
1

Vol.:(0123456789)

Scientific Reports | (2023) 13:5291 | https://doi.org/10.1038/s41598-023-29618-5

www.nature.com/scientificreports

Appropriate noise addition
to metaheuristic algorithms can
enhance their performance
Kwok Pui Choi 1, Enzio Hai Hong Kam 2, Xin T. Tong 3 & Weng Kee Wong 4*

Nature-inspired swarm-based algorithms are increasingly applied to tackle high-dimensional and
complex optimization problems across disciplines. They are general purpose optimization algorithms,
easy to implement and assumption-free. Some common drawbacks of these algorithms are their
premature convergence and the solution found may not be a global optimum. We propose a general,
simple and effective strategy, called heterogeneous Perturbation–Projection (HPP), to enhance an
algorithm’s exploration capability so that our sufficient convergence conditions are guaranteed to hold
and the algorithm converges almost surely to a global optimum. In summary, HPP applies stochastic
perturbation on half of the swarm agents and then project all agents onto the set of feasible solutions.
We illustrate this approach using three widely used nature-inspired swarm-based optimization
algorithms: particle swarm optimization (PSO), bat algorithm (BAT) and Ant Colony Optimization for
continuous domains (ACO). Extensive numerical experiments show that the three algorithms with the
HPP strategy outperform the original versions with 60–80% the times with significant margins.

Over the past couple of decades, Swarm Intelligence has and continues to inspire a steadily rising numbers of
nature-inspired swarm-based algorithms for optimizing high-dimensional complex cost functions, including
those that do not have analytic forms. Examples of swarm-based algorithms include particle swarm optimiza-
tion (PSO), bat algorithm (BAT), ant colony optimization for continuous optimization (ACO). Swarm-based
optimization algorithms are motivated by nature or animal behavior and then thoughtfully formulated into an
algorithm that iterates to the optimum based on a couple of equations. Generally, these algorithms are easy to
code and implement, and do not need gradient information or technical assumptions for them to generally work
well. Computer codes are widely and freely available, which have undoubtedly fueled numerous and various
applications of these algorithms to tackle many different types of complex real-world optimization problems.
Documentation of their effectiveness is widespread and their meteoric rise in applications and interest in both
industry and academia is well documented, see1,2, for example. Applications of these algorithms are diverse and
include estimating parameters in mixed nonlinear pharmacokinetic and pharmacodynamic models3 and tackling
various optimization problems in energy conservation4, medical sciences5 and agriculture6. A most recent review
of PSO applications in different areas is7.

There are known challeneges of nature-inspired swarm-based optimization algorithms, and we highlight two:
(1) They require effective tuning of their parameters to achieve optimal performance8; and (2) they often suffer
from premature convergence to a local optimum of the cost function, especially when the cost function is high-
dimensional and multi-modal9,10. In recent years, Yang et al. and Choi et al.11–13 proposed general strategies to
tackle the first challenege using different tools. We opine that tuning parameters is less of an issue now with the
introduction of the racing algorithm14,15.

In this work, we propose an innovative and simple Perturbation–Projection (PP) strategy to address the latter
challenge by adding noise to a nature-inspired swarm-based algorithm. An interesting part of the strategy is to
have only half of the swarm more actively engaged in the exploration for the optimum. The proposed methodol-
ogy is general, and as long as certain unrestrictive technical conditions are met, our techniques ensure almost
sure convergence to a global optimum. We apply the methodology to three popular swarm-based algorithms and
results from an extensive simulation not only support they tend to converge to the global optimum but addition-
ally, show that they tend to outperform the original algorithms. In the literature, there are frequently different

OPEN

1Department of Statistics and Data Science, National University of Singapore, Singapore 117546,
Singapore. 2Department of Computer Science, National University of Singapore, Singapore 117417,
Singapore. 3Department of Mathematics, National University of Singapore, Singapore 119076,
Singapore. 4Department of Biostatistics, University of California at Los Angeles, Los Angeles 90095, USA. *email:
wkwong@ucla.edu

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-29618-5&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2023) 13:5291 | https://doi.org/10.1038/s41598-023-29618-5

www.nature.com/scientificreports/

modifications to enhance performance of the original metaheuristic algorithm. Some seek to tackle specialized
problems better and others aim to speed up the algorithm. A common aim is to avoid premature convergence
and there are numerous proposals to address this issue for swarm-based algorithms; see, for example16–19. These
methods tend to be valid either for only one specific algorithm and not for a class of algorithms. Another com-
monality is that they do not generally have a rigorous mathematical theory to support their improved conver-
gence to the global optimum. The distinctive features of our proposed modifications are that they are supported
by mathematical theory, simple to implement and applicable to a broad class of swarm-based algorithms.

“Stochastic enhancement of an algorithm’s exploration” section describes how we add noise to a nature-
inspired metaheuristic algorithm and modify the algorithm using a Perturbation-Projection (PP) strategy, In
“Applications” section, inspired by the fact that agents in many swarms are often divided to specialize in differ-
ent aspects of optimization (exploration and exploitation), we introduce an additional feature, heterogeneity, in
the PP strategy. We then demonstrate how to modify the original PSO, BAT and ACO algorithms, by applying
the PP strategy on half of the swarm agents, to meet the required conditions for almost sure convergence to the
global optimum. We denote these modified algorithms by “hm” (heterogeneously modified) in front of their
names, i.e., hmPSO, hmBAT and hmACO. In “Numerical experiments” section, we conduct extensive numerical
experiments using many commonly used test functions to evaluate the usefulness of the modified algorithms.
Results show that the modified algorithms are either competitive or they outperform the original algorithms.
We also conduct tuning parameter analysis for the Heterogeneous Perturbation-Projection (HPP) strategies.
“Conclusions” section concludes with some directions for future work.

The paper has two sets of Supplementary Material: Supplementary Material A lists the 28 test functions of
various types in tabular form we used to evaluate and compare performances of the various algorithms. Sup-
plementary Material B lists five additional test functions from CEC2017 Competition and Special Session on
Constrained Single Objective Real-Parameter Optimization in Supplementary Table 2 for our numerical experi-
ment 2, including Supplementary Figures 1 and 2 to show the relative performance of the various algorithms in
different ways. Supplementary Tables 3–5 compare, respectively, the performance of PSO, BAT, ACO relative to
their hm versions using test functions in Supplementary Table 2.

Stochastic enhancement of an algorithm’s exploration
In this section, we introduce a simple and effective strategy to enhance a nature-inspired swarm-based algorithm
so that the enhanced algorithm is guaranteed to converge almost surely to a global optimum. We assume the cost
function can be high-dimensional, non-differentiable, non-separable or non-convex with multiple local or global
optima. The key idea in the proposed algorithms is simple: we incorporate an additional stochastic component
with an appropriate noise level to a swarm-based algorithm to enable it to escape from a local minimum and
iterate itself to a global optiumum.

The idea of adding noise to an algorithm to improve the search process is not entirely new. Several optimiza-
tion subfields have incorporated such a strategy in the search of a global optimum and they have mixed results.
For example, Ding and Tan, Sun et al., Neelakantan et al., Selman et al., Chen et al., Zhou et al., Jin et al.20–26
considered different types of optimization problems and explored adding different types of noise and its amount
to different types of search procedures to find an optimum. They include adding noise to extricate a search from
a saddle point or improve local searches to applications in training neural networks or adding gradient noise to
improve learning for very deep networks. Interestingly, the results are mixed, implying that introducing noise
to a search process is not always advantageous.

There is also the perennial problem of searching for the optimum within the user-specified region or/and
the optimum has to satisfy various constraints. There are various techniques specially designed for meeting
such requirements and sample papers that address this issue in different ways are27–31. For example, Maurice30
advocated the usage of a reflecting wall to bounce back particles that went beyond the search space, and31 took
advantage of the fact that D-optimal designs frequently have support points at the boundary of the search space,
and suggested bringing back out-of-region search particles to the boundary. Our proposed algorithm described
below has the distinguishing features that (i) the search is always confined to the user-specified region and the
solution satisfies all the constraints, (ii) the strategy is quite general and applies to a wide class of swarm-based
metaheuristic algorithms, and (iii) the algorithm is guaranteed to converge almost surely to a global optimum.
Additionally, our work appears to be the first in the literature to add noise to a nature-inspired metaheuristic
algorithm and unlike the above cited work, our results suggest that such a strategy is generally helpful for a
swarm-based algorithm for finding the global optimum.

