(1D) CNN method achieved the best result on the evaluated gastric cancer-specific dataset. As the idea of tabular 
image transformation gained popularity, more specialized methods for optimizing this transformation were 
developed, notably IGTD11, which was also applied to the task of drug response prediction. In contrast with 
these previous approaches that predominantly used a single type of data to create an image, this work specifi-
cally evaluates the potential of incorporating multiple, connected ‘omics layers within the same image through 
the use of multiple color channels to capture these relationships. Additionally, we illustrate how application of 
class-activation maps (CAMs) feature extraction can be used to facilitate interpretation of constructed CNN 
models. The theoretical basis of these proposed improvements is briefly explained below.

Typically, for tabular data, traditional ML methods are used for feature extraction, feature selection and 
classification problems. Essentially, a column vector of size d × 1 is processed via ML methods for mining and 
extracting relevant information to perform classification or regression tasks. The complexity of the data in the 
medical industry is ever-increasing, stretching the boundaries of ML techniques for phenotype identification 
relevant to disease diagnosis and analysis. In this regard, choosing a small group of crucial genes or elements 
from a larger set has become a critical step. Furthermore, determining phenotypes via feature extraction and 
classification processes plays a vital role. Feature selection is crucial in many different types of research and is 
not just used in analyzing genomic data. Therefore, the procedures of feature selection, feature extraction, and 
classification have a major role in determining how reliable ML algorithms are at identifying a subset of genes 
with the correct phenotypes. However, traditional ML approaches ignore the neighbourhood information and 
presumptively consider each component of a sample to be mutually independent.

Two-dimensional CNNs, on the other hand, are a class of deep learning architectures that have demonstrated 
promising results and attracted considerable interest in all forms of image analysis. Deep learning techniques 
are well-known and applied in various research fields, including biological studies12–19. Contrary to traditional 
ML methods, CNNs undertake feature extraction and classification through their convolutional layers using an 
input image (a p× q feature matrix). CNNs are highly efficient, automatically extract features from spatially 
coherent pixels, requires fewer memory footprints enabling deeper network with fewer parameters because of 
sharing of weights across nodes20, detect higher-order statistics and non-linear correlations, and use less samples 
to provide promising performance. An image in a local region is made up of spatially coherent pixels, which 
means that the nearby pixels share similar information. This neighbourhood information is extracted from the 
adjacent pixels by the layers of CNNs. Therefore, the adjacent pixels of a 2D input feature matrix should have 
adequate coherence in order to achieve meaningful output from a CNN.

Unlike other ML approaches, the order of nearby pixels in an image used by CNN is no longer independent. 
In order to arrange tabular data, e.g. omics data, to an image, DeepInsight21 pioneered through the element 
arrangement step and followed by mappings. Thereafter, automatic feature extraction and classification processes 
via CNNs are conducted. In the 2D pixel frame, the elements or genes are located according to how similar they 
are, and then the values are mapped to these locations to create the desired layout. With this method, any non-
image sample can be converted into a set of images that can be used by CNNs. According to our understanding, 
it was the first method for transforming different types of non-image input into picture forms for the use of CNN 
architecture. This method of transforming tabular data to images has been applied and/or further developed in 
various fields22–28. DeepInsight was a component in the Kaggle.com competition hosted by MIT and Harvard 
University that secured rank 1 on the leaderboard29.

The proposed method is based on the DeepInsight method21 and the DeepFeature method30. The DeepInsight-
3D model considers the limitations of DeepInsight and DeepFeature and further extends their utility for multi-
layered data. The overview of the proposed model is given in Fig. 1 (see Methods for the details). DeepInsight 
can convert a feature vector of size d × 1 to an image of size p× q following its pipeline. It can effectively deal 
with data of one kind. However, multi-omics data has several layers and, in this case, DeepInsight is restrictive 
to performing the transformation. We looked into this limitation and expanded the algorithm for multi-layers. 
Therefore, a sample s1 having L layers of column vectors c1 , c2 … cL of size d × 1 each, can now be transformed to 
a tensor-like shape of size p× q× L using DeepInsight-3D. This enables the element arrangement and feature 
mapping for multi-layered cases. If the number of layers is restricted to three, then it will give a colored image 
of a sample s1 . Using dimensionality reduction techniques, such as t-SNE31, DeepInsight-3D arranges similar 
elements from multi-layered data together in a 2D pixel frame and then performs element mappings of all the 
three layers. DeepInsight-3D can transform in two ways: (1) transformation using the dominant layer, where 
the most informative layer dictates the pixel locations and the values of other layers are mapped to these pixel 
locations. (2) The transformation by the equal contribution of layers. This approach finds the pixel locations in 
two stages; i.e., the element arrangement step is performed two times. In this way, the proposed DeepInsight-3D 
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model, first converts multi-omic or multi-layered data into corresponding images that are organized and colored, 
and then applies a convolutional neural network (CNN) with automatic feature extraction ability. Moreover, the 
element or feature selection of the transformed data ( p× q× L ) is carried out via the class-activation maps32 
and the Element Decoder step. The feature selection is achieved by decoding activations obtained by the last 
ReLu layer of the CNN architecture.

Considering a multi-omics dataset M having n samples, d dimensions (number of genes or elements) and 
3 layers, where d ≫ n . This leads to a small sample size problem. However, since DeepInsight-3D converts 
omics vectors to colored images using transformation H which handles groups of genes as features via element 
arrangement and direct mapping of genes to pixel locations, making the model robust compared to the limited 
sample size. For CNN the weights are not independent and it can bypass the curse of dimensionality problem33. 
While the sample sizes of datasets are minimal, DeepInsight-3D with CNN can still perform well if the model 
is appropriately tuned.

