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Appropriate noise addition 
to metaheuristic algorithms can 
enhance their performance
Kwok Pui Choi 1, Enzio Hai Hong Kam 2, Xin T. Tong 3 & Weng Kee Wong 4*

Nature-inspired swarm-based algorithms are increasingly applied to tackle high-dimensional and 
complex optimization problems across disciplines. They are general purpose optimization algorithms, 
easy to implement and assumption-free. Some common drawbacks of these algorithms are their 
premature convergence and the solution found may not be a global optimum. We propose a general, 
simple and effective strategy, called heterogeneous Perturbation–Projection (HPP), to enhance an 
algorithm’s exploration capability so that our sufficient convergence conditions are guaranteed to hold 
and the algorithm converges almost surely to a global optimum. In summary, HPP applies stochastic 
perturbation on half of the swarm agents and then project all agents onto the set of feasible solutions. 
We illustrate this approach using three widely used nature-inspired swarm-based optimization 
algorithms: particle swarm optimization (PSO), bat algorithm (BAT) and Ant Colony Optimization for 
continuous domains (ACO). Extensive numerical experiments show that the three algorithms with the 
HPP strategy outperform the original versions with 60–80% the times with significant margins.

Over the past couple of decades, Swarm Intelligence has and continues to inspire a steadily rising numbers of 
nature-inspired swarm-based algorithms for optimizing high-dimensional complex cost functions, including 
those that do not have analytic forms. Examples of swarm-based algorithms include particle swarm optimiza-
tion (PSO), bat algorithm (BAT), ant colony optimization for continuous optimization (ACO). Swarm-based 
optimization algorithms are motivated by nature or animal behavior and then thoughtfully formulated into an 
algorithm that iterates to the optimum based on a couple of equations. Generally, these algorithms are easy to 
code and implement, and do not need gradient information or technical assumptions for them to generally work 
well. Computer codes are widely and freely available, which have undoubtedly fueled numerous and various 
applications of these algorithms to tackle many different types of complex real-world optimization problems. 
Documentation of their effectiveness is widespread and their meteoric rise in applications and interest in both 
industry and academia is well documented,  see1,2, for example. Applications of these algorithms are diverse and 
include estimating parameters in mixed nonlinear pharmacokinetic and pharmacodynamic  models3 and tackling 
various optimization problems in energy  conservation4, medical  sciences5 and  agriculture6. A most recent review 
of PSO applications in different areas  is7.

There are known challeneges of nature-inspired swarm-based optimization algorithms, and we highlight two: 
(1) They require effective tuning of their parameters to achieve optimal  performance8; and (2) they often suffer 
from premature convergence to a local optimum of the cost function, especially when the cost function is high-
dimensional and multi-modal9,10. In recent years, Yang et al. and Choi et al.11–13 proposed general strategies to 
tackle the first challenege using different tools. We opine that tuning parameters is less of an issue now with the 
introduction of the racing  algorithm14,15.

In this work, we propose an innovative and simple Perturbation–Projection (PP) strategy to address the latter 
challenge by adding noise to a nature-inspired swarm-based algorithm. An interesting part of the strategy is to 
have only half of the swarm more actively engaged in the exploration for the optimum. The proposed methodol-
ogy is general, and as long as certain unrestrictive technical conditions are met, our techniques ensure almost 
sure convergence to a global optimum. We apply the methodology to three popular swarm-based algorithms and 
results from an extensive simulation not only support they tend to converge to the global optimum but addition-
ally, show that they tend to outperform the original algorithms. In the literature, there are frequently different 
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modifications to enhance performance of the original metaheuristic algorithm. Some seek to tackle specialized 
problems better and others aim to speed up the algorithm. A common aim is to avoid premature convergence 
and there are numerous proposals to address this issue for swarm-based algorithms; see, for  example16–19. These 
methods tend to be valid either for only one specific algorithm and not for a class of algorithms. Another com-
monality is that they do not generally have a rigorous mathematical theory to support their improved conver-
gence to the global optimum. The distinctive features of our proposed modifications are that they are supported 
by mathematical theory, simple to implement and applicable to a broad class of swarm-based algorithms.

“Stochastic enhancement of an algorithm’s exploration” section describes how we add noise to a nature-
inspired metaheuristic algorithm and modify the algorithm using a Perturbation-Projection (PP) strategy, In 
“Applications” section, inspired by the fact that agents in many swarms are often divided to specialize in differ-
ent aspects of optimization (exploration and exploitation), we introduce an additional feature, heterogeneity, in 
the PP strategy. We then demonstrate how to modify the original PSO, BAT and ACO algorithms, by applying 
the PP strategy on half of the swarm agents, to meet the required conditions for almost sure convergence to the 
global optimum. We denote these modified algorithms by “hm” (heterogeneously modified ) in front of their 
names, i.e., hmPSO, hmBAT and hmACO. In “Numerical experiments” section, we conduct extensive numerical 
experiments using many commonly used test functions to evaluate the usefulness of the modified algorithms. 
Results show that the modified algorithms are either competitive or they outperform the original algorithms. 
We also conduct tuning parameter analysis for the Heterogeneous Perturbation-Projection (HPP) strategies. 
“Conclusions” section concludes with some directions for future work.

The paper has two sets of Supplementary Material: Supplementary Material A lists the 28 test functions of 
various types in tabular form we used to evaluate and compare performances of the various algorithms. Sup-
plementary Material B lists five additional test functions from CEC2017 Competition and Special Session on 
Constrained Single Objective Real-Parameter Optimization in Supplementary Table 2 for our numerical experi-
ment 2, including Supplementary Figures 1 and 2 to show the relative performance of the various algorithms in 
different ways. Supplementary Tables 3–5 compare, respectively, the performance of PSO, BAT, ACO relative to 
their hm versions using test functions in Supplementary Table 2.