Without loss of generality, we may assume that we have a minimization problem since
minx∈D f (x) = −maxx∈D{−f (x)} . Here f (x) is a user-specified real-valued cost function defined on a given
compact subset D of Rd . For many real-world applications, there are physical and budgetary constraints and
we assume that these constraints have been appropriately incorporated and formulated as a general minization
problem. For many other problems, like those in machine learning, regularization terms, sometimes denoted by
ρ‖x‖1 (or ρ‖x‖22) are often added to the nonnegative loss/cost function f to prevent over-fitting. The regulariza-
tion parameter ρ can often be selected through various cross validation methods32,33. For such situations, the
goal is then to equivalently minimize the function F(x) = f (x)+ ρ�x�1 (or f (x)+ ρ�x�22) over D , which is the
closed L1-ball (or L2-ball) centered at the origin with radius f (0)/ρ . This is because for x /∈ D , F(x) > F(0) so
the global minima are in D.

To solve the optimization problem, we resort to nature-inspired swarm-based algorithms, which are increas-
ingly used to solve complex and high-dimensional optimization problems. They generally employ an evolu-
tionary-like or swarm-based strategy to search for an optimum by first randomly generating a set of candidate
solutions of given size n. Depending on the particular swarm-based algorithm, candidate solutions are called

3

Vol.:(0123456789)

Scientific Reports | (2023) 13:5291 | https://doi.org/10.1038/s41598-023-29618-5

www.nature.com/scientificreports/

agents or particles. These algorithms have tuning parameters, embrace common search principles and have good
exploration and exploitation abilities. They also include stochastic components and tuning parameters and a
swarm-based type of algorithm may be generally described as follows:

At time or iteration t = 1, 2, . . . , let xi(t) denote the ith particle’s position or candidate solution of the opti-
mization problem. Let {xi(t) : 1 ≤ i ≤ n} denote the collection of candidate solutions of the swarm of size n.
In addition, there is auxiliary information from each member of the swarm and we denote them collectively by
{vi(t) : 1 ≤ i ≤ n} . For example, in PSO and BAT, the auxiliary information of each particle is its velocity with
which it flies to the current position. We denote them by

ACO does not have velocity in its formulation. Suppose the algorithm has a stochastic update rule of the fol-
lowing form: for agent i,

for 1 ≤ i ≤ n , where �i ,�i are some functions of which the outputs can be random. At either a pre-selected
deterministic time or a stopping time T, the algorithm is terminated and the best solution min1≤i≤n,0≤t≤T f (xi(t))
is output.

A key desirable property of a global optimization algorithm is its ability to identify a global optimum eventu-
ally. We formulate the following conditions on the algorithm’s agents, x1(t), . . . , xn(t) .

 (C1) At any iteration, all agents stay in D , i.e., xi(t) ∈ D for 1 ≤ i ≤ n and t = 0, 1, . . . ,T.
 (C2) Some of the agents are explorative, so they can find any regions of improvement with positive probability.

Specifically, there exists an α > 0 , independent of t, such that for any d-dimensional ball B in D satisfying
f (y) ≤ min1≤i≤n f (xi(t)), for all y ∈ B , the following holds

 with |B| denoting the volume of B and Pt the conditional probability with information at the t-th iteration.
This condition can often be achieved by giving a lower bound of the conidtional density. See Proposi-
tion 2 as an example.

 (C3) The algorithm is time improving, i.e., if we let m(t) = min1≤i≤n f (xi(t)) , m(t + 1) ≤ m(t) almost surely.
Note that (C3) itself does not guarantee the algorithm converge, since an algorithm in stalemate also
satisfies it.

Now we are ready to state our first result.

Theorem 1 Suppose f is a continuous function defined on a given compact subset D of Rd with at least one minimizer
in the interior of D . Any swarm-based algorithm that satisfies (C1)–(C3) will converge to the global minimum almost
surely (a.s). In other words, if the swarm-based algorithm has n agents, limt→∞ m(t) = minx∈D f (x) almost surely

Moreover, for any error threshold ǫ > 0 , there is a constant 1 > α(ǫ) > 0 which depends on the behavior of f so
that for any t ≥ 1 , P(m(t) > ǫ +minx∈D f (x)) < (1− α(ǫ))t−1.

Proof Let x∗ denote a minimizer of f, which is an interior point of D . Without loss of generality, we
assume f (x∗) = 0 . By (C3), m(t) := min1≤i≤n f (xi(t)) is a non-increasing sequence, thus it suf-
fices to show that m(t)

P−→0 as t → ∞ . Given a fixed ǫ > 0 , by continuity of f, there exists δ > 0 such
that 0 ≤ f (x) ≤ ǫ for x ∈ B(x∗, δ) := {x : �x − x∗� ≤ δ} . Since x∗ is an interior point, B(x∗, δ) ⊂ D
for a sufficiently small δ . By (C2), at each iteration, there is an agent xi such that either f (xi(t)) ≤ ǫ or
Pt

(

xi(t+1)(t + 1) ∈ B(x∗, δ)
)

≥ α|B(x∗, δ)| =: α(ǫ). Note that α(ǫ) = α|B(x∗, δ)| ≤ 1 when (C2) holds. If
f (xi(t)) ≤ ǫ , then m(t) ≤ ǫ . If xi(t+1)(t + 1) ∈ B(x∗, δ) , then m(t + 1) ≤ f (xi(t+1)(t + 1)) ≤ ǫ . By the tower
property of conditional expectation,

Therefore, m(t)
P−→0 as t → ∞ . �

Theorem 1 shows that any swarm-based algorithm satisfying (C1)–(C3) is guaranteed to converge to a neigh-
borhood of global optimum after finitely many iterations. Many swarm-based algorithms satisfy (C3), but not all
swarm-based algorithms stay within the search space D in their iterations thus violating condition (C1) or they
are exploratory in the sense of condition (C2). For example, if an agent of the PSO swarm is initialized near the
boundary of D and the momentum points beyond D , this agent will likely leave D in the next iteration. Further-
more, if the swarm agents arrive at the same location, say a suboptimal local optimum, with zero momentum, the
algorithm will stay at this location in all subsequent iterations9,10. However, “Perturbation-projection strategy”

(1)x(t) = (x1(t), . . . , xn(t)) and v(t) = (v1(t), . . . , vn(t)).

(2)xi(t + 1) = �i(x(t), v(t), f), vi(t + 1) = �i(x(t), v(t), f),

(3)max
1≤i≤n

Pt(xi(t + 1) ∈ B) ≥ α|B|,

(4)P(m(t) > ǫ) ≤ P(xi(s+1)(s + 1) /∈ B(x∗, δ), for s = 1, . . . , t − 1)

(5)= E

t−1
∏

s=1

Ps(xi(s+1)(s + 1) /∈ B(x∗, δ)) ≤ E

t−1
∏

s=1

(1− α(ǫ)) = (1− α(ǫ))t−1.

4

Vol:.(1234567890)

Scientific Reports | (2023) 13:5291 | https://doi.org/10.1038/s41598-023-29618-5

www.nature.com/scientificreports/

section below shows that, with slight modifications of an algorithm, we can ensure the modified algorithm
satisfies (C1)–(C2).

Our result actually provides a finite iteration analysis. In particular, given an error tolerance, ǫ > 0 , and
probability tolerance, δ > 0 , Theorem 1 says if t > t0 =

⌈

log δ
log(1−α(ǫ))

⌉

 (which is a finite number), the algorithm
at iteration t0 can find the global optimum with ǫ accuracy with probability at least 1− δ . Such form of finite
iteration analyses can also be found for other stochastic algorithms in machine learning, for example the sto-
chastic gradient desecent33.

