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Quantum algorithms for geologic 
fracture networks
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Solving large systems of equations is a challenge for modeling natural phenomena, such as simulating 
subsurface flow. To avoid systems that are intractable on current computers, it is often necessary 
to neglect information at small scales, an approach known as coarse-graining. For many practical 
applications, such as flow in porous, homogenous materials, coarse-graining offers a sufficiently-
accurate approximation of the solution. Unfortunately, fractured systems cannot be accurately 
coarse-grained, as critical network topology exists at the smallest scales, including topology that 
can push the network across a percolation threshold. Therefore, new techniques are necessary 
to accurately model important fracture systems. Quantum algorithms for solving linear systems 
offer a theoretically-exponential improvement over their classical counterparts, and in this work 
we introduce two quantum algorithms for fractured flow. The first algorithm, designed for future 
quantum computers which operate without error, has enormous potential, but we demonstrate that 
current hardware is too noisy for adequate performance. The second algorithm, designed to be noise 
resilient, already performs well for problems of small to medium size (order 10–1000 nodes), which we 
demonstrate experimentally and explain theoretically. We expect further improvements by leveraging 
quantum error mitigation and preconditioning.

Simulating flow in geologic fracture networks requires computing certain features—for example, pressure—
throughout a discretized model of the specified region. Often, fracture network problems are specified as systems 
of linear equations, and solving such systems can become computationally prohibitive as system dimension 
 increases1. Classical computers can thus solve large systems only when information is removed from considera-
tion. Coarse-graining is one technique for reducing system size. Originally developed to model multi-scale bio-
chemical systems, it has become an oft-used means of simplifying linear systems, including in the  geosciences2–4. 
Specifically, the coarse-graining technique of upscaling can be accurately applied to geological problems involv-
ing spatially-large, materially-homogeneous regions. The technique combines mesh nodes and assigns them an 
averaged, or upscaled, permeability or other geological feature, losing mesh resolution but, in this context, still 
preserving approximately accurate  solutions5.

Fractures exist over a range of at least 10−6 to 104 m, and the computational requirements involved in com-
pletely solving systems comprising over ten orders of magnitude quickly become prohibitive. Such systems also 
cannot be accurately upscaled because the information thereby lost pertains to small fractures that ought not 
generally be neglected. Collectively, such fractures can radically transform the network topology, including 
by possibly pushing the network over a percolation threshold. The small fractures can collectively contribute 
a significant amount of surface area, enabling stronger interaction between the fractures and the rock matrix, 
potentially providing complete connectivity that would not otherwise exist in a  region6. Therefore, fracture net-
work problems cannot be classically solved in their entirety, nor can they be accurately solved with upscaling, 
making simulation of fracture systems one of the most challenging problems in  geophysics7–10.

Thus, accurate geologic flow models should include fractures at the entire range of scales. While advanced 
meshing  techniques11 and high-performance  simulators12 allow inclusion of increased fracture range, even such 
sophisticated approaches do not make it possible to model the full fracture scale. So, as illustrated in Fig. 1, 
classical approaches to geologic fracture problems depend upon upscaling that neglects information which can 
dramatically affect the solution.
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By contrast, quantum algorithms provide efficient solutions for solving large linear systems that could include 
the entire scale of geologic  fractures13. Properties of quantum computing are fundamentally different than classi-
cal counterparts, theoretically permitting the solution of classically intractable  problems14–16. Among other ben-
efits, quantum computers store solutions as a vector, ψ , containing 2n elements, where n is the number of qubits 
(or quantum bits)16. A quantum computer can thereby solve vast systems of equations with a relatively small 
number of qubits: n qubits allows for solving a system with 2n  variables13 . Consider a straightforward example 
involving a cubic fracture domain comprising 1-km and employing a 1-cm resolution. Given 105 centimeters to 
a kilometer, simulating this region would require (105)3 = 1015 nodes. While a classical computer would thus 
require O(1015) bits, a quantum computer would require only O(log2(1015)) ≈ O(101) qubits.

This article illustrates using quantum algorithms to solve fracture flow linear systems problems (LSPs) for 
which upscaling is not appropriate. We introduce two algorithms and provide proof-of-concept application using 
IBM’s suite of quantum devices. We consider problems formulated as a numerical discretization of ∇ · (k∇h) = f  , 
where k is the permeability, f is a fluid source or sink, and h is the pressure to be computed. This discretization 
results in a linear system of equations (Ax = b) , where A is a matrix, and x and b are vectors. The solution, x , 
represents the pressure at each of the discretized nodes, and quantum algorithms prepare a normalized vector 
proportional to this solution.

Before outlining the remainder of the paper, we make three observations regarding the problems solved and 
their solutions. First, we note that the problems do not reflect actual geologic data, but are rather generated to 
represent hypothetical fracture networks that define the k in the above partial differential equation. (See “Algo-
rithms for the fault-tolerant era,” “An algorithm for the near-term era,” and “Variational linear solver approach” 
for details.) We chose this method of generating problems to both keep them sufficiently straightforward for 
today’s still-developing quantum hardware, and to guarantee that we could solve the problems with classical 
computers, so that we would have known solutions against which to compare the quantum computers’ results.