Stochastic enhancement of an algorithm’s exploration
In this section, we introduce a simple and effective strategy to enhance a nature-inspired swarm-based algorithm 
so that the enhanced algorithm is guaranteed to converge almost surely to a global optimum. We assume the cost 
function can be high-dimensional, non-differentiable, non-separable or non-convex with multiple local or global 
optima. The key idea in the proposed algorithms is simple: we incorporate an additional stochastic component 
with an appropriate noise level to a swarm-based algorithm to enable it to escape from a local minimum and 
iterate itself to a global optiumum.

The idea of adding noise to an algorithm to improve the search process is not entirely new. Several optimiza-
tion subfields have incorporated such a strategy in the search of a global optimum and they have mixed results. 
For example, Ding and Tan, Sun et al., Neelakantan et al., Selman et al., Chen et al., Zhou et al., Jin et al.20–26 
considered different types of optimization problems and explored adding different types of noise and its amount 
to different types of search procedures to find an optimum. They include adding noise to extricate a search from 
a saddle point or improve local searches to applications in training neural networks or adding gradient noise to 
improve learning for very deep networks. Interestingly, the results are mixed, implying that introducing noise 
to a search process is not always advantageous.

There is also the perennial problem of searching for the optimum within the user-specified region or/and 
the optimum has to satisfy various constraints. There are various techniques specially designed for meeting 
such requirements and sample papers that address this issue in different ways  are27–31. For example,  Maurice30 
advocated the usage of a reflecting wall to bounce back particles that went beyond the search space,  and31 took 
advantage of the fact that D-optimal designs frequently have support points at the boundary of the search space, 
and suggested bringing back out-of-region search particles to the boundary. Our proposed algorithm described 
below has the distinguishing features that (i) the search is always confined to the user-specified region and the 
solution satisfies all the constraints, (ii) the strategy is quite general and applies to a wide class of swarm-based 
metaheuristic algorithms, and (iii) the algorithm is guaranteed to converge almost surely to a global optimum. 
Additionally, our work appears to be the first in the literature to add noise to a nature-inspired metaheuristic 
algorithm and unlike the above cited work, our results suggest that such a strategy is generally helpful for a 
swarm-based algorithm for finding the global optimum.

Without loss of generality, we may assume that we have a minimization problem since 
minx∈D f (x) = −maxx∈D{−f (x)} . Here f (x) is a user-specified real-valued cost function defined on a given 
compact subset D of Rd . For many real-world applications, there are physical and budgetary constraints and 
we assume that these constraints have been appropriately incorporated and formulated as a general minization 
problem. For many other problems, like those in machine learning, regularization terms, sometimes denoted by 
ρ‖x‖1 (or ρ‖x‖22 ) are often added to the nonnegative loss/cost function f to prevent over-fitting. The regulariza-
tion parameter ρ can often be selected through various cross validation  methods32,33. For such situations, the 
goal is then to equivalently minimize the function F(x) = f (x)+ ρ�x�1 (or f (x)+ ρ�x�22 ) over D , which is the 
closed L1-ball (or L2-ball) centered at the origin with radius f (0)/ρ . This is because for x /∈ D , F(x) > F(0) so 
the global minima are in D.

To solve the optimization problem, we resort to nature-inspired swarm-based algorithms, which are increas-
ingly used to solve complex and high-dimensional optimization problems. They generally employ an evolu-
tionary-like or swarm-based strategy to search for an optimum by first randomly generating a set of candidate 
solutions of given size n. Depending on the particular swarm-based algorithm, candidate solutions are called 
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agents or particles. These algorithms have tuning parameters, embrace common search principles and have good 
exploration and exploitation abilities. They also include stochastic components and tuning parameters and a 
swarm-based type of algorithm may be generally described as follows:

At time or iteration t = 1, 2, . . . , let xi(t) denote the ith particle’s position or candidate solution of the opti-
mization problem. Let {xi(t) : 1 ≤ i ≤ n} denote the collection of candidate solutions of the swarm of size n. 
In addition, there is auxiliary information from each member of the swarm and we denote them collectively by 
{vi(t) : 1 ≤ i ≤ n} . For example, in PSO and BAT, the auxiliary information of each particle is its velocity with 
which it flies to the current position. We denote them by

ACO does not have velocity in its formulation. Suppose the algorithm has a stochastic update rule of the fol-
lowing form: for agent i,

for 1 ≤ i ≤ n , where �i ,�i are some functions of which the outputs can be random. At either a pre-selected 
deterministic time or a stopping time T, the algorithm is terminated and the best solution min1≤i≤n,0≤t≤T f (xi(t)) 
is output.

A key desirable property of a global optimization algorithm is its ability to identify a global optimum eventu-
ally. We formulate the following conditions on the algorithm’s agents, x1(t), . . . , xn(t) . 

 (C1) At any iteration, all agents stay in D , i.e., xi(t) ∈ D for 1 ≤ i ≤ n and t = 0, 1, . . . ,T.
 (C2) Some of the agents are explorative, so they can find any regions of improvement with positive probability. 

Specifically, there exists an α > 0 , independent of t, such that for any d-dimensional ball B in D satisfying 
f (y) ≤ min1≤i≤n f (xi(t)), for all y ∈ B , the following holds 

 with |B| denoting the volume of B and Pt the conditional probability with information at the t-th iteration. 
This condition can often be achieved by giving a lower bound of the conidtional density. See Proposi-
tion 2 as an example.

 (C3) The algorithm is time improving, i.e., if we let m(t) = min1≤i≤n f (xi(t)) , m(t + 1) ≤ m(t) almost surely. 
Note that (C3) itself does not guarantee the algorithm converge, since an algorithm in stalemate also 
satisfies it.

Now we are ready to state our first result.

Theorem 1 Suppose f is a continuous function defined on a given compact subset D of Rd with at least one minimizer 
in the interior of D . Any swarm-based algorithm that satisfies (C1)–(C3) will converge to the global minimum almost 
surely (a.s). In other words, if the swarm-based algorithm has n agents, limt→∞ m(t) = minx∈D f (x) almost surely

Moreover, for any error threshold ǫ > 0 , there is a constant 1 > α(ǫ) > 0 which depends on the behavior of f so 
that for any t ≥ 1 , P(m(t) > ǫ +minx∈D f (x)) < (1− α(ǫ))t−1.