Perturbation-projection strategy. A first step is to ensure all agents stay in D . For this purpose, we
introduce the projection onto D ensuring the agents stay inside the search space, D , a compact subset in Rd:

where �y − x�2 denotes the Euclidean distance between x and y . In other words, χD(x) is a point in D that is
closest to x . When ties occur, they can be broken arbitrarily. By definition, χD(x) = x if x ∈ D . In general, adding
the projection to an algorithm’s iterations reduces the agents’ distances to the optimal solution33. In particular, if
x∗ ∈ D and D is convex, it can be shown that �χD(x)− x∗� ≤ �x − x∗�2. In many optimization problems, the
search space, D , is usually a d-dimensional hyper-rectangle and it follows that D is convex.

A second step is to enhance the algorithm’s exploration ability by injecting noise into its dynamics. In sto-
chastic optimization algorithms, such as the perturbed gradient descent and the Langevin algorithm, Gaussian
noise is added to the classical gradient descent algorithm. This injection of noise effectively helps the algorithm
to get out of saddle points or local minimums efficiently34,35. We adopt here the same strategy due to its simplicity.

By combining these two steps, the modified algorithm can be formulated as

where x′i(t + 1) is the position of the ith agent after applying the algorithm’s update rule at t + 1 , and wi(t) is an
independent draw from a density pt such that there is a constant α > 0

The noise density pt in general can be adaptive, depending on the evolution of the algorithm up to time t. Here
we only need it to be strictly positive and bounded away from zero. We call this method of modification in (6) a
perturbation-projection (PP) modification or strategy. The proposition below shows that with PP strategy, the
modified algorithm satisfies (C1) and (C2).

Proposition 2 Suppose A is a swarm-based algorithm and at each iteration, every agent is projected onto D . If the
perturbation-projection modification (6) is applied to at least one of the agents, then (C1) and (C2) hold.

Proof Since χD is applied to all agents, (C1) clearly holds. At the (t + 1) th iteration, denote the agent to which
the modification is applied by i = i(t + 1) . Let y = χD(x′i(t + 1)).

Then, for any d-dimensional ball B in D,

showing (C2) holds. �

Applications
Before we proceed to illustrate how to implement our PP strategy in Theorem 1 to three nature-inspired swarm-
based optimization algorithms, namely, particle swarm optimization (PSO), bat algorithm (BAT) and ant colony
optimization for continuous domains (ACO), we incoproate an observation from nature. It is common to observe
that agents in a swarm in nature are often divided to specialize in different tasks and they collaborate to improve
collective effectiveness. Inspired by this, we set some agents in the swarm to specialize in exploration while others
in exploitation. In the context of PP strategy, we only perturb the exploration agents so they help exploring the
search space while we do not perturb exploitation agents so as not to hamper their convergence capability. We
call this heterogeneous perturbation-projection, abbreviated to HPP, strategy. Proposition 2, which only requires
the perturbation strategy applied to at least one agent, continues to hold for algorithms with HPP strategy.
Consequnetly, Theorem 1 guarantees HPP modified algorithms converge a.s to a global optimal solution. We
denote the modified version of an algorithm A using HPP strategy by hmA. We also summarize its formulation
as Pseudo code 1. For the present work, the proportions of exploration agents and exploitation agents are taken
to be 1/2. One can treat the proportion of exploration agents as an additional parameter in an algorithm to be
tuned, and this will be left for future work.

Our HPP strategy can be considered as a special case of cooperative or collaborative learning, which sug-
gests that mixing agents of different responsibilities can lead to improved overall performance. Existing works

χD(x) = argmin
y∈D

�y − x�2,

(6)xi(t + 1) = χD(χD(x′i(t + 1))+ wi(t)),

(7)pt(y − x) > α, for x, y ∈ D.

(8)max
1≤k≤n

Pt (xk(t + 1) ∈ B) ≥ Pt(xi(t+1)(t + 1) ∈ B)

(9)≥Pt(y + wi(t) ∈ B) =
∫

B
Pt(y + wi(t) ∈ dx) =

∫

B
Pt(wi(t) ∈ d(x − y)) =

∫

B
pt(y − x)dx ≥ α|B|,

5

Vol.:(0123456789)

Scientific Reports | (2023) 13:5291 | https://doi.org/10.1038/s41598-023-29618-5

www.nature.com/scientificreports/

on cooperative swarm-based algorithms can be found in36–38. In comparison, our HPP strategy focuses more on
the cooperation between exploration agents and exploitation agents. Recently,39 also applies this idea to local
optimization algorithms such as gradient descent and Langevin algorithm.

PSO and hmPSO. In40, Kennedy and Eberhart proposed the particle swarm optimization (PSO) algorithm.
The algorithm has stimulated many refinements and inspired many variants, and these algorithms find wide
applications in many fields. A recent search of “particle swarm optimization” in the Web of Science generated
more than to 32,000 articles and almost 600 review articles. A small sampling of early examples of how PSO has
been studied and modified over the years are36,41–45,45–48. PSO probably has the most modified versions among
nature-inspired metaheuristic algorithms and they continue to this day.

PSO algorithm models after the movement of a flock of birds looking for food collectively. To align with our
terminology in this article, we think of birds in PSO as agents, and food as a global minimizer of an objective
function. At the next iteration, t + 1 , each agent veers towards the best location it has found (cognitive/memory
component) and the best location known to the flock up to iteration t (social component). To describe the
memory effect, we allocate a personal “memory” agent x∗i (t) to record the best location agent i has found up to
iteration t, and a global “memory” agent x∗(t) to record the best location found by all agents collectively so far.
Recall the basic PSO algorithm runs the following steps iteratively:

1. Generate two independent random vector U1 and U2 from the uniform distribution on [0, 1]d and let

 where w, c1, c2 are given constants, and ◦ denotes the Hadamard product.
2. Update xi(t + 1) = xi(t)+ vi(t + 1).
3. Update personal best

4. Repeat steps 1–3 for all agents, then update the global best agent

 where j = argmin1≤i≤nf (x
∗
i (t + 1)) , m(t) = min1≤i≤n f (x

∗
i (t)) and condition H: m(t + 1) < m(t).

Our modified PSO, denoted by hPSO, is to apply the HPP strategy in step 2 only to the exploration agents
(labelled as 1, . . . , n/2):

2’) Update, for 1 ≤ i ≤ n/2,

where wi ’s are independent multivariate normal distributed with mean vector 0 and covariance matrix σ I.
Since its introduction in 1995, there have been numerous attempts to analyze the basic PSO convergence

behavior. In our opinion, Yuan and Yin provided in49 the first rigorous proof of the weak convergence of PSO to
a global optimum, without overly restrictive assumptions. Moreover, using stochastic approximation technique,
they provide the rate of convergence. In another direction,50 introduced two smoothed versions of PSO and prove
that they converge almost surely to a cost function’s global optimum.

The next proposition shows that if we modify the basic PSO algorithm by replacing the update step 2 by the
new noise enhanced update step 2’, the modified mPSO algorithm converges to a global minimum of the cost
function almost surely

Proposition 3 Let f be a continuous function defined on a compact subset D of Rd and one of its minimizers is in
the interior of D . Then the algorithm hmPSO converges to minx∈D f (x) almost surely.

Proof By Theorem 1, it suffices to verify that hmPSO satisfies (C1)–(C3). Note that xi(t + 1) ∈ D by projec-
tion. As x∗i (t + 1) takes either value x∗i (t) or xi(t + 1) , therefore x∗i (t + 1) ∈ D if x∗i (t) ∈ D . Similar argument
applies to x∗(t + 1) , so (C1) holds by induction. Since we add noise to the exploration agents xi (1 ≤ i ≤ n/2).
Proposition 2 implies (C2) holds. Consider the global memory agent, by step 4, f (x∗(t + 1)) ≤ f (x∗(t)) , so (C3)
is verified. This completes the proof. �

(10)vi(t + 1) = wvi(t)+ c1U1 ◦ (x∗i (t)− xi(t))+ c2U2 ◦ (x∗(t)− xi(t)),

(11)x∗i (t + 1) =
{

xi(t + 1), if f (x∗i (t)) > f (xi(t + 1));
x∗i (t), otherwise .