Second, we briefly discuss the practicality of a normalized solution from quantum algorithms for solving 
linear systems. The applicability of such a solution depends upon the physical meaning of the linear system, and 
there thus may be systems for which a proportional (i.e., normalized) solution is not useful. Fortunately, this is 
not an issue for fracture network problems, in which a proportional solution is often sufficient, because the goal 
is to understand relationships between node properties, and not necessarily exact values for those properties. For 
example, when understanding the direction of fluid flow between two designated nodes or regions in the domain, 
it is important to understand which node or region has higher pressure, but not necessarily the exact value of the 
pressures. Thus, in this work, we consider obtaining proportional solutions from the quantum algorithms, and 
do not consider obtaining a re-scale factor. That said, obtaining such a re-scale factor is possible, and future work 
could explore the most straightforward means of doing so. For example, the re-scale factor could be computed by 
averaging the fixed-pressure boundary conditions and comparing this to the average of the normalized pressure 
at those nodes, as computed by the quantum computer.

Third and finally, we note that obtaining this solution from a quantum computer works differently than from a 
classical  machine16. Upon quantum algorithm completion, the entire solution is not readily available, and gener-
ally requires exponential time to  obtain16–18. This is no issue for applications in which the goal is not to know the 
entire solution, but is instead to completely solve the problem, such that any portion of the solution that a user 
obtains is accurate. Fortunately, fracture networks present just such a situation; ordinarily, we are interested in 
the pressure at a small, fixed number of nodes on the computational mesh, such as the nodes corresponding to a 

Figure 1.  Schematic workflow for applying classical and quantum algorithms to fracture flow problems. 
Discretizing fracture systems on classical computers involves reducing the computational cost by truncating the 
fracture network to exclude small fractures. This setting-aside of information provides a solution that does not 
accurately reflect all flow. Conversely, quantum computing has the potential to solve large, complete fracture 
systems given properties of quantum mechanics and algorithms designed to take advantage of those properties.
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well location. Rather than extract the pressure at all nodes from the quantum computer, we need only obtain the 
pressures at nodes corresponding to the area of interest. Furthermore, fracture flow problems can be specified 
in such a way that the complexity required to obtain information about multiple nodes’ pressures is reduced. A 
procedure that we term ‘smart encoding’ allows obtaining the aggregated pressures of a series of nodes at the 
computational cost of a single node (see Sec. XB online for further details.)

The paper proceeds as follows. “Algorithms for the fault-tolerant era” first presents two algorithms–the 
Harrow-Hassidim-Lloyd and Subasi-Somma-Orsucci algorithms—that have proven potential for solving LSPs 
on error-corrected, or fault-tolerant, quantum  computers13. Despite the potential for exponential gain in cer-
tain cases, the high noise levels of current hardware result in poor  performance19–22. “An algorithm for the 
near-term era” then turns to algorithms designed for contemporary, noisy intermediate-scale quantum (NISQ) 
 computers23–26. Specifically, we experimentally illustrate the noise resilience of the Variational Linear Solver 
 algorithm27, which provides improved solution accuracy even on available error-prone machines for fracture 
LSPs of small to medium size (10 to 1000 nodes). We conclude by situating our results and suggesting future 
improvements.

Results
Algorithms for the fault-tolerant era. The first algorithm for solving quantum linear systems prob-
lems (QLSPs) was introduced by Harrow, Hassidim, and Lloyd (HHL)13. It solves the sparse N-variable system 
Ax = b with a computational complexity that scales polynomially with log(N) and the condition number, κ , of 
the matrix A13. This provides an exponential speedup over the best classical approaches when κ is small, such as 
when an effective preconditioner is used. However, the quantum circuit requirements of HHL—when applied 
to problems of even moderate size—are well-beyond the capabilities of currently available quantum  hardware28. 
This is largely because HHL utilizes complex subroutines, such as Quantum Phase Estimation, which require 
qubits that operate with almost no quantum noise or error. On NISQ hardware, HHL is thus impractical for 
systems of interest; the largest system solved to date using HHL is of dimension 16× 1629–34. Once large fault-
tolerant quantum computers are developed, the exponential speedup offered by HHL (and variations/improve-
ments thereon) could play a critical role in advancing subsurface flow modeling.

In the interim, progress in QLSP algorithms has occurred in two directions. The first is to tailor QLSP 
algorithms to the strengths and weaknesses of current NISQ computers, such as the algorithm we present in 
“An algorithm for the near-term era”  does27,30,35–37. The second is to design algorithms that are still intended for 
fault-tolerant computers, but which do not rely on as many complex subroutines as HHL and thus may perform 
adequately on NISQ  devices38–41. One such example is the adiabatic approach of Subasi, Somma, and Orsucci 
(SSO)38. This approach requires only a single subroutine, known as Hamiltonian simulation, while still offering 
the equivalent quantum speed-up of HHL.

Before embarking on the purely NISQ-oriented approach of “An algorithm for the near-term era,” we tested 
the SSO algorithm on a collection of very simple subsurface flow problems to assess how well current hardware 
could handle one fault-tolerant algorithm. As described in “Introduction,” the problem was to compute pressures 
of a one-dimensional grid of either N = 4 or N = 8 nodes. (See subfigures (c) and (d) of Fig. 2 for a cartoon visu-
alization.) Pressures on the boundaries were fixed, and the answer to the QLSP encoded the internal pressures.