Anticancer drug response is highly complex because not only tissue of origin leads to high diversity of sub-
types, but also an ever-evolving landscape of somatic mutations make each cancer essentially unique. Combina-
tions of mutations give rise to different strengths and weaknesses and therefore modern treatments commonly 
rely on biomarkers to identify which drugs are most likely to be effective34. Single-gene biomarkers are now widely 
and successfully used, most notably BRCA1/BRCA2, ER and PR gene mutations for breast cancers35, BRAF and 
KRAS mutations in colorectal and lung cancers36 and PD-1/PD-L1 expression for targeting immunotherapy37. 
However, biological processes often arise through complex interactions of different genes, cell types and signal-
ing molecules that are far more challenging to profile, but vital for making further improvements to treatment38. 
Based on these previous results it is now clear that modern machine learning approaches can indeed deliver 
better predictive performance, but as a trade-off, recovering biological mechanisms that underpin such mod-
els still remains challenging. More advanced methods, like deep learning, can automatically perform feature 
extraction and engineering to deal with high dimensionality of the input data as well as discover interactions, 
and the potential of such methods for complex biomarker discovery is now well-recognized39. Interpretation 

Figure 1.   An overview of the DeepInsight-3D model. From the left multi-omics layers are processed via 
DeepInsight methodology and common pixel locations are found. After mapping omics data, corresponding 
images are constructed, which are processed to a convolutional neural network. Afterwards, CAM is used to 
find activation regions and element decoder is used to find a subset of genes.
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of these discovered relationships is important both for increasing confidence of doctors in using such tools in 
the clinic and for identifying research leads for future improvements. In this work we demonstrate that some 
of this complexity can be interpreted by mapping feature importance extracted by commonly-used methods 
like CAM to the biological pathways. Importantly, unlike in classical pathway enrichment analysis, the genes 
are extracted based on the magnitude of their contribution to the “answer” of the model rather than simply the 
level of expression. Our analysis shows that the model does indeed extract groups of genes that are non-random 
and have meaningful correspondence to different types of pathways, some of which were previously linked to 
anti-cancer drug response mechanisms.

The contributions of this work are as follows. DeepInsight-3D pipeline is presented where classification and 
feature selection can be performed for multi-layered non-image samples (or tabular data) through the application 
of CNNs. Two ways of image construction are introduced, (1) by mapping elements to the pixel locations of the 
dominant layer (shown in Fig. 1), and (2) by mapping elements to the pixel locations obtained by giving equal 
importance to all the three layers (implemented in the DeepInsight-3D package as an option). Element decoder 
is implemented to find genes or elements from the activation maps. We also demonstrate how the developed 
system can be used to interpret the CNN model and report on the identified key genes and biological processes 
identified as important for drug response prediction by respective models.

Results
Performance evaluation.  The datasets and empirical organization have been summarized here. The details 
are given in the Experimental Setup section and Supplement Files. Seven datasets from the GDSC resource are 
used for the training/validation of the model. The number of total training samples for Paclitaxel is 389, Gem-
citabine is 844, Cetuximab is 856, Erlotinib is 362, Docetaxel is 829 and Cisplatin is 829. The training set was 
divided into 90:10 ratio for separate smaller training set and validation set. The independent test sets are taken 
from PDX/TCGA resource. The number of test samples for Paclitaxel (PDX) is 43, Gemcitabine (PDX) is 25, 
Cetuximab (PDX) is 60, Erlotinib (PDX) is 21, Docetaxel (TCGA) is 16, Cisplatin (TCGA) is 66 and Gemcit-
abine (TCGA) is 57. Multi-omics data with expression, CNA and mutation layers are transformed into colored 
images by Deepinsight-3D. In all the datasets, the number of genes was over 13,000, which was much larger than 
the number of samples (less than 900). This leads to the high-dimensionality problem. However, since for CNN 
the weights are not independent, it is not affected by the curse of dimensionality33. Information loss occurs when 
two or more than two pixels coincide in the same position of the image framework, compelling two or more than 
two gene values to attain an average in this particular pixel location.

Next, since expression data contains the majority of information, it has been used to find the pixel locations 
(Fig. 1). All the layers are utilized to map their values on these common pixel locations. DeepInsight-3D offers to 
use of manifold techniques, such as t-SNE, UMAP, kernel-PCA and PCA. In our experiments, we found t-SNE 
showing better results than other techniques, which is why t-SNE was selected. The technique, t-SNE, is not 
applied in the usual manner, as the visualization of samples in the 2D plane is not required. We want to find genes 
in the 2D plane, so transposition process is performed prior to applying t-SNE. This would provide points in the 
Cartesian coordinates corresponding to the genes or elements. After that, the convex-hull algorithm is used to 
find the minimum square around the plotted points (see Fig. 1). However, the square and the points within, need 
to be rotated to align with the horizontal and vertical axes. For this reason, a rotation matrix has been used for 
alignment. Afterwards, the rotated Cartesian coordinates framework is constructed into pixel coordinates (with 
fixed rows and columns). This process would give pixel locations from the expression layer. Then the expression 
data will be mapped to these locations. These steps are not followed for the other two layers (CNA and muta-
tion). However, following the previous steps, their values will be mapped on the acquired pixel location. Once 
the mapping of all the three layers is completed, a colored image corresponding to a sample of multi-omics data 
can be visualized. In this work, a pre-trained ResNet-50 has been used to train the transformed images from 
the seven multi-omics datasets. The hyperparameters were adopted from DeepInsight version 2 (please see the 
Methods section and Supplement File 1 for more details). A Bayesian optimization technique was also applied 
for a drug dataset (Cisplatin) to improve the classification performance.

Two recently developed methods, MOLI and Super.FELT, were used as benchmark methods. Other than these 
methods, we have also compared with non-negative matrix factorization (NMF), feed-forward net, and Geele-
her et al.40 as reported in2. Moreover, a comparison was made with autoencoder (AE), artificial neural network 
after feature selection (ANNF), AutoBoruta Random Forest (AutoBorutaRF)41 and SVM42 as reported in 8. All 
these methods were compared with many preceding algorithms and showed superior performance. The test set 
configurations (in terms of the number of samples) were kept the same for a fairer comparison. However, the 
test samples may slightly differ for the methods used in the Super.FELT work. The AUCs were computed for all 
possible drugs-method combinations and are given in Table 1.