Proof Let x∗ denote a minimizer of f, which is an interior point of D . Without loss of generality, we 
assume f (x∗) = 0 . By (C3), m(t) := min1≤i≤n f (xi(t)) is a non-increasing sequence, thus it suf-
fices to show that m(t)

P−→0 as t → ∞ . Given a fixed ǫ > 0 , by continuity of f, there exists δ > 0 such 
that 0 ≤ f (x) ≤ ǫ for x ∈ B(x∗, δ) := {x : �x − x∗� ≤ δ} . Since x∗ is an interior point, B(x∗, δ) ⊂ D 
for a sufficiently small δ . By (C2), at each iteration, there is an agent xi such that either f (xi(t)) ≤ ǫ or 
Pt

(

xi(t+1)(t + 1) ∈ B(x∗, δ)
)

≥ α|B(x∗, δ)| =: α(ǫ). Note that α(ǫ) = α|B(x∗, δ)| ≤ 1 when (C2) holds. If 
f (xi(t)) ≤ ǫ , then m(t) ≤ ǫ . If xi(t+1)(t + 1) ∈ B(x∗, δ) , then m(t + 1) ≤ f (xi(t+1)(t + 1)) ≤ ǫ . By the tower 
property of conditional expectation,

Therefore, m(t)
P−→0 as t → ∞ .   �

Theorem 1 shows that any swarm-based algorithm satisfying (C1)–(C3) is guaranteed to converge to a neigh-
borhood of global optimum after finitely many iterations. Many swarm-based algorithms satisfy (C3), but not all 
swarm-based algorithms stay within the search space D in their iterations thus violating condition (C1) or they 
are exploratory in the sense of condition (C2). For example, if an agent of the PSO swarm is initialized near the 
boundary of D and the momentum points beyond D , this agent will likely leave D in the next iteration. Further-
more, if the swarm agents arrive at the same location, say a suboptimal local optimum, with zero momentum, the 
algorithm will stay at this location in all subsequent  iterations9,10. However, “Perturbation-projection strategy” 

(1)x(t) = (x1(t), . . . , xn(t)) and v(t) = (v1(t), . . . , vn(t)).

(2)xi(t + 1) = �i(x(t), v(t), f ), vi(t + 1) = �i(x(t), v(t), f ),

(3)max
1≤i≤n

Pt(xi(t + 1) ∈ B) ≥ α|B|,

(4)P(m(t) > ǫ) ≤ P(xi(s+1)(s + 1) /∈ B(x∗, δ), for s = 1, . . . , t − 1)

(5)= E

t−1
∏

s=1

Ps(xi(s+1)(s + 1) /∈ B(x∗, δ)) ≤ E

t−1
∏

s=1

(1− α(ǫ)) = (1− α(ǫ))t−1.
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section below shows that, with slight modifications of an algorithm, we can ensure the modified algorithm 
satisfies (C1)–(C2).

Our result actually provides a finite iteration analysis. In particular, given an error tolerance, ǫ > 0 , and 
probability tolerance, δ > 0 , Theorem 1 says if t > t0 =

⌈

log δ
log(1−α(ǫ))

⌉

 (which is a finite number), the algorithm 
at iteration t0 can find the global optimum with ǫ accuracy with probability at least 1− δ . Such form of finite 
iteration analyses can also be found for other stochastic algorithms in machine learning, for example the sto-
chastic gradient  desecent33.

Perturbation-projection strategy. A first step is to ensure all agents stay in D . For this purpose, we 
introduce the projection onto D ensuring the agents stay inside the search space, D , a compact subset in Rd:

where �y − x�2 denotes the Euclidean distance between x and y . In other words, χD(x) is a point in D that is 
closest to x . When ties occur, they can be broken arbitrarily. By definition, χD(x) = x if x ∈ D . In general, adding 
the projection to an algorithm’s iterations reduces the agents’ distances to the optimal  solution33. In particular, if 
x∗ ∈ D and D is convex, it can be shown that �χD(x)− x∗� ≤ �x − x∗�2. In many optimization problems, the 
search space, D , is usually a d-dimensional hyper-rectangle and it follows that D is convex.

A second step is to enhance the algorithm’s exploration ability by injecting noise into its dynamics. In sto-
chastic optimization algorithms, such as the perturbed gradient descent and the Langevin algorithm, Gaussian 
noise is added to the classical gradient descent algorithm. This injection of noise effectively helps the algorithm 
to get out of saddle points or local minimums  efficiently34,35. We adopt here the same strategy due to its simplicity.

By combining these two steps, the modified algorithm can be formulated as

where x′i(t + 1) is the position of the ith agent after applying the algorithm’s update rule at t + 1 , and wi(t) is an 
independent draw from a density pt such that there is a constant α > 0

The noise density pt in general can be adaptive, depending on the evolution of the algorithm up to time t. Here 
we only need it to be strictly positive and bounded away from zero. We call this method of modification in (6) a 
perturbation-projection (PP) modification or strategy. The proposition below shows that with PP strategy, the 
modified algorithm satisfies (C1) and (C2).

Proposition 2 Suppose A is a swarm-based algorithm and at each iteration, every agent is projected onto D . If the 
perturbation-projection modification (6) is applied to at least one of the agents, then (C1) and (C2) hold.

Proof Since χD is applied to all agents, (C1) clearly holds. At the (t + 1) th iteration, denote the agent to which 
the modification is applied by i = i(t + 1) . Let y = χD(x′i(t + 1)).