Figure 2.  Solving 4-node and 8-node fracture systems using the SSO algorithm. Subfigure (a) presents results 
for a one-dimensional grid of 4 nodes, while subfigure (b) does the same for a grid of 8 nodes. Each subfigure 
presents the maximum, minimum, and average error in 75 runs on either IBM’s quantum simulator (solid 
blue line) or the ibmq_rome quantum computer (dashed red line). The error is plotted against the number of 
iterations, q, used. The figures also include a dotted gray line illustrating the error that would be achieved if the 
returned ‘solution’ from the quantum computer was the result of the maximally-mixed state. As described in 
the main text, this serves as a benchmark for assessing the quality of the solution SSO achieved. Subfigures (c,d) 
present cartoons of the problems solved: each color indicates a unique node pressure, with fixed pressures of 1 
and 0 on the boundaries.
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The computational complexity and resulting accuracy of the SSO algorithm depend upon a unitless, user-
defined parameter, q, which is connected to how long the algorithm is allowed to run. In particular, the complex-
ity and depth of the circuit solving the LSP are linear with q38. We showed that—up to a point—the algorithm 
returned better results as q increased; for both N = 4 and N = 8 problems running on a noiseless quantum 
simulator, the error �Ax − b� approached 0 for q = 104 . On the quantum hardware, the average error after an 
equivalent time was approximately 0.21 for an N = 4 problem and 0.54 for an N = 8 problem. (Note that for 
these problems, �b� = 1).

Figure 2 illustrates these results and two noteworthy points. First, the N = 8 problem exhibited a clear limit 
to how much the hardware results would improve with increasing q. Indeed, despite increasing q by four orders 
of magnitude, the average error when run on the quantum hardware decreased by only about 0.2. This suggests 
that—on NISQ-era devices—SSO’s utility is limited even for problems with as few as 8 nodes.

Second, Fig. 2 compares the errors achieved on quantum simulators and hardware to the error when obtaining 
a result from a quantum state known as the maximally-mixed state. This comparison contextualizes the quality of 
the errors achieved by SSO, because the maximally-mixed state corresponds to a state where noise has destroyed 
all information in the quantum system, and thus can be characterized as one of random information. Specifi-
cally, for the fracture flow LSPs we solved, obtaining a result from a quantum computer in the maximally-mixed 
state is equivalent to obtaining any of the possible states with equal probability. (In other words, a result from a 
quantum computer in the maximally-mixed state is a ‘solution’ chosen at random from a uniform distribution 
of all possible solutions.) Such a ‘solution’ is thus not meaningful, because any accuracy is due to randomness, 
and not to the performance of the SSO algorithm.

Figure 2 illustrates that the SSO algorithm offered very little improvement upon such a randomly-determined 
solution. For example, in the N = 8 case, the hardware results offered an improvement of just about 24%: the 
result from the maximally-mixed state had an error of 0.71, the quantum hardware achieved an average error of 
0.54, and so the improvement due to SSO was solely 0.71−0.54

0.71 = 0.24.
The fact that SSO’s performance on such small problems was so limited illustrates that, although fault-tolerant 

algorithms like HHL and SSO have significant promise, the noise on contemporary devices is too high for accu-
rately solving even very small problems using these methods.

An algorithm for the near-term era. An alternative to fault-tolerant algorithms are those designed to 
operate in the NISQ regime, often by leveraging robust classical computing alongside quantum hardware. Vari-
ational Quantum Algorithms (VQAs)23,24,26 encode a task of interest—in our case, solving a linear system—in 
an optimization problem. In these algorithms, the classical computer steers the optimization process while the 
quantum computer computes a cost function, which is being optimized. The goal is to train a parameterized 
quantum circuit such that the parameters minimizing the cost function are also those that cause the circuit to 
compute the solution to the problem of interest. There are multiple approaches to solving the QLSP in near-term 
 devices27,35,36; we focus on the Variational Linear Solver (VLS) algorithm of Ref.27. The VLS algorithm trains 
parameters in a quantum circuit such that, when a cost function is minimized, the solution encoded by the 
trained circuit is proportional to the solution x of the LSP.

We employed the VLS algorithm to determine pressures at each node in a discretized model of the subsurface. 
With VLS, we can currently tackle much more complex problems than we solved with the SSO algorithm. The 
problems we considered contained a pitchfork fracture with up to 8192 nodes in the discretization.

Before discussing these problems and VLS’ performance, it is worth clarifying the benefits of applying VLS to 
linear systems such as fracture network problems. As a variational algorithm, VLS is inherently difficult to clas-
sify when it comes to  complexity24,27. Consequently, it is difficult to mathematically prove a quantum advantage. 
However, despite the non-convex nature of variational algorithm optimization landscapes, there exist several 
theoretical results which suggest good performance. These include the absence of vanishing gradients, and the 
ability to over-parametrize the quantum circuit, which transforms the landscape into a quasi-convex one, allow-
ing the derivation of convergence guarantees in some  cases22,42,43. Moreover, several quantum-aware classical 
optimizers have been developed with the goal of furthering variational algorithm  performance44.

In addition to those theoretical results, empirical studies have shown VLS to have “linear scaling in κ , loga-
rithmic scaling in 1/ǫ , and polylogarithmic scaling in N,” where κ is the condition number of the A matrix in 
the linear system, ǫ is the desired error, and N is the dimensionality of the square  system27. These complexity 
results are derived from numerical simulations, and suggest that VLS potentially provides an efficiency improve-
ment on the polynomial complexity of classical linear solvers in N, while also exhibiting usability on near-term, 
increasingly-available quantum devices. This motivates our work, as we seek to show that VLS can be accurately 
applied to linear systems representing fracture flow problems. Therefore, while the quantum advantage of VLS 
is difficult to theoretically specify, we identify two benefits of applying it to fracture flow problems: first, VLS is 
a near-term algorithm that has been empirically shown to produce accurate results when solving linear systems 
problems on contemporary quantum hardware. Second, variational quantum algorithms (including VLS) are 
similar to other heuristic methods that need to be optimized, such as many machine learning methods. VLS is 
analogous to ML methods in that—although they may not have theoretical performance guarantees—they may 
nonetheless provide valuable insights when studied.