(12)x∗(t + 1) =
{

x∗j (t + 1), if condition H holds ,

x∗(t), otherwise ,

(13)xi(t + 1) = χD(χD(xi(t)+ vi(t + 1))+ wi(t)),

6

Vol:.(1234567890)

Scientific Reports | (2023) 13:5291 | https://doi.org/10.1038/s41598-023-29618-5

www.nature.com/scientificreports/

BAT and hmBAT. The success of bats, dolphins, shrews and other animals in applying echolocation tech-
nique to hunt and navigate inspired51 to propose the Bat Algorithm (BAT) in 2010. BAT meets with rising
popularity in applications. According to a recent search of the Web of Science, over 1,500 articles, nearly 800 pro-
ceedings papers and 48 review papers have been written on this algorithm and its variants in just ten years. We
refer interested readers in BAT and its wide ranging applications to the review articles in52,53 and the references
therein. Recent applications of the BAT algorithm include54,55. As with other metaheuristic algorithms, BAT has
many modified or hybridized versions for improved performance in various ways; some examples of the modi-
fied versions can be found in56–60 and some examples of BAT algorithm hybridized with another metaheuristic
algorithm are61–63.

Let xi(t) , 1 ≤ i ≤ n , denote the position of the i-th bat at t-th iteration, and x∗(t) tracking the best position
found by the cauldron of n bats. Recall BAT runs the following iterations iteratively:

1. Generate n independent Ui from the uniform distribution on [fmin, fmax] , vi(t + 1) = vi(t)+ Ui(xi(t)− x∗(t)).
2. Let r0 (pulse rate) denote a user-specified threshold. Generate n independent random numbers ri from the

uniform distribution on [0, 1], 1 ≤ i ≤ n . Update according to (a) ri < r0 or (b) ri ≥ r0 :

(a) If ri < r0 , xi(t + 1) = xi(t)+ vi(t + 1).
(b) If ri ≥ r0 , xi(t + 1) = x∗(t)+ ǫi(t) , where the components of ǫi(t) are independent mean 0 normal

distributions with standard deviation 0.001.

3. Generate n independent random numbers ri from the uniform distribution on [0, 1]. If ri is less than a
threshold rA (loudness), or f (χD(xi(t))) < f (xi(t + 1)) update xi(t + 1) = χD(xi(t)).

4. Update global best x∗(t + 1) = xi∗(t + 1), where i∗ = argmini f (xi(t + 1)).

In the procedure above, fmin, fmax are given constants which describe the minimal and maximal frequencies.
The threshold probabilities r0 and rA describe the pulse and emission rates. The random noise ǫi(t) describes the
loudness of each bat.51 also suggests using time varying ǫi(t) and r0 for improved performance. Here we fix them
as in the standard values suggested by the MATLAB package provided by the same author.

Our modified BAT, denoted by hmBAT, is to apply the HPP strategy by an additional step after step 3:
3’) Update, for 1 ≤ i ≤ n/2,

Proposition 4 Let f be a continuous function defined on D , a compact subset of Rd . Suppose further that a minimizer
of f lies in the interior of D , then the algorithm hmBAT converges to minx∈D f (x) almost surely.

Proof By Theorem 1, it suffices to verify hmBAT satisfies (C1)–(C3). Note that xi(t + 1) ∈ D by projection.
As x∗(t + 1) takes either value x∗(t) or xi(t + 1) for some i, therefore it is in D if x∗(t) ∈ D . So (C1) holds by
induction.

To verify (C2), we denote the value of xi(t + 1) after step 3’) as yi(t) , which is given by equation (14). Follow-
ing the proof of Proposition 2, we can show that for any d-ball B ⊂ D , P(yi(t) ∈ B) ≥ α|B|. If all y ∈ B satisfies
f (y) < f (xi(t)) , we have

So (C2) holds.
By step 4, f (x∗(t + 1)) ≤ f (x∗(t)) , so (C3) is verified. This completes the proof of Proposition 4. �

ACO and hmACO. Ant colony Optimization (ACO) was initially proposed to solve discrete optimization
such as the traveling salesman problem64,65. Later, it is adapted to solve continuous optimization problems in66.
We focused our discussion of ACO on this adaptation, since our discussion so far was mainly about continuous
optimization.

We shall call the particles in ACO ants. At each iteration, ACO maintains an archive of n best ants
x1(t), . . . , xn(t) . Each ant is a d-dimensional vector with components xi(t) = (xi,1(t), . . . , xi,d(t)) . Without loss
of generality, we assume the ants are ranked so f (x1(t)) ≤ f (x2(t)) ≤ · · · ≤ f (xn(t)) . In the beginning of a
new iteration, ACO generates m new ants by sampling Gaussian mixture distribution at each dimension. The
Gaussian mixtures consist of Gaussian distributions centered at each archived ant with weights according to the
ant’s performance. After the new ants are generated, they are inserted to the archive, and the archive will then
remove m ants with worst performances. Specifically, ACO repeats steps 1 to 4 until termination criterion is met.

1. For each dimension j, construct a 1-dimensional Gaussian mixture pj density centered at {x1,j(t), . . . , xn,j(t)}

 The weight wi is a decreasing sequence so better performing ants are favored.66 suggests using

(14)xi(t + 1) = χD(χD(xi(t)+ vi(t + 1))+ wi(t + 1)).

(15)P(xi(t + 1) ∈ B) ≥ (1− rA)P(yi(t) ∈ B) ≥ α(1− rA)|B|.

(16)pj(x) =
n

∑

i=1

wi

σi,j
√
2π

exp

(

−
(x − xi,j(t))

2

2σ 2
i,j

)

.

7

Vol.:(0123456789)

Scientific Reports | (2023) 13:5291 | https://doi.org/10.1038/s41598-023-29618-5

www.nature.com/scientificreports/

 with certain tuning parameter q. Smaller q will give more preference to the best performing ant x1 . The
standard deviation is suggested to be chosen as σi,j = σ

∑n
k=1 |xi,j(t)− xk,j(t)|/(n− 1), with σ being a tun-

ing parameter.
2. Generate m new ants y1(t), . . . , ym(t) independently. Each follows the product distribution

yi(t) ∼
∏d

j=1 pj(x), i = 1, . . . ,m.
3. Combine them with existing archived ants and reorder them. That is, we let

 where f (x′1) ≤ f (x′2) ≤ · · · ≤ f (x′n+m).
4. Update archive with the best ants xi(t + 1) = x′i for i = 1, . . . , n.

Our modified ACO, denoted by hmACO, is to apply the HPP strategy in step 2):
2’) Generate m new ants y1, . . . , ym independently by first sampling from the product distribution

y′i(t) ∼
∏d

j=1 pj(x), i = 1, . . . ,m. Then, let

and assume that the first batch of ants xi(0) are in the feasible set D . Otherwise, replace them with χD(xi(0)).
We show that hmACO converges almost surely as long as m < n/2 . This setting is relevant in practice, since

the computational cost comes mainly from the new ants generation and evaluations. Intuitively, having many
new ants without updating the archive will make the algorithm less efficient. For example, Socha and Dorigo66
suggests using m = 2 and n = 50.

Proposition 5 Let f be a continuous function over D , a compact subset of Rd . Suppose further that a minimizer of
f lies in the interior of D , then the algorithm hmACOconverges to minx∈D f (x) almost surely if m < n/2.

Proof By Theorem 1, it suffices to prove that mACO satisfies (C1)–(C3). Note that xi(t + 1) is either yj(t) or
xj(t) for some j, the former is in D by projection, so (C1) holds by induction. Since m < n and only m ants will
be removed from {y1(t), . . . , ym(t), x1(t), . . . , xn(t)} , x1(t) remains in the archive at iteration t + 1 . This implies
(C3) holds.

For any d-dimensional ball B in D , let P′
t be the conditional probability given y′1(t), . . . , y′m(t) , then for any j

Note that if f (y) ≤ f (x1(t)) for all y ∈ B and yj(t) ∈ B , we have f (yj(t)) ≤ f (x1(t)) and yj(t) will be kept in the
archive at iteration t + 1 . Consequently, P′

t(xj(t + 1) ∈ B for some j) ≥ α|B| and (C2) holds. �

Numerical experiments
We conduct two sets of numerical experiments, Experiment 1 and Experiment 2 to compare the perormance
of A and hmA for A = PSO, BAT or ACO. Details are given in “Experiment 1” and Experiment 2” sections. In
“Tuning parameter analysis for HPP strategy” section, we report the analysis of tuning parameters used in HPP
strategy. The main objective of our experiments is to compare the performance of A and hmA when A is PSO,
BAT or ACO; it is not our intention to compare PSO, BAT and ACO.