Then, for any d-dimensional ball B in D,

showing (C2) holds.   �

Applications
Before we proceed to illustrate how to implement our PP strategy in Theorem 1 to three nature-inspired swarm-
based optimization algorithms, namely, particle swarm optimization (PSO), bat algorithm (BAT) and ant colony 
optimization for continuous domains (ACO), we incoproate an observation from nature. It is common to observe 
that agents in a swarm in nature are often divided to specialize in different tasks and they collaborate to improve 
collective effectiveness. Inspired by this, we set some agents in the swarm to specialize in exploration while others 
in exploitation. In the context of PP strategy, we only perturb the exploration agents so they help exploring the 
search space while we do not perturb exploitation agents so as not to hamper their convergence capability. We 
call this heterogeneous perturbation-projection, abbreviated to HPP, strategy. Proposition 2, which only requires 
the perturbation strategy applied to at least one agent, continues to hold for algorithms with HPP strategy. 
Consequnetly, Theorem 1 guarantees HPP modified algorithms converge a.s to a global optimal solution. We 
denote the modified version of an algorithm A using HPP strategy by hmA. We also summarize its formulation 
as Pseudo code 1. For the present work, the proportions of exploration agents and exploitation agents are taken 
to be 1/2. One can treat the proportion of exploration agents as an additional parameter in an algorithm to be 
tuned, and this will be left for future work.

Our HPP strategy can be considered as a special case of cooperative or collaborative learning, which sug-
gests that mixing agents of different responsibilities can lead to improved overall performance. Existing works 

χD(x) = argmin
y∈D

�y − x�2,

(6)xi(t + 1) = χD(χD(x′i(t + 1))+ wi(t)),

(7)pt(y − x) > α, for x, y ∈ D.

(8)max
1≤k≤n

Pt (xk(t + 1) ∈ B) ≥ Pt(xi(t+1)(t + 1) ∈ B)

(9)≥Pt(y + wi(t) ∈ B) =
∫

B
Pt(y + wi(t) ∈ dx) =

∫

B
Pt(wi(t) ∈ d(x − y)) =

∫

B
pt(y − x)dx ≥ α|B|,
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on cooperative swarm-based algorithms can be found  in36–38. In comparison, our HPP strategy focuses more on 
the cooperation between exploration agents and exploitation agents. Recently,39 also applies this idea to local 
optimization algorithms such as gradient descent and Langevin algorithm.

PSO and hmPSO. In40, Kennedy and Eberhart proposed the particle swarm optimization (PSO) algorithm. 
The algorithm has stimulated many refinements and inspired many variants, and these algorithms find wide 
applications in many fields. A recent search of “particle swarm optimization” in the Web of Science generated 
more than to 32,000 articles and almost 600 review articles. A small sampling of early examples of how PSO has 
been studied and modified over the years  are36,41–45,45–48. PSO probably has the most modified versions among 
nature-inspired metaheuristic algorithms and they continue to this day.

PSO algorithm models after the movement of a flock of birds looking for food collectively. To align with our 
terminology in this article, we think of birds in PSO as agents, and food as a global minimizer of an objective 
function. At the next iteration, t + 1 , each agent veers towards the best location it has found (cognitive/memory 
component) and the best location known to the flock up to iteration t (social component). To describe the 
memory effect, we allocate a personal “memory” agent x∗i (t) to record the best location agent i has found up to 
iteration t, and a global “memory” agent x∗(t) to record the best location found by all agents collectively so far. 
Recall the basic PSO algorithm runs the following steps iteratively: 

1. Generate two independent random vector U1 and U2 from the uniform distribution on [0, 1]d and let 

 where w, c1, c2 are given constants, and ◦ denotes the Hadamard product.
2. Update xi(t + 1) = xi(t)+ vi(t + 1).
3. Update personal best 

4. Repeat steps 1–3 for all agents, then update the global best agent 

 where j = argmin1≤i≤nf (x
∗
i (t + 1)) , m(t) = min1≤i≤n f (x

∗
i (t)) and condition H: m(t + 1) < m(t).

Our modified PSO, denoted by hPSO, is to apply the HPP strategy in step 2 only to the exploration agents 
(labelled as 1, . . . , n/2):

2’) Update, for 1 ≤ i ≤ n/2,

where wi ’s are independent multivariate normal distributed with mean vector 0 and covariance matrix σ I.
Since its introduction in 1995, there have been numerous attempts to analyze the basic PSO convergence 

behavior. In our opinion, Yuan and Yin provided  in49 the first rigorous proof of the weak convergence of PSO to 
a global optimum, without overly restrictive assumptions. Moreover, using stochastic approximation technique, 
they provide the rate of convergence. In another direction,50 introduced two smoothed versions of PSO and prove 
that they converge almost surely to a cost function’s global optimum.

The next proposition shows that if we modify the basic PSO algorithm by replacing the update step 2 by the 
new noise enhanced update step 2’, the modified mPSO algorithm converges to a global minimum of the cost 
function almost surely

Proposition 3 Let f be a continuous function defined on a compact subset D of Rd and one of its minimizers is in 
the interior of D . Then the algorithm hmPSO converges to minx∈D f (x) almost surely.

Proof By Theorem 1, it suffices to verify that hmPSO satisfies (C1)–(C3). Note that xi(t + 1) ∈ D by projec-
tion. As x∗i (t + 1) takes either value x∗i (t) or xi(t + 1) , therefore x∗i (t + 1) ∈ D if x∗i (t) ∈ D . Similar argument 
applies to x∗(t + 1) , so (C1) holds by induction. Since we add noise to the exploration agents xi ( 1 ≤ i ≤ n/2 ). 
Proposition 2 implies (C2) holds. Consider the global memory agent, by step 4, f (x∗(t + 1)) ≤ f (x∗(t)) , so (C3) 
is verified. This completes the proof.   �

(10)vi(t + 1) = wvi(t)+ c1U1 ◦ (x∗i (t)− xi(t))+ c2U2 ◦ (x∗(t)− xi(t)),

(11)x∗i (t + 1) =
{

xi(t + 1), if f (x∗i (t)) > f (xi(t + 1));
x∗i (t), otherwise .