A 6× 8 domain with a uniform pitchfork. We started with the results of Fig.  3, which illustrates that VLS 
determined the pressures in a 32-node region with a fidelity of greater than 99%. Fidelity is a common metric 
for comparing quantum states, and we apply it as a performance measure for a quantum  algorithm16,45–47. (It is 
worth noting that there are a number of ways of comparing quantum  states16, and future work might show that 
considering alternative metrics provides additional insight into a quantum algorithm’s solution quality, particu-
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larly for problems of larger sizes.) Fidelity can be defined as the inner product between two vectors, and thus, 
fidelity is 1— or 100%—when two vectors have the same direction and proportional magnitude, which equates 
to a perfect solution in our fracture situation. (Recall that, since the quantum computer produces a solution 
vector normalized to 1, the output is proportional to the pressure solution.) Conversely, fidelity is 0 when two 
vectors are orthogonal to each other, meaning an entirely inaccurate fracture pressure solution. Subfigures (a) 
and (b) illustrate that the VLS training process—in which we simulated the quantum hardware—generated 
circuit parameters such that a fidelity of 0.9987 was achieved in the best simulation (highlighted in magenta). 
Furthermore, subfigures (c) and (d) illustrate that noise on quantum hardware did not appreciably damage the 
solution: when running the circuit with the parameters found via optimization, we achieved a fidelity of 0.9911, 
only 0.0076 away from the fidelity achieved using a noiseless simulator.

Although this is a very small problem when compared to what classical algorithms can accommodate today, 
this result is significant because it experimentally illustrates that the VLS approach has some resilience to the 
noise present in NISQ machines. That in turn suggests why accurate results from quantum computers—even on 
small problems—are worth exploring. Quantum computing, both algorithmic and physical implementation, is 
still in its infancy, so, accurately solving proof-of-concept problems like this one is an important step towards 
understanding how to make use of quantum computing for fracture systems.

Larger domains with uniform pitchforks. Success with the 32-node problem led us to consider using VLS to 
solve larger problems. As predicted, noise affected these solutions more than in the case of Fig. 3 because increas-
ing region size requires larger circuits—including more qubits and more parameterized quantum gates—to 
encode the problem. Nonetheless, we again found that our solutions were quite accurate: the lowest fidelity was 
0.8834 for an 8192-node problem.

Figure 4 illustrates the details, with subfigure (e) being the most significant result: it indicates that—for all 
problem sizes considered—we achieved solutions that were significantly more accurate than solutions that had 
degraded to noise alone. As in “Algorithms for the fault-tolerant era,” we compared the quality of the solution 
achieved on quantum hardware to a ‘solution’ that would have been the result of the maximally-mixed state. 
And, as in “Algorithms for the fault-tolerant era,” the maximally-mixed state result is a random solution selected 
from the distribution of all possible solutions. Unlike with SSO, we found that the quality of VLS’s solution was 
significantly higher than that from the random solution, even for problems that were larger and more complicated 
than those solved with SSO. Even the worst fidelity achieved was appreciably above that achieved by a random, 
noise-only solution: 0.8834 compared to 0.1472.

The performance of VLS on scaled problems was surprising; even as these are relatively small problems, and 
even as VLS is designed for noisy hardware, we might have seen significantly worse solution quality, as illustrated 
by Fig. 4. This is because, although VLS offloads some computations onto error-proof classical machines, any cir-
cuits running on contemporary quantum computers are susceptible to noise. However, quantum algorithms may 
be less susceptible to noise, if they posses properties that store the relevant information in specific ways, to keep 
it ‘protected’ from the effects of at least some types of noise. When we found that the quantum hardware’s worst 
fidelity for scaled problems was appreciably above the associated ‘noise-only’ fidelity, we decided to explore the 
extent to which the VLS algorithm is noise-resilient48. In particular, a type of noise known as depolarizing noise 
affects quantum states by making it more likely that they will end up in the maximally-mixed state. Thus, when 

Figure 3.  Solving a 6× 8 pitchfork fracture problem using a quantum computer. Subfigures (a) and (b) 
illustrate the cost and fidelity per iteration for forty sets of randomly-initialized parameters; the result with the 
highest fidelity is highlighted. Subfigure (c) illustrates the normalized, known, classically computed solution 
with overlaid permeabilities. The inner 4× 8 nodes are the sought-after pressure values because the top and 
bottom rows have fixed boundary pressures. The maroon dots illustrate low permeabilities, and the connected 
green squares illustrate the fracture. Subfigure (d) is the solution from quantum hardware (specifically, qubits 0, 
1, 4, 7, and 10 of the ibmq_mumbai machine). This solution has fidelity 0.9911, to four figures.
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we found that VLS solution’s fidelity was far above that of the ‘random’ solution, we mathematically established 
that the VLS algorithm does have at least some resilience to depolarizing noise. During that process, we also 
found that that VLS has similarly-limited resilience to what is termed global dephasing noise. Proofs for both of 
these claims are in Sec. XA, online.

It is important to clarify that our proofs are solely a first step—albeit an important one—towards completely 
understanding the noise resilience properties of VLS. They assume mathematical models of noise that are limited, 
in the sense that these models do not encompass as many physical situations as can exist. Specifically, the proofs 
assume that noise is applied to the quantum state at certain specified locations throughout the circuit, when, 
in reality, noise could occur at any time during the circuit, including coincidentally with application of a gate 
operation. Thus, our proofs are designed to illustrate that VLS does have properties that protect quantum states 
throughout the algorithm from certain, limited quantum noise patterns. These proofs, in combination with with 
the successful empirical results, suggest that further research and empirical evaluation could more completely 
characterize properties of VLS that offer more expansive noise resilience than the forms which we proved.