The swarm size used is 32 in all the comparison studies below. At each run, we start the algorithms A and
hmA with the same initialization of the particles in the swarm.

Experiment 1. In this experiment, we conduct extensive numerical experiments to compare the perfor-
mance of A and hmA, where A = PSO, BAT or ACO, for a computing budget on a large class of very different
types of cost functions. We use two measures to evaluate how likely and by how much the modified algorithm
outperforms the original algorithm.

Test functions and details of Experiment 1. A total of 28 test functions are used for this experiment. The func-
tions are compiled by Wahab et al.67, which are of varying dimensions and their exact expressions can be found
in Supplementary Table 1 in Supplementary Material: A. The list of functions includes commonly used test
functions such as Ackley, Griewank, Powell, Rastrigin, Sphere with different properties. Some are unimodal,
multi-modal, separable or inseparable. The majority of the functions are defined for arbitrary dimension d. For
such functions, we investigate the effect of dimension on the optimization algorithms for selected dimensions,
i.e., d = 5, 10, 20 and 40. The other test functions have dimensions d = 2 , except for one with d = 4 , which we
exlcude. In total, we have a set C of 70 test functions and we summarize the numerical results according to their
dimensions, i.e., d = 2, 5, 10, 20 and 40.

(17)wi =
exp(−(i − 1)2/(2q2n2)))

∑n
i=1 exp(−(i − 1)2/(2q2n2)))

,

(18){x′1, . . . , x
′
n+m} = {x1(t), . . . , xn(t), y1(t), . . . , ym(t)}

(19)yi(t) = χD
(

χD
(

y′i(t))+ wi(t)
))

(20)P
′
t(yj(t) ∈ B) ≥ P

′
t(χD(y′j(t))+ wj(t) ∈ B) =

∫

B
pt(χD(y′j(t))− x)dx ≥ α|B|.

8

Vol:.(1234567890)

Scientific Reports | (2023) 13:5291 | https://doi.org/10.1038/s41598-023-29618-5

www.nature.com/scientificreports/

For each cost function f ∈ C , we conduct 100 runs of the algorithms A and hmA, each for 10,000 iterations,
where A = PSO, BAT, or ACO. To gauge the progress of each run of an algorithm, we output the algorithm’s best
functional values found during the search at the tth iteration, where t = 50, 100, 200, 400, 1000, 3000 and 10, 000.

For all experiments, we use n = 32 agents/particles and for hmA (A = PSO, BAT or ACO). We employ com-
monly used parameter settings for PSO, BAT and ACO, namely,

• PSO: w = 0.729 (inertia weight), c1 = c2 = 1.5 (acceleration constants);
• BAT: fmin = 0 (minimum frequency), fmax = 100 (maximum frequency), r0 = 0.5 (pulse rate), rA = 0.5

(loudness);
• ACO: q = 10−4, σ = 0.85, n = 32,m = 2.

For hmA, we use the same parameters as in A with the stochastic perturbations being independent normal vari-
ates, each with mean 0 and standard deviation 0.005.

Comparison and results. This subsection compares the performance of an algorithm A versus one of its modi-
fication B using several test functions from the set C , functions in the set are commonly used to compare per-
formance of an algorithm in the engineering literature. We are particularly interested to ascertain how their
performance depends on the dimension of the problem. Here, F is the subset of C that contains functions of the
same dimension d = 2, 5, 10, 20 or 40. Our two key questions are:(a) How likely does B outperform A and (b) On
average, how much does B outform A at termination, in terms of the criterion value and B = hmA.

(a) How likely will B outperform A?
Let Af (t) and Bf (t) denote the (theoretical) best functional values from algorithms A and B, respectively,

for the test function f, up to the tth iteration. Similarly, let Ar,f (t) and Br,f (t) denote the best functional values
from the algorithms A and B, respectively, up to the tth iteration at the rth run. The probability that algo-
rithm B outperforms algorithm A for f at the tth iteration is P(Bf (t) < Af (t)) , and it can be estimated by
∑100

r=1 I(Br,f (t) < Ar,f (t))/100 . The average of these estimates over F , denoted by PB≻A(t) , can be thought of as
an average winning proportion of B over A (or simply, winning proportion). Specifically,

Similarly, interchanging A and B above, we define the winning proportion of A over B, PA≻B(t) . Since
PA≻B(t)+ PB≻A(t) = 1 , it suffices to track PB≻A(t) . Loosely speaking, if PB≻A(t) > 1/2 , B is more likely to
outperform A for f ∈ F . Indeed, the larger the value of PB≻A(t) , the more likely it is that B outperforms A.

Supplementary Figure 1 in the Supplementary Material displays the comparison results and we observe the
following. When t is fixed, the winning proportion of HPP modified algorithm outperforming its counterpart
increases as the dimension of the test function increases. Both mBAT and hmBAT are comparable in their per-
formance against BAT, and the winning proportion increases steadily from about 0.5 to 0.7 for dimension at least
5. Interestingly, the HPP strategy has more significant enhancement effect on PSO and ACO.

(b) How much does B (or A) outperform A (or B)?
For simplicity, we suppress the dependence of a notation on other parameters/notations when the context is

clear. To this end, let m∗ and m∗ denote respectively, the minimum (i.e., the best) and maximum (i.e., the worst)
of the outputs from 100 runs of A and 100 runs of B for f at the tth iteration. We view m∗ as a proxy of the best
possible output by A and B; and let R = m∗ −m∗ denote the range of the 200 outputs of A and B. Define the
relative error of A with respect to A and B, REA,A·B,f (t) , to be the average of (Ar,f (t)−m∗)/R over 100 runs;
and the relative error of B relative to A and B, REB,A·B,f (t) is similarly defined. We consider the relative instead
of absolute error in order to cancel out the effect due to a scale change of f (i.e., if we consider cf instead of f).
For brevity, we simply call this quantity the relative error. Note that the relative errors lie between 0 and 1. Small
relative error of A (i.e., REA,A·B,f (t)) indicates the results from algorithm A, as a whole, are closer to the best
possible value m∗ . Further, if the relative error of A is less than that of B, then generally results from algorithm A
are closer to m∗ than those from B’s. A similar interpretation can be extended over a class of functions f ∈ C if
we define RE(A,A · B)(t) := 1

|F |
∑

f ∈F REA,A·B,f (t) and call this the overshoot of A relative to A and B.
Supplementary Figure 2 in the Supplementary Material displays various performances of the PSO, BAT and

ACO algorithms listed across columns relative to their modified algorithms in their first 10,000 iterations. Each
row displays summarized results from test functions grouped by one of their dimensions with d = 2, 5, 10, 20 and
40 resulting in 5 subfigures per column. Each subfigure displays the relative error of (i) A relative to A and hmA
combined (red curve), and (ii) hmA relative to A and hmA combined (blue curve). If the blue (respectively, red)
curve is lower, it indicates the hmA (respectively, A) is more superior than A. The subfigures are informative.
For example, from subfigures in the rows for d = 10 and d = 40 , we observe that: (i) hmBAT outperforms BAT
by a significant margin for all dimensions d; (ii) When d = 40 , relative errors of hmPSO are nearly 0 from 1000
iterations onwards. This implies that hmPSO significantly outperforms the basic PSO from 1000 iterations; (iii)
At d = 10 , hmA outperforms A for A = PSO, BAT and ACO from 400 iterations.

Combining the observations in (a) and (b), Supplementary Figures 1 and 2 convincingly demonstrate that the
HPP strategy significantly improves BAT, ACO and PSO, particularly when the dimension of the test function
is large. Improvement is measured in two complementary aspects, “how likely” and “how much” one algorithm
outperforms the other.

(21)PB≻A(t) :=
1

100|F |
∑

f ∈F

100
∑

r=1

I(Br,f (t) < Ar,f (t)).