(12)x∗(t + 1) =
{

x∗j (t + 1), if condition H holds ,

x∗(t), otherwise ,

(13)xi(t + 1) = χD(χD(xi(t)+ vi(t + 1))+ wi(t)),
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BAT and hmBAT. The success of bats, dolphins, shrews and other animals in applying echolocation tech-
nique to hunt and navigate  inspired51 to propose the Bat Algorithm (BAT) in 2010. BAT meets with rising 
popularity in applications. According to a recent search of the Web of Science, over 1,500 articles, nearly 800 pro-
ceedings papers and 48 review papers have been written on this algorithm and its variants in just ten years. We 
refer interested readers in BAT and its wide ranging applications to the review articles  in52,53 and the references 
therein. Recent applications of the BAT algorithm  include54,55. As with other metaheuristic algorithms, BAT has 
many modified or hybridized versions for improved performance in various ways; some examples of the modi-
fied versions can be found  in56–60 and some examples of BAT algorithm hybridized with another metaheuristic 
algorithm  are61–63.

Let xi(t) , 1 ≤ i ≤ n , denote the position of the i-th bat at t-th iteration, and x∗(t) tracking the best position 
found by the cauldron of n bats. Recall BAT runs the following iterations iteratively: 

1. Generate n independent Ui from the uniform distribution on [fmin, fmax] , vi(t + 1) = vi(t)+ Ui(xi(t)− x∗(t)).
2. Let r0 (pulse rate) denote a user-specified threshold. Generate n independent random numbers ri from the 

uniform distribution on [0, 1], 1 ≤ i ≤ n . Update according to (a) ri < r0 or (b) ri ≥ r0 : 

(a) If ri < r0 , xi(t + 1) = xi(t)+ vi(t + 1).
(b) If ri ≥ r0 , xi(t + 1) = x∗(t)+ ǫi(t) , where the components of ǫi(t) are independent mean 0 normal 

distributions with standard deviation 0.001.

3. Generate n independent random numbers ri from the uniform distribution on [0, 1]. If ri is less than a 
threshold rA (loudness), or f (χD(xi(t))) < f (xi(t + 1)) update xi(t + 1) = χD(xi(t)).

4. Update global best x∗(t + 1) = xi∗(t + 1), where i∗ = argmini f (xi(t + 1)).

In the procedure above, fmin, fmax are given constants which describe the minimal and maximal frequencies. 
The threshold probabilities r0 and rA describe the pulse and emission rates. The random noise ǫi(t) describes the 
loudness of each bat.51 also suggests using time varying ǫi(t) and r0 for improved performance. Here we fix them 
as in the standard values suggested by the MATLAB package provided by the same author.

Our modified BAT, denoted by hmBAT, is to apply the HPP strategy by an additional step after step 3:
3’) Update, for 1 ≤ i ≤ n/2,

Proposition 4 Let f be a continuous function defined on D , a compact subset of Rd . Suppose further that a minimizer 
of f lies in the interior of D , then the algorithm hmBAT converges to minx∈D f (x) almost surely.

Proof By Theorem 1, it suffices to verify hmBAT satisfies (C1)–(C3). Note that xi(t + 1) ∈ D by projection. 
As x∗(t + 1) takes either value x∗(t) or xi(t + 1) for some i, therefore it is in D if x∗(t) ∈ D . So (C1) holds by 
induction.

To verify (C2), we denote the value of xi(t + 1) after step 3’) as yi(t) , which is given by equation (14). Follow-
ing the proof of Proposition 2, we can show that for any d-ball B ⊂ D , P(yi(t) ∈ B) ≥ α|B|. If all y ∈ B satisfies 
f (y) < f (xi(t)) , we have

So (C2) holds.
By step 4, f (x∗(t + 1)) ≤ f (x∗(t)) , so (C3) is verified. This completes the proof of Proposition 4.  �

ACO and hmACO. Ant colony Optimization (ACO) was initially proposed to solve discrete optimization 
such as the traveling salesman  problem64,65. Later, it is adapted to solve continuous optimization problems  in66. 
We focused our discussion of ACO on this adaptation, since our discussion so far was mainly about continuous 
optimization.

We shall call the particles in ACO ants. At each iteration, ACO maintains an archive of n best ants 
x1(t), . . . , xn(t) . Each ant is a d-dimensional vector with components xi(t) = (xi,1(t), . . . , xi,d(t)) . Without loss 
of generality, we assume the ants are ranked so f (x1(t)) ≤ f (x2(t)) ≤ · · · ≤ f (xn(t)) . In the beginning of a 
new iteration, ACO generates m new ants by sampling Gaussian mixture distribution at each dimension. The 
Gaussian mixtures consist of Gaussian distributions centered at each archived ant with weights according to the 
ant’s performance. After the new ants are generated, they are inserted to the archive, and the archive will then 
remove m ants with worst performances. Specifically, ACO repeats steps 1 to 4 until termination criterion is met. 

1. For each dimension j, construct a 1-dimensional Gaussian mixture pj density centered at {x1,j(t), . . . , xn,j(t)}

 The weight wi is a decreasing sequence so better performing ants are favored.66 suggests using 

(14)xi(t + 1) = χD(χD(xi(t)+ vi(t + 1))+ wi(t + 1)).

(15)P(xi(t + 1) ∈ B) ≥ (1− rA)P(yi(t) ∈ B) ≥ α(1− rA)|B|.

(16)pj(x) =
n

∑

i=1

wi

σi,j
√
2π

exp

(

−
(x − xi,j(t))

2

2σ 2
i,j

)

.
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 with certain tuning parameter q. Smaller q will give more preference to the best performing ant x1 . The 
standard deviation is suggested to be chosen as σi,j = σ

∑n
k=1 |xi,j(t)− xk,j(t)|/(n− 1), with σ being a tun-

ing parameter.
2. Generate m new ants y1(t), . . . , ym(t) independently. Each follows the product distribution 

yi(t) ∼
∏d

j=1 pj(x), i = 1, . . . ,m.
3. Combine them with existing archived ants and reorder them. That is, we let 

 where f (x′1) ≤ f (x′2) ≤ · · · ≤ f (x′n+m).
4. Update archive with the best ants xi(t + 1) = x′i for i = 1, . . . , n.