It can be observed from Table 1 that for Paclitaxel, MOLI and DeepInsight-3D produced promising AUCs. 
For Cisplatin, Super.FELT had the highest, and for Gemcitabine (TCGA), MOLI produced the highest. For the 
remaining 4 drugs, Gemcitabine (PDX), Cetuximab, Erlotinib and Docetaxel, DeepInsight-3D produced the 
highest AUCs. The average AUC over all the seven datasets for the MOLI method was 0.63 and for Super.FELT 
was 0.65. DeepInsight-3D produced an encouraging average AUC of 0.72. For other baseline methods, the 
average AUC reported are 0.43 for NMF, 0.53 for the feed-forward net, 0.59 for Geeleher, 0.45 for AE, 0.61 for 
ANNF, 0.38 for AutoBorutaRF and 0.53 for SVM. The confusion matrix of the DeepInsight-3D results over the 
seven datasets can be seen in Table S3 (Supplement File 1). In brief, the true positive rate (TPR) for Paclitaxel 
(PDX) was 24/38, Gemcitabine (PDX) was 10/18, Cetuximab (PDX) was 28/55, Erlotinib (PDX) was 13/18, 
Docetaxel (TCGA) was 6/8, Cisplatin was 1/6 and Gemcitabine was 10/36. The true negative rate (TNR) in the 
same order was 3/5, 5/7, 5/5, 2/3, 4/8, 46/60 and 18/21. The additional evaluation parameters such as average 
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accuracy, sensitivity, specificity, and F1-score over all the drug datasets was 0.62, 0.52, 0.73 and 0.58, respec-
tively, by the DeepInsight-3D method (please refer to Table S7, Supplement File 1 for details). For uncertainty 
analysis, repeating the same configuration would not significantly affect the results and the results remain same 
as reported in Table 1. Nonetheless, the AUCs over three repetitions for drugs Paclitaxel (PDX), Gemcitabine 
(PDX), Cetuximab (PDX), Erlotinib (PDX), Docetaxel (TCGA) and Gemcitabine (TCGA) were 0.74, 0.72, 0.71, 
0.86, 0.78, and 0.53. For Cisplatin (TCGA), Bayesian optimization technique with 10 objective functions were 
used and the best, for which the validation error was minimum, was selected. However, when we change the 
configuration of DeepInsight-3D method as an ablation study, we observe the variation in the results, which are 
reported in the summarized way in Figure S6 (Supplement File 1) and in details in Supplement File 3.

Feature selection to identify genes of interest.  DeepInsight-3D can also perform feature selection 
via class-activation maps (CAMs) to identify genes of interest for each dataset. Since the data dimensionality is 
very large compared to the number of samples available, there is a high chance of producing an unstable model 
estimate. Furthermore, not all genes can be well represented in a limited pixel-framework. Appropriate feature 
selection would reveal background scientific mechanisms. Therefore, we applied an iterative way of conducting 
feature selection. Gene selection can be performed in 3 ways, (1) considering CAM values for every training 
sample, (2) taking an average of CAM over training samples, and (3) class-based CAM (described in the Meth-
ods section) where the average over a particular class is considered. In this work, class-based CAM has been 
applied for gene selection. Table S5 (Supplement File 1) depicts the number of genes selected for each drug data-
set (non-respondents and respondents). For parameters related to feature selection, see Table S4 (Supplement 
File 1) and feature selection procedure in Figure S1 (Supplement File 1). The activation maps are shown in Fig. 2. 
Here the activations of Paclitaxel dataset at stage-1 and stage-5 (last stage) are illustrated. Only the training set 
of Paclitaxel has been used to find the activations. The selected genes are also depicted on the right-hand side of 
Fig. 2. The activations for all the seven drugs are depicted in Figure S2 (Supplement File 1).

Pathway‑centric context of discovered gene sets.  Gene sets identified as important by each 
drug-specific model were mapped to Reactome43 pathways and QIAGEN Ingenuity Pathway Analysis (IPA) 
knowledgebase44, as described in the methods section. This analysis has revealed that there were both a unique 
as well as a shared component that was recovered as important for all drugs. The overlap between drug-specific 
gene sets (Figure S3, Supplement File 1) was very low and consequently we have found that there was very low 
coverage of relevant common pathways in Reactome database, although this analysis did identify a small num-
ber of significantly enriched pathways for most of the drugs. Therefore, we have done additional analysis using 
IPA software, which is backed by a much larger database and has more pathway definitions with higher levels 
of granularity. In several cases most significantly enriched subsets have previously been reported in literature as 
being linked to particular drugs or that class of drugs. This suggests that the proposed system does have some 
functionality to not only improve quality of drug response prediction, but also allow discovery of meaningful 
biological processes that may be involved. Summary results are available as a Supplement File 2 (Tables S8–S12); 
and relevant key findings are summarized below.

Overall, seven evaluations were performed across six different drugs and two independent datasets (TCGA 
and PDX). One drug, gemcitabine, was profiled in both of these datasets. As described in detail in the methods 
section, our model interpretation approach allows recovery of class-specific important feature sets, therefore 
in total fourteen sets were generated and analyzed—i.e., separate gene sets were produced for responders and 
non-responders for each drug/data source combination. Note that for the purposes of interpretation, feature 
sets identified for the responder and non-responder classes are of equal interest and relevant gene combinations 
may be allocated to either or even both of the sets. Profiled drugs have covered a range of commonly exploited 
mechanisms of action: growth factor blockers, microtubule-binding and different forms of DNA damage.

Table 1.   A comparison of DeepInsight-3D for drug response prediction with multi-omics profiles using test 
AUCs. The test samples are the same for all the comparators. The highest results are marked with bold fonts. 
*These methods are executed on a slightly different test sets (but similar enough for comparison) as reported in 
the Super.FELT paper.