9

Vol.:(0123456789)

Scientific Reports | (2023) 13:5291 | https://doi.org/10.1038/s41598-023-29618-5

www.nature.com/scientificreports/

Experiment 2. Upon the suggestion of a reviewer, we conduct numerical experiment 2 using selected
benchmark functions in68,69. These functions are intended for the CEC2017 competition in a special session on
constrained single objective real-parameter optimization. Since the focus of our paper is on unconstrained opti-
mization, we select optimization problems in69 with inequality constraints for experiment 2 and transform them
to unconstrained optimizations by modifying the original objective function f (x) in the problem

to one with the objective function f+(x) given by

Benchmark functions and details of Experiment 2. Benchmark constrained optimization problems, C01, C02,
C04, C05 and C20 in69 are chosen for comparing the performance of A and hmA where A = PSO, BAT or ACO
using the device in (22), who also introduced random translation, x − o , followed by random rotations of the
translated variables by randomly generated orthogonal matrices, in addition to the constrained optimization.

Throughout the comparisons, swarm size used is 32. At each run of A and hmA, we start them with the same
initialization. Parameters used for PSO, hmPSO, BAT, hmBAT, ACOand hmACOfollow that in “Test functions
and details of Experiment 1” section. Dimension, d, of the objective functions for comparison are chosen to be
10, 30, 50 and 100.

Results. Following69, we tabulate the algorithm’s best, median, worst, average, standard deviations function
values at the 5000th and 10,000th iterations out of 100 runs of the algorithms. The results, rounded to three
decimal places, are presented in Supplementary Tables 3, 4 and 5 in the Supplementary Material, respectively, for
comparing PSO veruse hmPSO, BAT versus hmBAT and ACO versus hmACO. After rounding the outputs from
the algorithms in each run at either 5000th or 10,000th iteration, we compare which algorithm, A or hmA, gives
better result (ties are ignored) and give the winning algorithm one vote. The rows, labeled as ‘Wins’, report the
total winning votes of an algorithm. Entries that are in boldface denote the better results. Some of the entries are
reported as ‘Inf ’ due to one or more of the constraints are not satisfied and hence the corresponding f+ takeing
infinity as the function value.

We have the following general observations from the results. (i) From Supplementary Table 3, hmPSO out-
performs PSO substantially, particularly so when the dimension of the benchmark function increases. Notably,
the median and the mean of hmPSO best function values, even at halfway point, are substantially better, sug-
gesting hmPSO give more consistent results across runs. The consistency of hmPSO results across runs of the
algorithm can also be seen from the standard deviations, which are markedly smaller than those of PSO. (ii)
Above observations also apply to hmACO as compared with ACO from Supplementary Table 5 though not as
striking as in the hmPSO case. For benchmark function C20, the two algorithms, hmACOand ACO, are close
in terms of their performance. There are also runs in which both ACO and hmACO do not satisfy some of the
constraints in the optimization of benchmark functions C01 and C02. (iii) From Supplementary Table 4, hmBAT
marginally outperforms BAT.

Tuning parameter analysis for HPP strategy. As demonstrated in “Comparison and results” section,
having an additional stochastic component in a modified swarm-based algorithm can enhance the exploration
ability of the algorithm. The stochastic component chosen is Gaussian with mean 0 and standard deviation
σ = 0.005 . We expect the noise level, as indicated by the value of σ or a heavier-tailed distribution, affects the
efficiency of the modified algorithm since strong level of noise interferes the algorithm’s exploitation ability. We
conduct further numerical experiments with the same set-up as above to investigate the effects of σ in the Gauss-
ian noise or having t-distributions that have heavier tails than the Gaussian on the performance of mA and hmA.

 (i) On the standard deviation of the Gaussian noise We tried σ = 0.005, 0.01, 0.02 and 0.05. The plots of
PB≺A(t) (analogous to Supplementary Figure 1 and RE(A,A · B)(t) (analogous to Supplementary Fig-
ure 2) are very similar for hmA (A = PSO, BAT and ACO) for all the σ s; and σ = 0.005 and 0.01. Hence,
we recommend using σ in [0.005, 0.01]. Due to space consideration, these plots are given in Supplemen-
tary Figure 3 of the Supplementary Material.

 (ii) On the choice of distribution We examine the effect on the performance of the modified algorithms
if we change the Gaussian distribution with a heavier-tailed distribution. We choose distributions
0.01

√
(m− 2)/m tm for m = 5, 10, 30 and 60 where tm denotes the t-distribution with m degrees of

freedom. The scaling factor 0.01
√
(m− 2)/m is to ensure the scaled t-distribution has the same stand-

ard deviation as that of the Gaussian noise in (i) above. Note also that tm converges in distribution to a
standard normal and the scaling factor to 1 as m approached to infinity. For m large, we do not expect
essential difference between the t-distribution and the Gaussian noise.

The analogous plots of PB≺A(t) and RE(A,A · B)(t) using t-distributions for the choices of degrees of freedom
look almost the same as the corresponding plots using Gaussian noise. These plots are not included in this
article due to space constraints. Interested readers can view these plots in Supplementary Figure 4 of the Sup-
plementary Material.

min{f (x) : x ∈ [−a, a]d} such that gk(x) ≤ 0, for 1 ≤ k ≤ K;

(22)f+(x) =
{

f (x), if gk(x) ≤ 0, 1 ≤ k ≤ K ,
+∞, otherwise .

10

Vol:.(1234567890)

Scientific Reports | (2023) 13:5291 | https://doi.org/10.1038/s41598-023-29618-5

www.nature.com/scientificreports/

Conclusions
Metaheuristic algorithms have found wide ranging applications in optimization problems. However, majority
of these algorithms have no guarantee of converging to a global optimum, which is a desirable feature to have.
In this paper, we propose an intuitive modification of an algorithm to ensure this global convergence capability.
Moreover, we provide a rigorous mathematical proof of this guarantee. We first delineate in Theorem 1 sufficient
conditions, namely (C1)–(C3), for a swarm-based algorithm to converge almost surely to a global optimum of
an objective function. The class of objective functions for which Theorem 1 holds is very large. A heterogeneous
perturbation-projection (HPP) strategy is then proposed to modify a given swarm-based algorithm to ensure
the sufficient conditions (C1)–(C3) hold, and hence Theorem 1 follows, guaranteeing the modified algorithm
converges almost surely to a global optimum. The proposed strategy is natural and simple to implement yet not
algorithm-specific. We also demonstrated how this strategy is applied to PSO, Bat and ACO algorithms. Extensive
numerical experiments were conducted and the results show that the modified algorithm either outperforms or
performs on par with the original algorithm over a finite computational budget. Indeed, our method of proof
leads to a form of finite iteration analyses (see the paragraph before “Perturbation-projection strategy” section).
The tuning parameter analyses in “Tuning parameter analysis for HPP strategy” section suggest that applying
the HPP strategy with mean 0 and standard deviation 0.005 Gaussian distribution for the additional stochas-
tic component helps to improve swarm-based algorithms. We contend that even though we have proved the
proposed algorithms theoretically converge to the global optimum, the numerics may not, in practice, always
converge to the global minimum for all problems. Our theoretical results only discuss unconstrained optimiza-
tion problems, which already include a wide range of practical applications. Additionally, we show in the second
numerical experiment that the proposed algorithms can also be applied to inequality constrained optimization
problems through a simple conversion.

We conclude this paper with an interesting observation from the results of our two experiments: When A
outperforms hmA, A frequently only produces a marginally better result; however, when hmA outperforms A,
the modified version quite often outperforms A by a relatively large margin. We offer a heuristic argument for
such plausibility. When both A and hmA are exploring in the same neighbourhood of a local minimum, the
stochastic element hinders the exploitation by a small amount and hence A is more likely to produce marginally
better solution. However, when the occasion arises for hmA to make a big jump, thus leaving a local minimum’s
neighbourhood, hmA has the potential to explore a better region and hence produces noticeably better solu-
tion than the original algorithm does. This observation reinforces the idea that adding noise appropriately to
metaheuristic algorithms can enhance their performance.

Consent for participate. All authors have given consent to submit to this journal for review.

Data availibility
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.

Code availability
Will be provided whent he paper is accepted.