Our modified ACO, denoted by hmACO, is to apply the HPP strategy in step 2):
2’) Generate m new ants y1, . . . , ym independently by first sampling from the product distribution 

y′i(t) ∼
∏d

j=1 pj(x), i = 1, . . . ,m. Then, let

and assume that the first batch of ants xi(0) are in the feasible set D . Otherwise, replace them with χD(xi(0)).
We show that hmACO converges almost surely as long as m < n/2 . This setting is relevant in practice, since 

the computational cost comes mainly from the new ants generation and evaluations. Intuitively, having many 
new ants without updating the archive will make the algorithm less efficient. For example, Socha and  Dorigo66 
suggests using m = 2 and n = 50.

Proposition 5 Let f be a continuous function over D , a compact subset of Rd . Suppose further that a minimizer of 
f lies in the interior of D , then the algorithm hmACOconverges to minx∈D f (x) almost surely if m < n/2.

Proof By Theorem 1, it suffices to prove that mACO satisfies (C1)–(C3). Note that xi(t + 1) is either yj(t) or 
xj(t) for some j, the former is in D by projection, so (C1) holds by induction. Since m < n and only m ants will 
be removed from {y1(t), . . . , ym(t), x1(t), . . . , xn(t)} , x1(t) remains in the archive at iteration t + 1 . This implies 
(C3) holds.

For any d-dimensional ball B in D , let P′
t be the conditional probability given y′1(t), . . . , y′m(t) , then for any j

Note that if f (y) ≤ f (x1(t)) for all y ∈ B and yj(t) ∈ B , we have f (yj(t)) ≤ f (x1(t)) and yj(t) will be kept in the 
archive at iteration t + 1 . Consequently, P′

t(xj(t + 1) ∈ B for some j) ≥ α|B| and (C2) holds.   �

Numerical experiments
We conduct two sets of numerical experiments, Experiment 1 and Experiment 2 to compare the perormance 
of A and hmA for A = PSO, BAT or ACO. Details are given in “Experiment 1” and Experiment 2” sections. In 
“Tuning parameter analysis for HPP strategy” section, we report the analysis of tuning parameters used in HPP 
strategy. The main objective of our experiments is to compare the performance of A and hmA when A is PSO, 
BAT or ACO; it is not our intention to compare PSO, BAT and ACO.

The swarm size used is 32 in all the comparison studies below. At each run, we start the algorithms A and 
hmA with the same initialization of the particles in the swarm.

Experiment 1. In this experiment, we conduct extensive numerical experiments to compare the perfor-
mance of A and hmA, where A = PSO, BAT or ACO, for a computing budget on a large class of very different 
types of cost functions. We use two measures to evaluate how likely and by how much the modified algorithm 
outperforms the original algorithm.

Test functions and details of Experiment 1. A total of 28 test functions are used for this experiment. The func-
tions are compiled by Wahab et al.67, which are of varying dimensions and their exact expressions can be found 
in Supplementary Table  1 in Supplementary Material: A. The list of functions includes commonly used test 
functions such as Ackley, Griewank, Powell, Rastrigin, Sphere with different properties. Some are unimodal, 
multi-modal, separable or inseparable. The majority of the functions are defined for arbitrary dimension d. For 
such functions, we investigate the effect of dimension on the optimization algorithms for selected dimensions, 
i.e., d = 5, 10, 20 and 40. The other test functions have dimensions d = 2 , except for one with d = 4 , which we 
exlcude. In total, we have a set C of 70 test functions and we summarize the numerical results according to their 
dimensions, i.e., d = 2, 5, 10, 20 and 40.

(17)wi =
exp(−(i − 1)2/(2q2n2)))

∑n
i=1 exp(−(i − 1)2/(2q2n2)))

,

(18){x′1, . . . , x
′
n+m} = {x1(t), . . . , xn(t), y1(t), . . . , ym(t)}

(19)yi(t) = χD
(

χD
(

y′i(t))+ wi(t)
))

(20)P
′
t(yj(t) ∈ B) ≥ P

′
t(χD(y′j(t))+ wj(t) ∈ B) =

∫

B
pt(χD(y′j(t))− x)dx ≥ α|B|.
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For each cost function f ∈ C , we conduct 100 runs of the algorithms A and hmA, each for 10,000 iterations, 
where A = PSO, BAT, or ACO. To gauge the progress of each run of an algorithm, we output the algorithm’s best 
functional values found during the search at the tth iteration, where t = 50, 100, 200, 400, 1000, 3000 and 10, 000.

For all experiments, we use n = 32 agents/particles and for hmA ( A = PSO, BAT or ACO). We employ com-
monly used parameter settings for PSO, BAT and ACO, namely,

• PSO: w = 0.729 (inertia weight), c1 = c2 = 1.5 (acceleration constants);
• BAT: fmin = 0 (minimum frequency), fmax = 100 (maximum frequency), r0 = 0.5 (pulse rate), rA = 0.5 

(loudness);
• ACO: q = 10−4, σ = 0.85, n = 32,m = 2.

For hmA, we use the same parameters as in A with the stochastic perturbations being independent normal vari-
ates, each with mean 0 and standard deviation 0.005.

Comparison and results. This subsection compares the performance of an algorithm A versus one of its modi-
fication B using several test functions from the set C , functions in the set are commonly used to compare per-
formance of an algorithm in the engineering literature. We are particularly interested to ascertain how their 
performance depends on the dimension of the problem. Here, F  is the subset of C that contains functions of the 
same dimension d = 2, 5, 10, 20 or 40. Our two key questions are:(a) How likely does B outperform A and (b) On 
average, how much does B outform A at termination, in terms of the criterion value and B = hmA.