Drug Paclitaxel
Gemcitabine 
(PDX) Cetuximab Erlotinib Docetaxel Cisplatin

Gemcitabine 
(TCGA) Average

Early inetgration 
via NMF 0.24 0.56 0.53 0.28 0.39 0.40 0.58 0.43

Feed forward net 0.68 0.48 0.43 0.37 0.69 0.44 0.65 0.53

Geeleher 0.52 0.59 0.58 0.67 0.59 0.62 0.53 0.59

AE* 0.44 0.47 0.42 0.33 0.50 0.46 0.50 0.45

ANNF* 0.64 0.69 0.43 0.65 0.64 0.68 0.57 0.61

AutoBorutaRF* 0.46 0.45 0.17 0.17 0.42 0.45 0.53 0.38

SVM* 0.49 0.64 0.41 0.67 0.53 0.47 0.47 0.53

MOLI 0.74 0.64 0.53 0.63 0.58 0.66 0.65 0.63

Super.FELT 0.64 0.65 0.55 0.76 0.64 0.73 0.61 0.65

DeepInsight-3D 0.74 0.72 0.71 0.85 0.78 0.68 0.53 0.72
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The initial analysis that was based on the Reactome pathway definitions did not identify substantial com-
monalities between significantly enriched pathways across all of the drugs (Figure S4, Supplement File 1), and 
furthermore very few results were returned for some of the gene sets. This is likely caused by the relatively small 
size of the dataset and, in particular, very small number of responders. Although DeepInsight approach does 
allow for better model generalization in smaller datasets, some effect of noise is still unavoidable in such cases 
and can lead to greater variability of feature selection from a pool of all potentially usable options. As Reactome 
analysis did indicate the presence of some significant pathways, a follow-up analysis was done in IPA to explore 
whether the relatively low number of significant hits was solely due to the challenging dataset or relatively sparser 
coverage offered by the database used in the evaluation.

Metabolic pathway enrichment analysis using IPA software has identified 269 (responders) and 342 (non-
responders) non-redundant canonical pathways that were significant in at least one of the drug-specific sets. 
None of the pathways were found to be significantly enriched in all 7 of the drug-specific sets in either responder 
or non-responder categories (Fig. 3). However, a number of key common pathways were recovered for 5–4 sets, 
suggesting that those may be potentially important mechanisms of multidrug resistance (Fig. 4). Full results 
of this analysis, including log-transformed significance values for individual pathways are made available in 
Supplement File 2 (Tables S8–S12). One of the standout features of these results is functional consistency of the 
results across multiple classifiers. Given the size of the datasets, functions independently identified as important 
multiple are least likely to be due to overfitting or noise, therefore, we have decided to dissect these functional 
categories further and check if they have been previously reported to be linked to multidrug resistance. Some 
notable examples include “STAT3 Pathway” that was significantly enriched among both responder (Docetaxel 
p = 0.004; Gemcitabine (PDX) p = 0.017; Erlotinib p = 0.022; Paclitaxel p = 0.01) and non-responder (Gemcitabine 
(TCGA) p = 0.02; Docetaxel p = 0.04; Gemcitabine (PDX) p = 0.0008; Erlotinib p = 0.011; Paclitaxel p = 0.049) gene 
sets. STAT3 gene is often highly expressed in various cancers and can lead to therapy resistance by upregulat-
ing expression of anti-apoptotic proteins, stimulating DNA repair and cell proliferation45. Functionally closely 
related pathways “PI3K/AKT Signaling” (responders: Docetaxel p = 0.004; Gemcitabine(PDX) p = 0.017; Erlo-
tinib p = 0.022; Paclitaxel p = 0.011; non-responders: Gemcitabine(TCGA) p = 0.004; Docetaxel p = 6.5 × 10–5; 
Gemcitabine(PDX) p = 0.048; Erlotinib p = 0.004; Cetuximab p = 0.021) and “JAK/STAT Signaling” (responders: 

Figure 2.   Activations and gene selection on Paclitaxel at Stage 1 and Stage 5. Class 1 is non-respondents and 
Class 2 is respondents. The left side of the figure depicts the activations in Class 1 and Class 2, and the right side 
illustrates the selected genes in the respective classes.
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Gemcitabine(TCGA) p = 8.6 × 10–6; Gemcitabine(PDX) p = 2 × 10–4; Cetuximab p = 2.3 × 10–4; Paclitaxel p = 0.008; 
non-responders: Docetaxel p = 0.008) were also found important in multiple sets and are likewise well-known 
to be involved in multidrug resistance46,47. All of these pathways are well-known to play a key role in cancer 
cellular growth, survival, and resistance to treatments. Likewise, three variants of Rho GTPase family signaling 
pathways were recovered multiple times among the non-responder gene sets, which are an important mechanism 
for the upstream activation of JAK/STAT pathway48 and cancer progression49. These results are in line with cur-
rent understanding of the pivotal role these signaling pathways play in various drug resistance mechanisms50.

Another common theme was the potential importance of protein degradation and recycling mechanisms for 
cancer drug resistance. Functionally-linked ubiquitination (responders: Docetaxel p = 0.009; Erlotinib p = 0.014; 
Cetuximab p = 0.005; non-responders: Cisplatin p = 0.003; Erlotinib p = 4.8 × 10–7; Cetuximab p = 0.004; Pacli-
taxel p = 5.7 × 10–6), autophagy (responders: Docetaxel p = 0.031; Erlotinib p = 4.1 × 10–4; Paclitaxel p = 0.002; non-
responders: Docetaxel p = 0.002; Cisplatin p = 3.7 × 10–5; Gemcitabine (PDX) p = 3.4 × 10–6; Cetuximab p = 0.006) 
and lysosome regulation pathways “CLEAR Signaling Pathway” (responders: Gemcitabine (PDX) p = 0.009; 
Cetuximab p = 7.2 × 10–4; non-responders: Gemcitabine (TCGA) p = 0.044; Docetaxel p = 0.017; Gemcitabine 
(PDX) p = 4.4 × 10–4; Cetuximab p = 2.6 × 10–4; Paclitaxel p = 9.3 × 10–5) were found multiple times among the 

Figure 3.   Annotation of selected genes to IPA pathways across all drug-specific classifiers for responder (A) 
and non-responder (B) classes. Occurrences bars show how many times that part of annotations is also found 
in sets for other classifiers. Data were analyzed through the use of QIAGEN Ingenuity Pathway Analysis (IPA), 
2022 Summer Release (July) data, with client 01–20-04 (installed on 14 Sep 2021).

Figure 4.   Notable pathways identified as significant by metabolic pathway enrichment using IPA software 
in gene sets of importance in multiple prediction models. Data were analyzed through the use of QIAGEN 
Ingenuity Pathway Analysis (IPA), 2022 Summer Release (July) data, with client 01–20-04 (installed on 14 Sep 
2021).
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non-responder gene sets. Ubiquitination marks proteins for proteolysis and this mechanism is usually preserved 
largely intact in cancer cells, suggesting functional essentiality51. Both lysosome52 and ubiquitination-meditated 
proteasome53 are believed to be involved in multidrug resistance. These processes are part of a broader set of 
autophagy processes that in turn lead to cellular rejuvenation, stress resistance and medication of anti-drug 
responses on a cellular level54.