Received: 24 July 2022; Accepted: 7 February 2023

References
 1. Whitacre, J. M. Recent trends indicate rapid growth of nature-inspired optimization in academia and industry. Computing 93,

121–133 (2011).
 2. Whitacre, J. M. Survival of the flexible: Explaining the recent popularity of nature-inspired optimization within a rapidly evolving

world. Computing 93, 135–146 (2011).
 3. Kim, S. & Li, L. A novel global search algorithm for nonlinear mixed-effects models using particle swarm optimization. J. Phar-

macokinet. Pharmacodyn. 38, 471–495 (2011).
 4. Dev, K. et al. Energy optimization for green communication in IOT using Harris hawks optimization. IEEE Trans. Green Commun.

Netw. 6, 685–694 (2022).
 5. Gundluru, N. et al. Enhancement of detection of diabetic retinopathy using Harris hawks optimization with deep learning model.

Comput. Intell. Neurosci. (2022).
 6. Mendes, J. M., Oliveira, P. M., Filipe Neves, F. N. & dos Santos, R. M. Nature inspired metaheuristics and their applications in

agriculture: A short review. In EPIA Conference on Artificial Intelligence EPIA 2019: Progress in Artificial Intelligence (2020).
 7. Gad, A. G. Particle swarm optimization algorithm and its applications: A systematic review. Arch. Comput. Methods Eng. 29,

2531–2561 (2022).
 8. Huang, C., Li, Y. & Yao, X. A survey of automatic parameter tuning methods for metaheuristics. IEEE Trans. Evol. Comput. 24,

201–216 (2019).
 9. Merkle, D. & Middendorf, M. Swarm intelligence. In Search Methodologies, 401–435 (Springer, 2005).
 10. Kaur, A. & Kaur, M. A review of parameters for improving the performance of particle swarm optimization. Int. J. Hybrid Inf.

Technol. 8, 7–14 (2015).
 11. Yang, X.-S., Deb, S., Loomes, M. & Karamanoglu, M. A framework for self-tuning optimization algorithm. Neural Comput. Appl.

23, 2051–2057 (2013).
 12. Yang, X.-S. & He, X. Swarm intelligence and evolutionary computation: Overview and analysis. In Recent Advances in Swarm

Intelligence and Evolutionary Computation, 1–23 (2015).
 13. Choi, K. P., Lai, T. L., Tong, X. T. & Wong, W. K. A statistical approach to adaptive parameter tuning in nature-inspired optimiza-

tion and optimal sequential design of dose-finding trials. Stat. Sinica 31, 1 (2021).
 14. López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L. P., Birattari, M. & Stützle, T. The Irace package: Iterated racing for automatic

algorithm configuration. Oper. Res. Perspect. 3, 43–58 (2016).

11

Vol.:(0123456789)

Scientific Reports | (2023) 13:5291 | https://doi.org/10.1038/s41598-023-29618-5

www.nature.com/scientificreports/

 15. Birattari, M., Balaprakash, P. & Dorigo, M. The aco/f-race algorithm for combinatorial optimization under uncertainty. http:// link.
sprin ger. com/ artic le/ 10. 1007 (2007).

 16. Parsopoulos, K. E., Plagianakos, V., Magoulas, G. & Vrahatis, M. Objective function “stretching’’ to alleviate convergence to local
minima. Nonlinear Anal. Theory Methods Appl. 47, 3419–3424 (2001).

 17. Stacey, A., Jancic, M. & Grundy, I. Particle swarm optimization with mutation. In The 2003 Congress on Evolutionary Computation,
2003. CEC’03., Vol. 2, 1425–1430 (IEEE, 2003).

 18. Krohling, R. A. Gaussian particle swarm with jumps. In 2005 IEEE Congress on Evolutionary Computation, Vol. 2, 1226–1231
(IEEE, 2005).

 19. Elshamy, W., Emara, H. M. & Bahgat, A. Clubs-based particle swarm optimization. In 2007 IEEE Swarm Intelligence Symposium,
289–296 (IEEE, 2007).

 20. Ding, K. & Tan, Y. Comparison of random number generators in particle swarm optimization algorithm. In Proceedings of the
2004 IEEE Congress on Evolutionary Computation (CEC) 2664–2671 (2014).

 21. Sun, J., Wu, X., Palade, V., Fang, W. & Shi, Y. Random drift particle swarm optimization algorithm: Convergence analysis and
parameter selection. Mach. Learn. 101, 345–376 (2015).

 22. Neelakantan, A. et al. Adding gradient noise improves learning for very deep networks. ICLR (2015).
 23. Selman, B., Kautz, H. A. & Cohen, B. Noise strategies for improving local search. In AAAI-94 Proceedings 337–343 (1994).
 24. Chen, X., Du, S. S. & Tong, X. T. On stationary-point hitting time and ergodicity of stochastic gradient Langevin dynamics. J.

Mach. Learn. Res. 21, 1–40 (2020).
 25. Zhou, M. et al. Towards understanding the importance of noise in training neural networks. In Proceedings of the 36th International

Conference on Machine Learning, Long Beach, California, PMLR 97 (2019).
 26. Jin, C., Ge, R., Netrapalli, P., Kakade, S. M. & Jordan, M. J. How to escape saddle points efficiently. In Proceedings of the 34th

International Conference on Machine Learning, Sydney, Australia, PMLR 70 (2017).
 27. Zhang, W., Xie, X. & Bi, D. Handling boundary constraints for numerical optimization by particle swarm flying in periodic search

space. In Proceedings of the 2004 IEEE Congress on Evolutionary Computation, Vol. 2, 2307–2311 (2004).
 28. Padhye, N., Deb, K. & Mittal, P. Boundary handling approaches in particle swarm optimization. In Proceedings of Seventh Inter-

national Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA 2012), Advances in Intelligent Systems and
Computing, Vol. 201 (eds. J. C. Bansal et al.) 287–298 (2013).

 29. Chu, W., Gao, X. & Sorooshian, S. Handling boundary constraints for particle swarm optimization in high-dimensional search
space. Inf. Sci. 181, 4569–4581 (2011).

 30. Maurice, C. Standard Particle Swarm Optimisation (Technical Report, HAL Achives Ouvertes, 2012).
 31. Qiu, J., Chen, R.-B., Wang, W. & Wong, W. K. Using animal instincts to design efficient biomedical studies via particle swarm

optimization. Swarm Evol. Comput. 18, 1–10 (2014).
 32. James, G., Witten, D., Hastie, T. & Tibshirani, R. An Introduction to Statistical Learning, Vol. 112 (Springer, 2013).
 33. Shalev-Shwartz, S. & Ben-David, S. Understanding Machine Learning: From Theory to Algorithms (Cambridge University Press,

2014).
 34. Ge, R., Huang, F., Jin, C. & Yuan, Y. Escaping from saddle points: Online stochastic gradient for tensor decomposition. In Proceed-

ings of the Conference on Learning Theory (2015).
 35. Chen, X., Du, S. S. & Tong, X. T. On stationary-point hitting time and ergodicity of stochastic gradient Langevin dynamics. J.

Mach. Learn. Res. 21, 1–41 (2020).
 36. Van den Bergh, F. & Engelbrecht, A. P. Cooperative learning in neural networks using particle swarm optimizers. S. Afr. Comput.

J. 2000, 84–90 (2000).
 37. Van den Bergh, F. & Engelbrecht, A. P. A cooperative approach to particle swarm optimization. IEEE Trans. Evol. Comput. 8,

225–239 (2004).
 38. Zhang, X. et al. Cooperative coevolutionary bare-bones particle swarm optimization with function independent decomposition

for large-scale supply chain network design with uncertainties. IEEE Trans. Cybern. 50, 4454–4468 (2019).
 39. Dong, J. & Tong, X. T. Replica exchange for non-convex optimization. J. Mach. Learn. Res. 22, 1–59 (2021).
 40. Kennedy, J. & Eberhart, R. C. Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural Networks

IV, 1942–1948 (IEEE, 1995).
 41. Shi, Y. & Eberhart, R. A modified particle swarm optimizer. In 1998 IEEE International Conference on Evolutionary Computation

Proceedings. IEEE World Congress on Computational Intelligence. https:// doi. org/ 10. 1109/ ICEC. 1998. 699146 (1998).
 42. Bratton, D. & Kennedy, J. Defining a standard for particle swarm optimization. In 2007 IEEE swarm intelligence symposium, 120–127

(IEEE, 2007).
 43. Poli, R. Analysis of the publications on the applications of particle swarm optimization. J. Artif. Evol. Appl. (2008).
 44. Eberhart, R. C. & Shi, Y. Comparing inertia weights and constriction factors in particle swarm optimization. In Proceedings of the

IEEE Congress on Evolutionary Computation, 84–88 (IEEE, 2000).
 45. Clerc, M. & Kennedy, J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE

Trans. Evol. Comput. 6, 58–72 (2002).
 46. Trelea, I. C. The particle swarm optimization algorithm: Convergence analysis and parameter selection. Inf. Process. Lett. 85,

317–325 (2003).
 47. Chen, X. & Li, Y. A modified PSO structure resulting in high exploration ability with convergence guaranteed. IEEE Trans. Syst.