Discussion
Quantum computers promise computational improvement for a wide variety of applications, including—as 
shown in this work—geologic fracture problems. Although available quantum hardware allows for solving only 
relatively small problems ( O(10) to ( O(103) nodes), quantum computers are growing and becoming less noisy. 
Indeed, there is the potential to begin using fault-tolerant algorithms, such as HHL  soon49–53.

Moreover, the development of quantum algorithms better poised to make use of current hardware means 
quantum computers may be useful for fracture flow problems before the fault-tolerant era arrives.

The algorithms presented in this article suggest that the future of simulating geologic fracture flow might lie 
with quantum, and our results show that using those algorithms is no longer a solely theoretical consideration: 
we can now run fracture problems on quantum hardware and obtain relatively accurate results. Admittedly, these 
problems are still small, but assuming that the growth and improvement in quantum computers continues as 
many expect it to—and as it arguably has for the past few decades—we should not be stuck with small problems 
forever, or even for very  long50,51,54. Thus, further experimentation is especially necessary in light of opportunities 

Figure 4.  Solving a series of larger fracture flow problems. Subfigures (a) through (d) are results achieved by 
running the VLS-trained circuits on the ibmq_montreal quantum computer for 128-, 512-, 2048-, and 8192-
node regions. (These correspond to 7-, 9-, 11-, and 13-qubit problems, respectively.) Associated fidelities are 
0.9628, 0.9353, 0.9076, and 0.8834. Subfigure (e) plots fidelities from the same series of problems (in addition to 
a 5-qubit problem) alongside the fidelity that would have been achieved had the quantum computer’s prepared 
solution degraded to the maximally-mixed state. The latter illustrates the fidelity from a result comprised 
solely of random ‘noise’, thus demonstrating how much better the achieved result on quantum hardware is and 
experimentally illustrating the noise resilience that is partially proved in Sec. XA, online.
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for further accuracy and scaling, including in less-uniform geologic situations that preliminary investigation 
suggested were more challenging than their uniform counterparts (see  Sec. XC online.) Future work should 
consider tools such as  preconditioning55, quantum error  mitigation56–60, ‘smart encoding,’ (see Sec. XB online), 
problem-specific parametrized quantum  circuits61,62, both application- and hardware-specific optimization, 
and rigorous hardware benchmarking to aid in optimal utility of available devices. All of these approaches are 
expected to offer more accuracy and efficiency on larger and more complex problems, thus further establishing 
the role of quantum computing in the geologic fracture space.

Methods
Adiabatic, fault-tolerant approach. The SSO  algorithm38 is inspired by the adiabatic theorem in quan-
tum mechanics, which states that a quantum state will smoothly adapt to changes in its environment if those 
changes are made sufficiently slowly. In the context of linear systems, SSO starts with a quantum state that solves 
a trivial system of equations, and then slowly changes the system into the more complex one whose solution is 
sought. SSO changes the system over a discrete sequence of q time steps, and the length of each step is chosen at 
random from a uniform distribution. Increasing the number of steps is equivalent to slowing the change of the 
system, which increases the accuracy of the final solution.

As described in “Algorithms for the fault-tolerant era,” we used the SSO algorithm to solve a linear system 
specifying two trivial fracture problems. Both were one-dimensional grids with either N = 4 or N = 8 nodes 
where the left- and right-boundary nodes had fixed pressures. These conditions—along with the discretized 
equation in “Introduction”—specified the A and b for the linear system to be solved.

As Ref.38 does not provide an explicit quantum circuit implementation of the SSO algorithm, we were limited 
to creating a unitary matrix representing the net effect of all q steps. Quantum gates are mathematically repre-
sented by unitary matrices, so a single-unitary implementation of SSO is equivalent to a single, large, custom-
generated gate aggregating the effect of all q evolutions of the SSO algorithm. Therefore, for given values of A, 
b, and q, we generated a unitary matrix via the algorithm described in Ref.38. Because physical implementations 
of quantum computers cannot run circuits comprised of arbitrary gates, we then broke down that generated 
matrix into gates that can be executed on existing devices. To do so, we utilized a variational approach, specifi-
cally employing Yao.jl63, a Julia library for differentiable quantum programming.

The N = 4 case, which involves only two qubits, was straightforward because any two-qubit unitary matrix 
can be expressed in terms of a circuit composed of 3 controlled-not and 7 single-qubit  gates64. We used the 
optimization package Optim.jl65 to determine the parameter values for the gates to match any given unitary.

The N = 8 case was more difficult. The shortest known universal circuit for three-qubit interactions con-
tains 138  gates66, which is too many for consistently-accurate performance on existing hardware. We therefore 
employed a machine learning approach across circuits of increasing gate count until we were able to find a circuit 
that matched the unitary to a high degree. We were regularly able to find circuits with 50 gates (approximately 
30 single-qubit gates and 20 controlled-not gates) that achieved at least 99.67% fidelity. Circuits with fewer gates 
resulted in poor performance.

Once we had obtained circuits that implemented SSO for our fracture systems, we ran them on IBMQ’s 
suite of quantum computers. Specifically, we used the ibmq_qasm_simulator to simulate performance on 
a hardware-noise-free quantum device, and then we compared with performance on the quantum computer 
ibmq_rome.