(a) How likely will B outperform A?
Let Af (t) and Bf (t) denote the (theoretical) best functional values from algorithms A and B, respectively, 

for the test function f, up to the tth iteration. Similarly, let Ar,f (t) and Br,f (t) denote the best functional values 
from the algorithms A and B, respectively, up to the tth iteration at the rth run. The probability that algo-
rithm B outperforms algorithm A for f at the tth iteration is P(Bf (t) < Af (t)) , and it can be estimated by 
∑100

r=1 I(Br,f (t) < Ar,f (t))/100 . The average of these estimates over F  , denoted by PB≻A(t) , can be thought of as 
an average winning proportion of B over A (or simply, winning proportion). Specifically,

Similarly, interchanging A and B above, we define the winning proportion of A over B, PA≻B(t) . Since 
PA≻B(t)+ PB≻A(t) = 1 , it suffices to track PB≻A(t) . Loosely speaking, if PB≻A(t) > 1/2 , B is more likely to 
outperform A for f ∈ F  . Indeed, the larger the value of PB≻A(t) , the more likely it is that B outperforms A.

Supplementary Figure 1 in the Supplementary Material displays the comparison results and we observe the 
following. When t is fixed, the winning proportion of HPP modified algorithm outperforming its counterpart 
increases as the dimension of the test function increases. Both mBAT and hmBAT are comparable in their per-
formance against BAT, and the winning proportion increases steadily from about 0.5 to 0.7 for dimension at least 
5. Interestingly, the HPP strategy has more significant enhancement effect on PSO and ACO.

(b) How much does B (or A) outperform A (or B)?
For simplicity, we suppress the dependence of a notation on other parameters/notations when the context is 

clear. To this end, let m∗ and m∗ denote respectively, the minimum (i.e., the best) and maximum (i.e., the worst) 
of the outputs from 100 runs of A and 100 runs of B for f at the tth iteration. We view m∗ as a proxy of the best 
possible output by A and B; and let R = m∗ −m∗ denote the range of the 200 outputs of A and B. Define the 
relative error of A with respect to A and B, REA,A·B,f (t) , to be the average of (Ar,f (t)−m∗)/R over 100 runs; 
and the relative error of B relative to A and B, REB,A·B,f (t) is similarly defined. We consider the relative instead 
of absolute error in order to cancel out the effect due to a scale change of f (i.e., if we consider cf instead of f). 
For brevity, we simply call this quantity the relative error. Note that the relative errors lie between 0 and 1. Small 
relative error of A (i.e., REA,A·B,f (t) ) indicates the results from algorithm A, as a whole, are closer to the best 
possible value m∗ . Further, if the relative error of A is less than that of B, then generally results from algorithm A 
are closer to m∗ than those from B’s. A similar interpretation can be extended over a class of functions f ∈ C if 
we define RE(A,A · B)(t) := 1

|F |
∑

f ∈F REA,A·B,f (t) and call this the overshoot of A relative to A and B.
Supplementary Figure 2 in the Supplementary Material displays various performances of the PSO, BAT and 

ACO algorithms listed across columns relative to their modified algorithms in their first 10,000 iterations. Each 
row displays summarized results from test functions grouped by one of their dimensions with d = 2, 5, 10, 20 and 
40 resulting in 5 subfigures per column. Each subfigure displays the relative error of (i) A relative to A and hmA 
combined (red curve), and (ii) hmA relative to A and hmA combined (blue curve). If the blue (respectively, red) 
curve is lower, it indicates the hmA (respectively, A) is more superior than A. The subfigures are informative. 
For example, from subfigures in the rows for d = 10 and d = 40 , we observe that: (i) hmBAT outperforms BAT 
by a significant margin for all dimensions d; (ii) When d = 40 , relative errors of hmPSO are nearly 0 from 1000 
iterations onwards. This implies that hmPSO significantly outperforms the basic PSO from 1000 iterations; (iii) 
At d = 10 , hmA outperforms A for A = PSO, BAT and ACO from 400 iterations.

Combining the observations in (a) and (b), Supplementary Figures 1 and 2 convincingly demonstrate that the 
HPP strategy significantly improves BAT, ACO and PSO, particularly when the dimension of the test function 
is large. Improvement is measured in two complementary aspects, “how likely” and “how much” one algorithm 
outperforms the other.

(21)PB≻A(t) :=
1

100|F |
∑

f ∈F

100
∑

r=1

I(Br,f (t) < Ar,f (t)).
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Experiment 2. Upon the suggestion of a reviewer, we conduct numerical experiment 2 using selected 
benchmark functions  in68,69. These functions are intended for the CEC2017 competition in a special session on 
constrained single objective real-parameter optimization. Since the focus of our paper is on unconstrained opti-
mization, we select optimization problems  in69 with inequality constraints for experiment 2 and transform them 
to unconstrained optimizations by modifying the original objective function f (x) in the problem

to one with the objective function f+(x) given by

Benchmark functions and details of Experiment 2. Benchmark constrained optimization problems, C01, C02, 
C04, C05 and C20  in69 are chosen for comparing the performance of A and hmA where A = PSO, BAT or ACO 
using the device in (22), who also introduced random translation, x − o , followed by random rotations of the 
translated variables by randomly generated orthogonal matrices, in addition to the constrained optimization.

Throughout the comparisons, swarm size used is 32. At each run of A and hmA, we start them with the same 
initialization. Parameters used for PSO, hmPSO, BAT, hmBAT, ACOand hmACOfollow that in “Test functions 
and details of Experiment 1” section. Dimension, d, of the objective functions for comparison are chosen to be 
10, 30, 50 and 100.

Results. Following69, we tabulate the algorithm’s best, median, worst, average, standard deviations function 
values at the 5000th and 10,000th iterations out of 100 runs of the algorithms. The results, rounded to three 
decimal places, are presented in Supplementary Tables 3, 4 and 5 in the Supplementary Material, respectively, for 
comparing PSO veruse hmPSO, BAT versus hmBAT and ACO  versus hmACO. After rounding the outputs from 
the algorithms in each run at either 5000th or 10,000th iteration, we compare which algorithm, A or hmA, gives 
better result (ties are ignored) and give the winning algorithm one vote. The rows, labeled as ‘Wins’, report the 
total winning votes of an algorithm. Entries that are in boldface denote the better results. Some of the entries are 
reported as ‘Inf ’ due to one or more of the constraints are not satisfied and hence the corresponding f+ takeing 
infinity as the function value.