The last commonly represented theme was the presence of several pathways to do with extracellular struc-
tures and cell adhesion. Some specific examples in this category included “Epithelial Adherens Junction Signal-
ing” (responders: Gemcitabine (PDX) p = 0.028; non-responders: Gemcitabine (TCGA) p = 2.4 × 10–4; Cisplatin 
p = 0.019; Gemcitabine (PDX) p = 2.5 × 10–6; Erlotinib p = 0.015; Cetuximab p = 8.1 × 10–4), “Sertoli Cell-Sertoli Cell 
Junction Signaling” (responders: Gemcitabine (TCGA) p = 0.002; Docetaxel p = 0.026; Erlotinib p = 2 × 10–6; non-
responders: Gemcitabine (TCGA) p = 0.026; Docetaxel p = 0.003; Erlotinib p = 1.2 × 10–4; Cetuximab p = 0.016) 
and “Tight Junction Signaling” (responders: Docetaxel p = 0.010;non-responders: Gemcitabine (TCGA) p = 0.005; 
Gemcitabine (PDX) p = 0.020; Erlotinib p = 0.002; Cetuximab p = 4.7 × 10–5). Interestingly, multiple pathways in 
this broader functional category were identified in both Reactome and IPA-based enrichment analyses. These 
processes are important for formation of tumor microenvironment, interactions with the immune system as well 
as cancer cell dissimilation/metastasis. Some of the identified pathways were previously reported to be involved 
in drug resistance, for example paxillin was reported to be involved in tyrosine kinase inhibition in lung cancer55 
and was significantly enriched for both of the tyrosine inhibitor drugs sets (Cetuximab and Erlotinib) in our 
analysis. More generally, tight junctions play a role in drug efflux56 and are important for anoikis and metastasis57. 
Extracellular matrix can confer a cell adhesion-mediated drug resistance in some cancers, like glioblastoma58 
and small cell lung cancer59. However, the potential broader roles in anti-cancer drug resistance are currently 
not very well defined and these results hinting at prominent involvement highlight a need for further study.

Among the pathways found to be important and significant across several drugs two appear to be relatively 
unexplored with respect to selected drugs. The first example is “Tryptophan Degradation X”, which was significant 
for Gemcitabine (TCGA), Erlotinib (PDX) and Cetuximab (PDX). This result is of interest because tryptophan 
metabolism was proposed as a source of potential targets for future anti-cancer drugs60,61, and better understat-
ing of its interplay with established treatments may facilitate these developments. Another pathway of interest 
was “Clathrin-mediated Endocytosis Signaling”, which was significant for the same set of drugs. Endocytosis is 
a process by which molecules on the surface of a cell, like nutrients and signaling molecules, are internalized, 
mostly for subsequent post-processing or degradation. As a number of cancer driver and drug target proteins 
are located on the cell surface, it plays an important but very complex role in cancer62, and clathrin is one of the 
key components of this process63. Likewise, the role of this pathway in mediating response to these particular 
drugs still appears to be unclear. Of course, more detailed follow up of these links will be necessary to verify the 
observed effects and understand their roles further.

Discussion
Response to cancer treatment is highly complex as it is underlain by both genomic and somatic variations64, 
which can interact to give rise to yet more variation across all other ‘omics. This inevitably leads to very high 
degree of tumor heterogeneity across patients due to their genomic characteristics65, which in turn leads to often 
vast differences in efficacy of specific treatments. Better understanding of these factors is essential for improve-
ments in drug response prediction that will not only allow more patients to benefit through better targeting 
of available therapies1 but also avoid potential adverse effects66,67. In order to manage the complexity, increase 
scale and minimize risks to patients, drug response is often studied on large in vitro datasets4. The discovered 
mechanisms are then taken forward to pre-clinical models and eventually to clinical trials. One of the key aspects, 
therefore, is translatability of these results to actual better outcomes in cancer patients68. Specifically in the case 
of computational predictive models, the performance achieved on the in vitro training data must be comparable 
to that on the real patient data. Importantly, although in vitro high-throughput screening is inevitably required, 
the number of possible genomic factors and drug combinations make it impossible to exhaustively test all pos-
sible options69. Therefore, statistical and machine learning models are increasingly necessary to mine these huge 
datasets and discover novel clinically usable patterns70. In turn, these types of analyses are also used to streamline 
experimental work and therefore reduce the amounts of data that needs to be collected. As a possible additional 
benefit, more advanced machine learning methods can help to identify combinations of factors that contributed 
to making a particular prediction in each case and in that way facilitate the identification of pharmacological 
functions of these targets71.

In this context, DeepInsight-3D offers two important capabilities. First one is an ability to make accurate 
predictions of drug response from the high-dimensional ‘omics data. As the cost of collecting such samples 
continues to decrease, this information is now increasingly used by doctors to make better treatment decisions, 
creating a need for relevant tools. Potentially, ‘omic-based predictions can be combined with other clinical data 
as part of the decision process. The second capability is the discovery of underlying features of importance that 
may then facilitate identification of relevant mechanisms. Deep learning methods have an inherent ability to 
discover non-linear and interacting features when sufficient data is available—and therefore can expand the 
range of characterizable features beyond what is possible using less complex methods. DeepInsight-3D extends 
the versatility of applying CNN to multi-layered tabular data. In this work, DeepInsight-3D provided very 
encouraging results on drug response multi-omics data. DeepInsight-3D was able to produce an average AUC of 
0.72 over seven drug response datasets which is encouraging compared to competing methods in the literature.

The promising performance of DeepInsight-3D could be attributed to the following: (1) The inclusion of 
neighborhood information through the placement of similar elements together and dissimilar ones apart. (2) 
Three different layers can be combined into colored images, keeping all the possible information as kernels. (3) 
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The interconnectivity of deeper networks (CNNs) taps into the non-linear connectivity between elements which 
shallow or traditional machine learning methods could miss. However, at the same time as one of limitations, a 
limited number of samples affects the confidence of the model, which could lead to unsatisfactory performance. 
Therefore, it is generally opted to have ample training samples for better estimation of the model.