Quantum computers—and therefore the algorithms that work thereon—are inherently probabilistic. So, 
most quantum algorithms require running a circuit many times and ‘measuring’ the resulting state each time to 
establish a probability distribution of states. The probability that each state occurs provides the vector of solutions 
for the problem that the quantum algorithm sought to solve. Each run/measurement combination is termed a 
“shot,” and we ran each SSO circuit with 8192 shots on both the simulator and hardware. Using the results, we 
could then infer the observed value of our sought-pressure solution, x.

Due to the stochastic nature of the algorithm (i.e., randomly-chosen time lengths, q), we averaged perfor-
mance over 75 instances (i.e., distinct time-evolution sequences generated for fixed values of A,  b , and q). 
Figure 2 depicts the results, which are also described in “Algorithms for the fault-tolerant era.”

Finally, we computed the error that would have occurred had the ‘solution’ in the quantum computer degraded 
to noise alone. We did this by considering the mathematical representation of the maximally-mixed state, which 
is a state that contains solely noise. The maximally-mixed state can be represented as a density matrix, ρ:

where n is the number of  qubits16. (Note: Throughout “Methods” and X, we use density operators and Dirac 
notation, both of which are standard notation for mathematically representing quantum circuits. For a thorough 
introduction to density operators, please see Ref.16. For an introduction to Dirac notation, please see Ref.67.) 
When the maximally-mixed state is measured (which can be mathematically represented as projecting the state 
onto a specified basis), we obtain a result that is equivalent to selecting a pressure at each node randomly from 
a uniform distribution of all possibilities.

We can illustrate this by considering the probability of measuring a certain 2-qubit state such as that used 
for the N = 4 problems. The probability of measuring a given state, m from a quantum circuit represented by 
density operator, ρ is given by,

(1)ρ =
1

2n
In×n,

(2)p(m) = Tr(M†
mMmρ),
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where Mm is the measurement operator for a given basis. (For an introduction to quantum measurement, please 
see Ref.16.) We seek the probabilities of measuring 00, 01, 10, and 11; in our fracture flow problem, each of these 
probabilities corresponds to the pressure in one of the nodes. For the computational basis, which we used for the 
results in this paper, the measurement operators, Mm for each of the above possible solutions are M00 = |00��00| , 
M01 = |01��01| , M10 = |10��10| , and M11 = |11��11| . So, when the state of the circuit, ρ , is equivalent to the 
maximally-mixed state for 2 qubits (i.e., a 4× 4 identity matrix with a coefficient of 14 ), we have that the prob-
abilities for each possibility are given by 14 . We thus see that—for a circuit in the maximally-mixed state—the 
probabilities of all possible states have been reduced to the same value, meaning the ‘solution’ of the maximally-
mixed state contains no meaningful information. Any resemblance to our desired solution, x , is the result of 
random chance and not the performance of an algorithm. So, to benchmark SSO against the results of random 
chance, we computed the error that would have occurred had the quantum computer’s returned ‘solution’ been 
one of random chance alone given degradation to the maximally-mixed state.

Variational linear solver approach. Introduction to VLS. As is schematically shown in Fig. 5, the VLS 
algorithm takes a description of the QLSP (i.e., A and b ) as input.

To solve the QLSP, the VLS algorithm trains the parameters θ in a quantum circuit, U(θ) . Figure 7 illustrates 
the ansatz structure of the quantum circuit that we sought to train with the VLS algorithm. The circuit con-
tains (unparameterized) controlled-Z gates and parameterized single qubit rotations about the y-axis. Thus, 
the parameter θi ∈ θ corresponds to a trainable rotation angle in the i-th rotation such that θi ∈ [0, 2π]27. We 
chose this ansatz because it had been used successfully with the VLS algorithm in previous  work27 and because 
it is ‘hardware-efficient,’ meaning it uses gates whose structures offer the lowest error-rates available on current 
NISQ devices.

The U(θ) circuit prepares a trial solution |x(θ)� = U(θ)|0� , where |0� is a state in which all qubits are initial-
ized to the easy-to-prepare initial state, |0� . To calculate the quality of the resulting quantum state |x(θ)� as a 
solution to the QLSP, VLS minimizes a cost function C(θ) that quantifies how much each component of A|x(θ)� 
is orthogonal to |b� . It can be verified that the cost function

with

is minimized if and only if |x(θ)� is proportional to the solution x of the  LSP27. Note that, here, VLS maps the 
QLSP into a problem of finding the ground-state of the Hamiltonian given in Eq. (4).

Once the minimization task, argmin
θ

C(θ) , is solved, the VLS output is a parameterized quantum circuit that 

prepares a quantum state |x(θfinal)� that approximates x/|x|2 As mentioned in “Adiabatic, fault-tolerant approach,” 
obtaining these values requires performing measurements on (i.e., collecting shots from) the state |x(θfinal)� to 

(3)C(θ) = �x(θ)|H|x(θ)�,

(4)H = A†(1− |b��b|)A,

Figure 5.  Variational linear solver algorithm. As described in Fig. 1, the algorithm accepts as input an A and b 
specifying a LSP and minimizes a cost function to create a parameterized quantum circuit that solves the LSP. 
Specifically, the cost function optimization takes advantage of classical optimization techniques, while the cost 
function evaluation occurs via either quantum hardware or a classical simulator of such hardware.
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obtain a vector of estimated probabilities that represents a solution to the LSP. Specifically, expressing the solution 
as

where each xi is an element of |x� and {|zi�}2
n

i=1 are the elements of the computational basis such that z i ∈ {0, 1}⊗n , 
then the values |xi|2 correspond to the pressures at the nodes in the discretized surface. With sufficiently accurate 
θfinal parameters and enough samples, the vector of estimated xi ’s can be brought within a tolerated error of the 
elements in the desired x.