We have the following general observations from the results. (i) From Supplementary Table 3, hmPSO out-
performs PSO substantially, particularly so when the dimension of the benchmark function increases. Notably, 
the median and the mean of hmPSO best function values, even at halfway point, are substantially better, sug-
gesting hmPSO give more consistent results across runs. The consistency of hmPSO results across runs of the 
algorithm can also be seen from the standard deviations, which are markedly smaller than those of PSO. (ii) 
Above observations also apply to hmACO as compared with ACO  from Supplementary Table 5 though not as 
striking as in the hmPSO case. For benchmark function C20, the two algorithms, hmACOand ACO, are close 
in terms of their performance. There are also runs in which both ACO  and hmACO  do not satisfy some of the 
constraints in the optimization of benchmark functions C01 and C02. (iii) From Supplementary Table 4, hmBAT 
marginally outperforms BAT.

Tuning parameter analysis for HPP strategy. As demonstrated in “Comparison and results” section, 
having an additional stochastic component in a modified swarm-based algorithm can enhance the exploration 
ability of the algorithm. The stochastic component chosen is Gaussian with mean 0 and standard deviation 
σ = 0.005 . We expect the noise level, as indicated by the value of σ or a heavier-tailed distribution, affects the 
efficiency of the modified algorithm since strong level of noise interferes the algorithm’s exploitation ability. We 
conduct further numerical experiments with the same set-up as above to investigate the effects of σ in the Gauss-
ian noise or having t-distributions that have heavier tails than the Gaussian on the performance of mA and hmA.

 (i) On the standard deviation of the Gaussian noise  We tried σ = 0.005, 0.01, 0.02 and 0.05. The plots of 
PB≺A(t) (analogous to Supplementary Figure 1 and RE(A,A · B)(t) (analogous to Supplementary Fig-
ure 2) are very similar for hmA ( A = PSO, BAT and ACO) for all the σ s; and σ = 0.005 and 0.01. Hence, 
we recommend using σ in [0.005, 0.01]. Due to space consideration, these plots are given in Supplemen-
tary Figure 3 of the Supplementary Material.

 (ii) On the choice of distribution   We examine the effect on the performance of the modified algorithms 
if we change the Gaussian distribution with a heavier-tailed distribution. We choose distributions 
0.01

√
(m− 2)/m tm for m = 5, 10, 30 and 60 where tm denotes the t-distribution with m degrees of 

freedom. The scaling factor 0.01
√
(m− 2)/m is to ensure the scaled t-distribution has the same stand-

ard deviation as that of the Gaussian noise in (i) above. Note also that tm converges in distribution to a 
standard normal and the scaling factor to 1 as m approached to infinity. For m large, we do not expect 
essential difference between the t-distribution and the Gaussian noise.

The analogous plots of PB≺A(t) and RE(A,A · B)(t) using t-distributions for the choices of degrees of freedom 
look almost the same as the corresponding plots using Gaussian noise. These plots are not included in this 
article due to space constraints. Interested readers can view these plots in Supplementary Figure 4 of the Sup-
plementary Material.

min{f (x) : x ∈ [−a, a]d} such that gk(x) ≤ 0, for 1 ≤ k ≤ K;

(22)f+(x) =
{

f (x), if gk(x) ≤ 0, 1 ≤ k ≤ K ,
+∞, otherwise .
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Conclusions
Metaheuristic algorithms have found wide ranging applications in optimization problems. However, majority 
of these algorithms have no guarantee of converging to a global optimum, which is a desirable feature to have. 
In this paper, we propose an intuitive modification of an algorithm to ensure this global convergence capability. 
Moreover, we provide a rigorous mathematical proof of this guarantee. We first delineate in Theorem 1 sufficient 
conditions, namely (C1)–(C3), for a swarm-based algorithm to converge almost surely to a global optimum of 
an objective function. The class of objective functions for which Theorem 1 holds is very large. A heterogeneous 
perturbation-projection (HPP) strategy is then proposed to modify a given swarm-based algorithm to ensure 
the sufficient conditions (C1)–(C3) hold, and hence Theorem 1 follows, guaranteeing the modified algorithm 
converges almost surely to a global optimum. The proposed strategy is natural and simple to implement yet not 
algorithm-specific. We also demonstrated how this strategy is applied to PSO, Bat and ACO algorithms. Extensive 
numerical experiments were conducted and the results show that the modified algorithm either outperforms or 
performs on par with the original algorithm over a finite computational budget. Indeed, our method of proof 
leads to a form of finite iteration analyses (see the paragraph before “Perturbation-projection strategy” section). 
The tuning parameter analyses in “Tuning parameter analysis for HPP strategy” section suggest that applying 
the HPP strategy with mean 0 and standard deviation 0.005 Gaussian distribution for the additional stochas-
tic component helps to improve swarm-based algorithms. We contend that even though we have proved the 
proposed algorithms theoretically converge to the global optimum, the numerics may not, in practice, always 
converge to the global minimum for all problems. Our theoretical results only discuss unconstrained optimiza-
tion problems, which already include a wide range of practical applications. Additionally, we show in the second 
numerical experiment that the proposed algorithms can also be applied to inequality constrained optimization 
problems through a simple conversion.

We conclude this paper with an interesting observation from the results of our two experiments: When A 
outperforms hmA, A frequently only produces a marginally better result; however, when hmA outperforms A, 
the modified version quite often outperforms A by a relatively large margin. We offer a heuristic argument for 
such plausibility. When both A and hmA are exploring in the same neighbourhood of a local minimum, the 
stochastic element hinders the exploitation by a small amount and hence A is more likely to produce marginally 
better solution. However, when the occasion arises for hmA to make a big jump, thus leaving a local minimum’s 
neighbourhood, hmA has the potential to explore a better region and hence produces noticeably better solu-
tion than the original algorithm does. This observation reinforces the idea that adding noise appropriately to 
metaheuristic algorithms can enhance their performance.
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