Deep learning nets, such as CNN, have many merits, such as automatic feature extraction, finding hid-
den structures from hyper-dimensional data, finding higher-order statistics of image and non-linear correla-
tions, economical use of neurons for large input sizes allowing much deeper networks are plausible with fewer 
parameters20, and a parsimonious memory footprint. These properties of CNN can be integrated with the incep-
tion of DeepInsight-3D for non-image tabular data with multi layers.

In machine learning techniques for tabular data, any two features are considered mutually independent. 
However, DeepInsight tries to establish a relationship through the element arrangement step by positioning 
similar elements together and dissimilar ones apart21. DeepInsight-3D further extends this property to multi-
layered data. Moreover, the application of DeepFeature is extended. DeepFeature enables a powerful means 
for the identification of biologically relevant gene sets and provides methodological basement for "explainable 
AI"30. This has been integrated with DeepInsight-3D to simultaneously identify elements for multi-layered data.

Functional annotation of gene sets found to be important for particular classifications was largely in line with 
pathways and mechanisms previously reported in the literature. Notably, despite very small training sets, there 
was remarkable degree of consistency across discovered functional categories among different classifiers. These 
functions also corresponded to well-known multidrug resistance mechanisms as well as core cancer pathways 
that are linked to general “fitness” of cancerous cells. Since drug response is highly complex and determinants 
are highly drug-specific these processes would not be expected to be fully predictive of drug response on their 
own. However, an ability to discover this relevant subset of functions across multiple datasets suggests that 
DeepInsight transformation may prove particularly useful in comparative analysis across multi-omics datasets 
and lead to discovery of common mechanisms. Another notable pattern in these results was that relatively few 
functions were completely unique to particular drugs. This is likely due to the way relatively small sample size of 
the datasets interacts with convolution done when data is presented as image, which would favor more consist-
ently present features in such cases.

In this work, DeepInsight-3D is used for multi-omics datasets. However, the proposed method is not limited 
to omics data. It can handle different kinds of multi-layered tabular data (as long as the elements and samples of 
diverse layers are arranged in the same order). This method does not require any specific biological information 
such as chromosome locations and visualizes non-image data through multi-layered mappings.

Although the results were promising, the severe scarcity of training and test samples hindered getting a rea-
sonable model estimate. The same was true for MOLI and Super.FELT methods, as their results were sensitive to 
parameter tuning. In general, CNN works very well when the samples are sufficiently large. However, this was not 
the case in the work. Nonetheless, all these methods provided a good platform in this direction. DeepInsight-3D 
can perform sufficiently well when the sample size is sufficient such as in the case of single-cell analysis. This 
would be our future direction of work.

Conclusions
The proposed method, DeepInsight-3D, demonstrates how the data-to-image approach for analysis of biological 
data can effectively incorporate different types of omics data and preserve the explicit connections between these 
layers by placing them in the same positions but in different channels of an input image. As was demonstrated 
in our previous work, once converted to image form data becomes suitable for use with image-specific convolu-
tional neural network architectures. This study is the first to use this type of omics integration and likewise the 
first to apply this type of approach to the problem of personalized cancer drug response prediction. Our results 
have shown that DeepInsight-3D can outperform previously proposed methods and can also be very powerful 
way to discover underlying important genes, which can then be interpreted to understand the decisions made 
by the classifier and also identify key biological processes of potential interest. In future work, we would extend 
this approach by using a regression layer in place of a classification layer in the CNN net to enable us to utilize 
continuous output values. We would also look at integrating the transformer model for our future work. Pres-
ently, transformer models are predominantly used in NLP areas where input signals are time-based data. We 
will also look if this can be taken further to time-independent data.

Methods
This section covers the proposed DeepInsight-3D methodology. The model consists of the following constituents 
(1) image transformation by DeepInsight-3D, (2) ResNet-50 model of CNN architecture, (3) class-based CAM to 
find activation maps, and 4) element decoder to decode genes (Fig. 1). These procedures are described hereunder.

DeepInsight‑3D: conversion of multi‑layered tabular data to image for CNN.  Let a multi-layered 
sample be depicted by xlij , where i represents elements or features, j represents samples, and l  represents layers. 
Therefore, an l-th layer data can be depicted as Ml = xlij for i = 1, 2, . . . , d , j = 1, 2, . . . , n and l = 1, 2, . . . , L , 
where d is the dimensionality of the data, n is the number of samples, and L is the total number of layers. For 
multi-omics data in this work, L = 3 , which gives a multi-layered dataset M = {M1,M2,M3} ∈ R

d×n×L . The 
DeepInsight model21 converts non-image data Ml to image data El . The size of an image sample is p× q . The 
DeepInsight transform consists of manifold techniques such as t-SNE31, UMAP72 or Kernel PCA73, convex hull 
algorithm, rotation of Cartesian coordinates, finding pixel locations and mapping of elements to these pixel 
locations. In the case of t-SNE, it constructs a probability distribution over a pair of samples so that similar 
samples have greater probabilities and dissimilar samples have lower probabilities. Then similarly the probability 
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distribution is found in the 2D plane. Thereafter, minimization of Kullback–Leibler divergence between the two 
distributions are performed.

These manifold techniques are not used in a usual manner as it is not required to visualize samples but the 
genes or elements. In this respect, the transpose of data Ml is used to find Pl . Many of these techniques can project 
data to a 2D plane (DeepInsight-3D does not require 3D or higher dimensional projection). Therefore if d > 2 
and n > 2 then it is possible to find 2D framework for Ml . We can obtain pixel locations by

where Pl is the pixel locations of layer l  , H denotes the DeepInsight transform to find pixel locations and Ml is 
an l-th layer of the training set (e.g. gene expression data). Note, the transpose in Eq. (1) is not explicitly shown. 
Once the framework of the locations is discovered using Eq. (1), elements can be mapped to find the correspond-
ing images, such as

where � maps a non-image sample x ∈ R
d to an image sample ej ∈ Fp×q , here F  is a pixel-coordinates system, 

and, p and q are sizes of rows and columns, respectively. For simplicity, the superscript l  is ignored on ej . From 
Eq. (2) we get � : x → e . The transformation � also normalizes the values between [0, 1] or [0, 255] . In this work, 
norm-2 has been employed which was introduced in 21.