To assess the quality of a given solution obtained by VLS, there are two approaches that depend upon whether 
the solution to the problem is known. If the desired vector, x is unknown, then the value of the cost function, 
which takes as input a state |x� generated by a given set of parameters, can be used to evaluate the quality of the 
final parameters sent as input. In this case, the goal is simply to make the cost function evaluate to as small (i.e., 
close to zero) a value as possible.

Conversely, if the desired vector, x is known—as it was in the experiments we designed—then the quality of 
parameters can be assessed using a unitless quantity termed quantum fidelity. Quantum fidelity is defined as the 
inner product between two vectors,

where F(|x�, |xtrue�) = 1 if and only if |x� is equal to |xtrue� (up to a global unmeasurable phase), and 
F(|x�, |xtrue�) = 0 if the two states are orthogonal. Because our goal was to assess the performance of VLS, we 
solved problems for which we had classically-computed true solutions, meaning we computed the quantum 
fidelity between the solution obtained by VLS, |x� , and a state representing the normalized, true solution |xtrue�.

Uniform permeability with 6× 8 region. We first considered a uniformly-permeable pitchfork embedded in 
a 6× 8 grid. As shown in Fig. 6, the subsurface for a given problem needs to be discretized into a grid of size 
d1 × d2 . For the problem to fit into an n-qubit quantum state, the size of the grid needs to be a power of 2, mean-
ing one needs to choose a grid size such that d1d2 = 2n . In this case, d1 × d2 did not equal 6× 8 , but instead 
4× 8 . Because we imposed Dirichlet boundary conditions, the pressures depicted on the left- and right-most 
edges of Fig. 6 were fixed at one and zero, respectively. Thus, the solution of interest contained the pressures of 
only each inner 4× 8 grid node, giving a linear system with A of dimension 32× 32 and with x and b of dimen-
sion 32× 1 . As 25 = 32 , this pitchfork problem was solved using five qubits.

While our approach allowed for the branches of the pitchfork fracture to have varying permeabilities (see 
Sec. XC online), we first considered a uniformly-permeable pitchfork that had a permeability ten times greater 
than that of the surrounding surface.

During the training phase of VLS, we ran 40 instances of the algorithm, where the trainable parameters θ were 
randomly initialized at each instance. Each of these instances included multiple iterations, where each iteration 
corresponds to the classical optimizer taking as input the value of the cost function, and producing an updated 
set of parameters (see Fig. 5). We used Scipy’s optimize package (specifically, minimize) with the conjugate-
gradient  method68 on a five-layer ansatz of the form described in Ref.27 and illustrated in Fig. 7. The cost func-
tion was evaluated using a classical simulator with shot noise (meaning we used a limited number of shots, and, 
specifically, 108 ) but without simulated hardware noise. The cost function was evaluated as described in Ref.24. 
In Fig. 3, subfigures (a) and (b), the cost and fidelity per iteration are plotted for each of the forty instances. The 
fact that the fidelities per iteration in subfigure (b) converge to one indicates that VLS was able to find the solu-
tion of the QLSP. The instance highlighted in purple obtained the highest-fidelity results; after 150 iterations, it 
achieved a cost function value less than 10−1 , and a fidelity of 0.9987.

(5)|x(θfinal)� =
∑

i

xi
√

∑

i |xi|
2
|z i�,

(6)F(|x�, |xtrue�) = |�x|xtrue�|
2,

Figure 6.  Pitchfork and surface discretization. A cartoon of the subsurface flow situation, in which a region is 
discretized into d1 × d2 nodes. Pressure boundary conditions of 1 and 0 are imposed on the left- and right-hand 
sides of the region, respectively, and a pitchfork fracture runs through the middle of the region. Each node has a 
pressure that we seek as our solution.
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We then ran the quantum circuit with the highest-fidelity parameters on quantum hardware and, specifically, 
qubits 0, 1, 4, 7, and 10 of the ibmq_mumbai machine. These qubits were selected both for their connectivity 
and relatively low error rates. First, connectivity: it is sensible to select topologically-connected qubits to take 
advantage of the hardware-efficient structure of the circuit. Otherwise the final circuit would involve additional 
gates, meaning higher-than-necessary amounts of noise and higher-than-necessary possibility for error. As our 
goal was to obtain the highest fidelity possible despite the imperfections of existing hardware, we chose qubits 
that were topologically-connected. Second, error-rate: amongst the connected sets of five qubits available, we 
chose 0, 1, 4, 7, and 10 because that group avoided inclusion of qubits with high readout assignment errors, 
high single gate errors, and high controlled-not (i.e., two-qubit) gate errors. We obtained error information via 
IBMQ’s hardware dashboard; this information changes in real time due to continual calibration of the machines.

We used approximately 105 shots; because the ibmq_mumbai machine has a single-circuit shot maximum 
of 8192, we ran the circuit 12 times with 8192 shots each time for a total of 98,304 shots. Finally, we permitted 
Qiskit to perform the maximum number of optimizations allowable by setting the optimization_level flag to 
three. (Qiskit provides varying automated levels of optimization on a scale of 0—no optimization—to 3—as 
much optimization as  possible69).