Man Cybern. B 37, 1271–1289 (2007).
 48. Pedersen, M. & Chipperfield, A. J. Simplifying particle swarm optimization. Appl. Soft Comput. 10, 618–628 (2010).
 49. Yuan, Q. & Yin, G. Analyzing convergence and rates of convergence of particle swarm optimization algorithms using stochastic

approximation methods. IEEE Trans. Autom. Control 60, 1760–1773 (2015).
 50. Tong, X., Choi, K. P., Lai, T. L. & Wong, W. K. Stability bounds and almost sure convergence of improved particle swarm optimiza-

tion methods. In Research in Mathematical Sciences (2021).
 51. Yang, X.-S. A new metaheuristic bat-inspired algorithm. In Nature inspired cooperative strategies for optimization (NICSO 2010),

65–74 (Springer, 2010).
 52. Akhtar, S., Ahmad, A. & Abdel-Rahman, E. M. A metaheuristic bat-inspired algorithm for full body human pose estimation. In

2012 Ninth Conference on Computer and Robot Vision, 369–375 (IEEE, 2012).
 53. Yang, X.-S. & He, X. Bat algorithm: Literature review and applications. Int. J. Bioinspired Comput. 5, 141–149 (2013).
 54. Cai, X. et al. Bat algorithm with gaussian walk for directing orbits of chaotic systems. Int. J. Comput. Sci. Math.https:// doi. org/ 10.

1504/ ijcsm. 2014. 064070 (2014).
 55. Xue, F., Cai, Y., Cao, Y., Cui, Z. & Li, F. Optimal parameter settings for bat algorithm. Int. J. Bioinspired Comput. 7, 125. https:// doi.

org/ 10. 1504/ IJBIC. 2015. 069304 (2015).
 56. Osaba, E. et al. A discrete and improved bat algorithm for solving a medical goods distribution problem with pharmacological

waste collection. In Swarm and Evolutionary Computation: BASE DATA . https:// doi. org/ 10. 1016/j. swevo. 2018. 04. 001 (2018).
 57. Binu, D. & Selvi, M. Bfc: Bat algorithm based fuzzy classifier for medical data classification. J. Med. Imaging Health Inform. 5,

599–606 (2015).
 58. Wang, G., Chu, H. & Mirjalili, S. Three-dimensional path planning for UCAV using an improved bat algorithm. Aerosp. Sci.

Technol.https:// doi. org/ 10. 1016/j. ast. 2015. 11. 040 (2016).

http://link.springer.com/article/10.1007
http://link.springer.com/article/10.1007
https://doi.org/10.1109/ICEC.1998.699146
https://doi.org/10.1504/ijcsm.2014.064070
https://doi.org/10.1504/ijcsm.2014.064070
https://doi.org/10.1504/IJBIC.2015.069304
https://doi.org/10.1504/IJBIC.2015.069304
https://doi.org/10.1016/j.swevo.2018.04.001
https://doi.org/10.1016/j.ast.2015.11.040

12

Vol:.(1234567890)

Scientific Reports | (2023) 13:5291 | https://doi.org/10.1038/s41598-023-29618-5

www.nature.com/scientificreports/

 59. Khooban, M. & Niknam, T. A new intelligent online fuzzy tuning approach for multi-area load frequency control: Self adaptive
modified bat algorithm. Int. J. Electr. Power Energy Syst. 71, 254–261 (2015).

 60. Lu, S., Xia, K. & Wang, S. Diagnosis of cerebral microbleed via VGG and extreme learning machine trained by gaussian map bat
algorithm. J. Ambient Intell. Hum. Comput.https:// doi. org/ 10. 1007/ s12652- 020- 01789-3 (2020).

 61. He, X., Ding, W. & Yang, X. Bat algorithm based on simulated annealing and Gaussian perturbations. Neural Comput. Appl. 25,
459–468 (2014).

 62. Shrichandran, G., Sathiyamoorthy, S., Malarchelvi, P. & Kezia, S. A hybrid glow-worm swarm optimization with bat algorithm
based retinal blood vessel segmentation. J. Comput. Theor. Nanosci. 14, 2601–2611 (2017).

 63. Kishore, P., Kishore, S., Kumar, E., Kumar, K. & Aparna, P. Medical image watermarking with DWT-bat algorithm. In 2015 Inter-
national Conference on Signal Processing and Communication Engineering System 270–275 (2015).

 64. Dorigo, M. Optimization, Learning and Natural Algorithms. Ph.D Thesis, Politecnico di Milano (1992).
 65. Dorigo, M., Birattari, M. & Stutzle, T. Ant colony optimization. IEEE Comput. Intell. Mag. 1, 28–39 (2006).
 66. Socha, K. & Dorigo, M. Ant colony optimization for continuous domains. Eur. J. Oper. Res. 185, 1155–1173 (2008).
 67. Ab Wahab, M. N., Nefti-Meziani, S. & Atyabi, A. A comprehensive review of swarm optimization algorithms. PLoS ONE 10,

e0122827 (2015).
 68. LaTorre, A. et al. A prescription of methodological guidelines for comparing bio-inspired optimization algorithms. Swarm Evol.

Comput. 67, 100973 (2021).
 69. Wu, G., Mallipeddi, R. & Suganthan, P. N. Problem definitions and evaluation criteria for the CEC 2017 competition on constrained

real-parameter optimization. In National University of Defense Technology, Changsha, Hunan, PR China and Kyungpook National
University, Daegu, South Korea and Nanyang Technological University, Singapore, Technical Report (2017).

Acknowledgements
The authors would like to thank the Institute for Mathematical Sciences at the National University of Singapore
for the generous support to host a cross-disciplinary workshop on Particle Swarm Optimization and Evolution-
ary Computation in 2018, where the authors met and started the work. We are also grateful to Professor T. L.
Lai from Stanford University who constantly advised us and collaborated with us on earlier work. We thank the
reviewers for their many helpful comments which improve the paper.

Author contributions
K.P.C. and X.T. came up with the ideas for the research work, including the theoretical foundations. E.H.H.K.
wrote codes, implemented them and did all the graphical and computation work. W.K.W. provided the overall
supervision, did the literature search and wrote the bulk of the manuscript. All authors reviewed and edited parts
of the manuscript repeatedly. All authors have given consent.

Funding
Choi’s research was supported by the Singapore MOE Academic Research Funds R-155-000-222-114. Tong’s
research was supported by MOE Academic Research Funds R-146-000-292-114. Dr. Wong received partial sup-
port from the National Institute of General Medical Sciences of the National Institutes of Health under Award
Number R01GM107639.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/
10. 1038/ s41598- 023- 29618-5.

Correspondence and requests for materials should be addressed to W.K.W.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2023

https://doi.org/10.1007/s12652-020-01789-3
https://doi.org/10.1038/s41598-023-29618-5
https://doi.org/10.1038/s41598-023-29618-5
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Appropriate noise addition to metaheuristic algorithms can enhance their performance
	Stochastic enhancement of an algorithm’s exploration
	Perturbation-projection strategy.

	Applications
	PSO and hmPSO.
	BAT and hmBAT.
	ACO and hmACO.

	Numerical experiments
	Experiment 1.
	Test functions and details of Experiment 1.
	Comparison and results.

	Experiment 2.
	Benchmark functions and details of Experiment 2.
	Results.

	Tuning parameter analysis for HPP strategy.

	Conclusions
	Consent for participate.

	References
	Acknowledgements