Thus, the first layer of image data ( l = 1 ) obtained from Eq. (2) is

However, this dataset obtained from Eq. (3) is for layer l = 1 . For l = 2 , we did not compute the transform 
H , however, only Eq. (2) has been used to find E2 . Similarly, for l = 3 , we can obtain the dataset E3 from Eq. (2). 
Therefore, for l = 1, .., L , we get a multi-layered image dataset with common pixel locations P1 . In this work, 
L = 3 , so we get a 3D colored image of a multi-omics sample.

In the above model, it has been assumed that information from layer 1 is more than the other two layers, 
and that’s why all the other samples of the remaining two layers also mapped on P1 . If it cannot be determined 
which layer has more information compared to others, then all the layers can be used simultaneously to find 
common pixel locations. In that case, transform  H for l = 1, . . . , L will be applied. However, it would produce 
multiple pixel locations ( P1 . . . PL ) and we need to find the common pixel locations from these pixel locations. 
This requires a two-stage process and is implemented in the DeepInsight-3D package by setting up the parameter 
Parm.FeatureMap to ‘0’. This option has not been used in this work, nonetheless, it has been detailed further in 
Figure S5 (Supplement File 1).

CNN architecture for classification and feature selection.  In this work, ResNet-50 has been used 
for CNN. For feature selection, we have incorporated class-activation maps (CAMs)32. However, other series 
nets supported by CAM can be used. ResNet-50 has a fixed input image size of 224× 224× 3 . However, differ-
ent image sizes can be used, as package resizes and corrects the size according to the requirements of the net. 
The last ReLu layer has been used to find activation maps. The activation maps express the region of interest for 
decision making. It provides 3 colored layers in order of importance as red, yellow and blue. Since the red zone 
is the most informative, it has been used for feature selection purposes using the element decoder (Fig. 1). The 
training set and validation set are used to estimate and validate the model. The test set is used to evaluate the 
performance of the trained model. For CAM, only the training set has to be used to compute activations. The 
default values of hypermeters of CNN net, such as momentum, L2 regularization and initial learning rate have 
been used (as per version 2 of the DeepInsight package https://​alok-​ai-​lab.​github.​io/​DeepI​nsight/). However, the 
Bayesian optimization technique has been employed for Cisplatin to tune the hyperparameters. Further descrip-
tion is given in Supplement File 1.

Class activation maps (CAMs) and element decoder.  CAMs are computed for each image sample 
from the training set ej . CAM produce 3 colors and if we denote Rj as the computed CAM values of the red zone 
for a sample ej , then Rj > threshold depicts a region of interest for this sample. Since samples ej falls in different 
classes (here respondents and non-respondents), we can take an average of Rj over the samples of a class. There-
fore, class-based CAM can be computed as

where ωi denotes i-th class, c is the number of classes (here 2), and ni is the number of training samples in this 
class.

For class-based CAMs, instead of taking Rj > threshold , one can consider avgRi > threshold from Eq. (4). 
Under this activated region, element decoder finds the gene subset. The decoder will locate the argument or 
index of a pixel falling under this region. A pixel pk , located at (ak , bk) is defined by normalized value [0, 1] . 
However, depending upon the compression, it may contain one gene, more than one gene, or no gene. Search-
ing all the pixels under the activated region (as defined by Eq. (4)), would reveal a list of selected genes. This 
procedure will provide class-based features (or genes or elements), however, some elements could be common 
across different classes.

(1)Pl = H(Ml) for l = 1, . . . L

(2)ej = �

(

xlij

)

for j = 1, . . . , n and i = 1, . . . , d

(3)E1 = {e1, e2, . . . , en}

(4)avgRi =
1

ni

∑

j∈ωi

Rj for i = 1, . . . , c

https://alok-ai-lab.github.io/DeepInsight/
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Let Gi be the gene subset found from the i-th class, then the overall selected genes are denoted as

Experimental setup.  We used the same setup of datasets as done in2, where training sets were collated 
from GDSC cell lines resource3. The test sets were collated from TCGA patients with the drug response74 and 
PDX encyclopedia resource7.

The data was downloaded from the Zenodo repository (https://​zenodo.​org/​record/​40365​92) and correlated 
into the seven testing and training using R.

The training sets were from GDSC and the independent test were from PDX/TCGA. To train and validate 
the model, seven datasets from the GDSC collection are employed. There are 389 training samples overall for 
Paclitaxel, 844 for Gemcitabine, 856 for Cetuximab, 362 for Erlotinib, 829 for Docetaxel, and 829 for Cisplatin. 
The training set was split into two smaller training set and a validation set in a ratio of 90:10. The PDX/TCGA 
resource is used to obtain the independent test sets. The number of test samples for Paclitaxel (PDX) is 43, Gem-
citabine (PDX) is 25, Cetuximab (PDX) is 60, Erlotinib (PDX) is 21, Docetaxel (TCGA) is 16, Cisplatin (TCGA) 
is 66 and Gemcitabine (TCGA) is 57. The training sets were subdivided into 90:10 ratio for training the model 
and validating the trained model. The separate test set was never used during the training and/or validation 
process. It has been used at the end to provide the evaluation parameters from the trained model. All the three 
layers, expression, CNA and mutation, are used to transform into colored images by the Deepinsight-3D model 
and ResNet-50 is used to find the classification performance.

Various parameters such as t-SNE distance, different types of CNN nets and maximum epochs were estimated 
using the validation set of a drug dataset (see Table S1, Supplement File 1). The hyperparameters (L2regulari-
zation, momentum and initial learning rate) were obtained from DeepInsight version 2 (where the Bayesian 
optimization technique had been used to tune the hyperparameters on an RNAseq dataset). Thereafter, applied 
to all the datasets. For Cisplatin, the results were unsatisfactory; therefore, the Bayesian optimization technique 
was applied with 10 maximum objectives. The hyperparameters corresponding to the best performance objective 
function on the validation set was used to evaluate the test set (see Table S2, Supplement File 1). The training and 
validation sets were artificially augmented during the training phase of CNN net (ResNet-50). For augmentation, 
a sample is generated by averaging any two samples having the same class label.