In Fig. 3, subfigures (c) and (d) illustrate the performance of VLS with the five-layer ansatz and the parameters 
found in the highest-fidelity instance highlighted in subfigures (a) and (b). Subfigure (c) illustrates the pressure 
grid corresponding to the normalized, known, true solution of the LSP, as well as the discretized pitchfork frac-
ture as points on the edges of the grid. Subfigure (d) depicts the pressure solution obtained from the quantum 
hardware. As previously mentioned, algorithms solving QLSPs prepare a solution that is proportional to the 
solution x of the LSP, which preserves the relationship between the elements of vector solution x . We chose to 
plot the normalized true solution to more clearly visualize that the relationship between solution elements was 
indeed preserved in the quantum computer’s solution. As is described in “An algorithm for the near-term era,” 
subfigure (d) indicates that hardware noise did not significantly disrupt the circuit’s ability to compute an accurate 
solution; the quantum hardware generated a solution with fidelity 0.9911.

Uniform permeability with larger regions. We next considered VLS’s scalability on pitchfork fracture problems. 
For quantum states |x(θ)� of larger dimensions, we can determine the suitability of the solution by minimizing 
the cost function C(θ) in Eq. (3) as before. However, this direct approach is computationally challenging for cir-
cuits with increasingly many qubits. Thus, to simplify the training computation, the minimization of C(θ) may 
be replaced by globally minimizing a new cost function,

where |xtrue� is the solution vector of true pressures. Both Eqs. (3) and (7) achieve minima when |x(θ)� ≈ |xtrue� . 
Because our goal was to evaluate the performance of VLS, we used only problems for which we could in fact 
obtain a classical solution to compare against, and this meant that we could classically obtain |xtrue� for all of 
the problems in this article. Thus, we could apply the less-computationally-intense cost function formula above 
during the training phase.

During the VLS training phase, we once again began with randomly-initialized parameters, and each iteration 
of the training corresponded to the classical optimizer taking the current value of the cost function to produce 
an updated set of parameters. Again, we used Scipy’s minimize with the conjugate-gradient method, and, 
again, we trained with shot noise ( 15× 1013 shots), but no hardware noise. It is worth noting that the number 
of shots required to train the circuits such that C̃(θ) < 10−3 (roughly corresponding to fidelities near or above 
0.9) increased dramatically for larger problems, which is in part due to the significantly larger circuits that had 
to be trained. Not only were there more qubits (7, 9, 11, or 13), but because the problems were larger, the circuits 
also contained more parameterized gates. Experimentation illustrated that a number of ansatz layers greater 
than or equal to the number of qubits trained circuits well, so we chose the number of ansatz layers to equal the 
number of qubits.

We then ran the quantum circuit with the highest-fidelity parameters for each of the differently-sized prob-
lems on quantum hardware. We again used approximately 105 shots, this time rounding up to 13 runs of 8192 
shots each. The qubit selection procedure was more complex because, when selecting five qubits for the smaller 
problem, it was straightforward to choose a group that avoided the worst-performing qubits. Moving up to even 

(7)C̃(θ) = 1− |�xtrue|x(θ)�|
2,

Figure 7.  Five-qubit, two-layer ansatz. The pattern for this ansatz is a ‘preliminary’ layer of Ry gates followed by 
layers with two sets of controlled-Z and Ry gates each. Each Ry gate’s angle is one of the tuned parameters.
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the seven-qubit problem made the selection task more difficult because it was no longer obvious which sets would 
best reduce error; for example, would it be preferable to include one qubit with very poor performance, or two 
qubits with better—but still bad—performance? We opted to address this qubit-selection challenge by trying 
many qubit combinations for each of the n = 7, 9, 11, or 13 qubit problems. Specifically, we used each possible 
set of n qubits in which the qubits were adjacent to each other and did not ‘double-count’ any given qubit. We 
undertook this procedure for each size of problem on the ibmq_montreal machine, and to help clarify the 
process, Fig. 8 illustrates the connectivity of ibmq_montreal. Consider the seven-qubit problem: qubits 6, 7, 
10, 12, 13, 14, and 16 were a possible qubit selection, but qubits 4, 7, 6, 10, 13, 14, and 16 were not, because the 
latter would require ‘double-counting’ qubit 7 while determining qubit adjacency.

Figure 4 summarizes our results, illustrating the highest-fidelity pressure solution obtained for the 7, 9, 11, 
and 13-qubit problems. In particular, the highest-fidelity results occurred for the 7-qubit problem with qubits 3, 
5, 8, 11, 12, 13, and 14; for the 9-qubit problem with qubits 0, 1, 2, 3, 5, 8, 11, 13, and 14; for the 11-qubit problem 
with qubits 5, 8, 11, 14, 16, 19, 21, 22, 23, 24, and 25; and for the 13-qubit problem with qubits 8, 9, 11, 14, 15, 16, 
18, 19, 21, 22, 23, 24, and 25. As described in “An algorithm for the near-term era,” subfigure (e) presents results 
regarding the quality of the solution when compared to a solution containing solely noise.

Data availability
The data for generating the figures (excepting those illustrating cartoons/concepts) is available at https:// github. 
com/ Jessi eMHen derson/ quant um- geolo gic- fract ure- netwo rks. git. Instructions for generating figures from the 
data can be obtained from the corresponding author upon reasonable request.

Code availability
The code used to generate the results is available at https:// github. com/ Jessi eMHen derson/ quant um- geolo gic- 
fract ure- netwo rks. git. Instructions for utilizing the code (beyond those contained within the documentation) 
can be obtained from the corresponding author upon reasonable request.
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