Test samples have two labels, non-responders (NR) and responders (R). The test set labels are exactly the same 
as2 and are shown in Table S6 (Supplement File 1). The total samples used for training models are also derived 
from GDSC resource, same as2, however, the number of NR and R may be different. For all the training sets, first 
we applied a median of logIC50 to separate NR and R labels. This attempt balanced the NR and R samples in 
the training sets. However, in the case of Cisplatin, the validation accuracy was not promising, and so we then 
applied ‘mean’ to separate the labels.

Table S6 (Supplement File 1) shows that all the datasets used in this paper have gene count between 13,039 
and 15,500. On the other hand, the number of training samples is between 362 and 856. This leads to the ‘curse of 
dimensionality’ problem or high-dimensional problem. Figure 1 provided a pipeline to solve this problem (and 
its related discussion) that high-dimensional tabular data is first converted to colored images by DeepInsight-3D. 
After that, CNN is used to get the prediction.

As it can be observed that the number of samples is very limited for all the drug response data, we augmented 
the training and validation sets during the training phase of CNN.

All the experiments were done on Intel Xeon Gold 5220R Server (2.2 GHz) with 24 CPU cores and 2 parallel 
NVIDIA A100 PCIe GPUs (CUDA cores: 6912 with 40 GB GPU memory on each A100 GPU). The operating 
system used was Linux (Ubuntu Desktop version 20.04).

Pre‑processing of mutation data.  Cancer mutation data is most often extremely sparse, meaning that 
only a small number of different genes have consequential mutations in each sample. This presents a unique 
challenge when using it with a CNN classifier—as most inputs in this channel would be zero, it can result in 
inefficient use of information in that layer due to “dead” artificial neurons75. To counter this, we have used 
guilt-by-association principle to propagate the likely impact of mutations by using protein–protein interaction 
network. Briefly, the goal of this approach was to assign some part of an “impact” for each actual mutation to 
proximal genes in the network, as these are likely to be involved in similar biological functions. In this way, some 
meaningful value is assigned to each gene in all situations, while the information about actual mutations is still 
preserved by assigning to them the highest possible score. Note that the fine calibration of the impact score is 
not necessary for this use-case, as neural network is able to discover its own optimal weighting as long as the 
generated distribution is consistent across all of the training set.

This was done by mapping all of the genes in the dataset to the corresponding proteins of the protein interac-
tion network obtained from STRING database v11.076. A diffusion state distance matrix was calculated for the 
network based on the original definition of this distance metric77. Then, each node was assigned a score equal to 
the normalized inverse distance value of the closest mutated gene. In this way, the approach has facilitated the 
identification of possible functionally equivalent mutations as well as mutation hotspots, which have also been 
demonstrated to be an important network-based feature potentially predictive of clinical outcomes78.

Model evaluation.  In order to validate DeepInsight-3D, the training sets (besides the test sets) were subdi-
vided into two sets with a 90:10 ratio. The larger set was employed to estimate the model and the smaller set was 
applied to validate it. The AUC was computed on the test set. In general, the default parameters of DeepInsight 

(5)G = ∪c
i=1Gi

https://zenodo.org/record/4036592
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(version 2) were employed (https://​alok-​ai-​lab.​github.​io/​DeepI​nsight/) for this method with a few variations 
(see Table S1, Supplement File 1 for details). Some important parameters were norm-2 normalization (log trans-
form) 21, t-SNE to obtain a 2D plane for gene expression data, and that CNA and mutations were mapped to the 
2D plane obtained by gene expression, as it is generally considered that gene expression has more information 
compared to the other profiles. For CNN, we applied a pre-trained ResNet-50. This transfer learning helped to 
achieve promising results. In order to have faster training, default parameters were applied for all the datasets, 
and the obtained performance was satisfactory. However, for Cisplatin, we did not get promising results. There-
fore, for Cisplatin, the Bayesian optimization technique of hyperparameter tuning was applied for ResNet-50. 
The hyperparameters that best performed over the validation set have been used for the test set (see Table S2, 
Supplement File 1 for details).

Finding gene subsets through an iterative process.  The number of genes in genomic or multi-omics 
data is typically very large, making it difficult to put all of them into a finite image size due to fixed technology 
limits. In this instance, quantized images are unavoidable, meaning that specific image pixels will carry several 
genes in a single spot. This leads to another issue of selecting a gene from those batch genes (where batch gene 
refers to a set of two or more genes having the same pixel location in the frame). To address this overlapping issue 
up to some extent, DeepInsight-3D can be run iteratively to gradually select the elements. The initial iteration 
will identify a subset of elements that can be utilized as input in subsequent iterations to find a smaller subset of 
genes or elements.

Functional annotation and interpretation of identified gene sets.  The analysis described above 
resulted in two gene lists (one each for responder and non-responder class) from each trained model that con-
tained the genes identified as important for classifying training samples into a respective category. Functional 
interpretation of the recovered gene subsets was done individually, by mapping them onto metabolic and sign-
aling pathways as defined by Reactome. This was followed by gene set enrichment analysis done using Fisher’s 
exact test with a Benjamini–Hochberg false discovery rate correction. The analysis was further extended using 
Ingenuity Pathway Analysis software from QIAGEN Digital Insights, which is backed by an extensive manually-
curated knowledgebase. Owing to its more extensive collection of data and more detailed pathway definitions, 
IPA has allowed identification of a much larger set of additional significant pathways. This analysis was done 
both for the metabolic and phosphorylation pathways that were filtered to only include direct links with experi-
mental evidence.

Data availability
All the datasets used in this paper can be downloaded from the Zenodo repository https://​zenodo.​org/​record/​
40365​92.

Code availability
DeepInsight-3D software package (in Matlab), a dataset, installation instructions and user-manual are available 
from the GitHub link https://​github.​com/​alok-​ai-​lab/​DeepI​nsigh​t3D_​pkg. The example PDX_Paclitaxel dataset 
is also separately available from the link http://​emu.​src.​riken.​jp/​DeepI​nsight/​downl​oad_​files/​datas​et1.​mat , note 
the size is 88 MB. The following links for other related packages can be accessed via http://​www.​alok-​ai-​lab.​com/​
tools.​php and/or http://​emu.​src.​riken.​jp/.
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