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A small‑dataset‑trained deep 
learning framework for identifying 
atoms on transmission electron 
microscopy images
Yuan Chen 1, Shangpeng Liu 1, Peiran Tong 2, Ying Huang 1, He Tian 2 & Fang Lin 1*

To accurately identify atoms on noisy transmission electron microscope images, a deep learning 
(DL) approach is employed to estimate the map of probabilities at each pixel for being an atom 
with element discernment. Thanks to a delicately‑designed loss function and the ability to extract 
features, the proposed DL networks can be trained by a small dataset created from approximately 
30 experimental images, each with a size of 256 × 256  pixels2. The accuracy and robustness of the 
network were verified by resolving the structural defects of graphene and polar structures in  PbTiO3/
SrTiO3 multilayers from both the general TEM images and their imitated images on which intensities 
of some pixels lost randomly. Such a network has the potential to identify atoms from very few images 
of beam‑sensitive material and explosive images recorded in a dynamical atomic process. The idea of 
using a small‑dataset‑trained DL framework to resolve a specific problem may prove instructive for 
practical DL applications in various fields.

Identifying the atomic positions in the plane of transmission electron microscope (TEM) images at atomic 
resolution with the precision of a picometer or sub-picometer is a key issue to the solution of characteriz-
ing the properties of a nanomaterial. Such a task is beneficial to material research including crystal structure 
 characterization1–3, atomic polarization of polar  structures4–6, stress and  strain7, defect or surface  mitigation3,8, 
and sequential catalyst  reactions9,10, etc. However, the conventional methods for identifying the positions of 
 atoms11–15 heavily depend on the quality of the acquired images and the factors affecting image quality include 
the inevitable noise, the intensities relating to the ability of atoms to scatter electrons in the scanning transmis-
sion electron microscope (STEM) images, and the lens distortion in the high-resolution transmission electron 
microscope (HRTEM) images. What’s more, the electron dose is one of the other factors since it is limited when 
acquiring HRTEM images for a beam-sensitive  material16,17.

Therefore, before using the conventional methods, a map of probabilities at each pixel for an atom that is 
most likely to appear (a probability map, for short) needs to be estimated first. Image-to-image mapping is one of 
the most adept domains of deep  learning18–24. To our best knowledge, the existing deep-learning-driven studies 
for generating the probability map using the Fully Convolutional Networks (FCNs) are all based on the U-Net 
framework associated with a mean square error (MSE) loss  function21–24. To train these networks, a training 
set must contain a lot of input–output pairs, in which the term “input” refers to one TEM image and the term 
“output” is its probability map which denotes the probabilities for each pixel being an atom. However, a typical 
number of approximately 2000 input–output  pairs21,22 or pairs generated from 500 random atomic  structures23 are 
required to construct a dataset. As a result, it is more feasible to train on a simulated image dataset. Furthermore, 
to better predict the experimental images with higher accuracy, iterative retraining is required. Thus, an updated 
training set should include the input–output pairs created from some experimental images, which have been able 
to be predicted well from the previous trained model. In the mentioned methods, making datasets containing a 
such number of input–output pairs may be one disadvantage. This is because the experimental images and their 
outputs cannot always be obtained easily, especially when the experimental images are contaminated by heavy 
noise or the number of TEM images of the beam-sensitive specimen is very limited.

In this paper, a new deep learning algorithm based on the generative adversarial networks (GANs)25, called 
atom-predicting generative adversarial networks (AP-GANs), is proposed to predict the probability map of 
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TEM images, which has a hybrid loss function and can be trained by a small training set. In applications, the 
performance of AP-GANs is tested by the images and their imitated images on which intensities of some pixels 
were lost randomly.

Methods
The AP-GANs consist of two sub-models: a generator model and a discriminator model. As shown in Fig. 1a, 
the generator model generates fake images resembling the output images, whose principle is to estimate the 
probability map. The discriminator model in Fig. 1b is to distinguish fake images from the output images. Due 
to their different characteristics, the generator model and the discriminator model are often jointly trained, but 
each model has its own architecture and loss functions.

The training set can be composed of simulated input–output image pairs only, experimental input–output 
image pairs only, or a mix of them. The input image is the simulated or experimental TEM image, and the output 
image is the probability map on which solid points are plotted on the positions of each atom and the background 

Figure 1.  Application of AP-GANs towards identifying atomic columns on images at the atomic scale. (a, b) 
Schematic architectures of (a) generator and (b) discriminator in AP-GANs and disassemble layers are at the 
below. The green ball represents the input and the output of a residual block are added element by element. 
In (b), a thicker yellow layer represents more filters involved in Convolution2D. (c) Schematics of the “semi-
supervised” approach. One schematic input–output pair in the training set is enclosed by a red dashed box in 
the bottom left corner.
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is black. One schematic input–output image pair is illustrated in the bottom left box in Fig. 1c. To prepare the 
output image of an experimental image, the position of atoms should be identified by using the traditional 
 methods11–15 or with the assistance of CalAtom  software26, and then solid points are drawn according to these 
positions. If the experimental images are too noisy to identify the atomic positions reliably, atomic positions can 
be identified in caution from the filtered  images27,28, while the input images are the raw experimental images. 
Alternatively, the training set can include only the simulated image pairs and the simulation conditions of the 
input images should be as similar as possible to the experimental images. When preparing a simulated image 
pair, the output image is drawn according to its atomic structure on the projection plane and the input image is 
simulated from this atomic structure. In this work, images are simulated by using ToTEM  software29.

The architecture of the generator model mainly consists of 15 residual blocks, which contain the convolutional 
layers ’Convolution2D’ for feature extraction and the batch normalization layers for speeding up the training 
process and preventing overfitting, as shown in Fig. 1a. Each residual block applies a technique called skip 
connections to alleviate the vanishing/exploding gradient  problems30. The activation function of the generator 
model includes the ReLU  function31. The discriminator model simply contains the convolutional layers to extract 
features, whose activation functions are the Leaky ReLU function and Softmax  function31.

To minimize the loss functions, the generator model and the discriminator model are trained until reaching 
a Nash equilibrium. Training network heavily depends on minimizing the loss function. In general, networks 
trained with a hybrid loss function often yield better prediction results than those trained with a standalone loss 
 function32. To highlight the atomic columns and depress intrinsic noise in experimental images, the loss functions 
of the generator model are deliberate and composed of three parts with different weights (see Supplementary 
Eqs. (1–7) and Supplementary Table S1 for hyperparameters of network training), which are the adversarial 
loss of the generator model and the discriminator model, the loss of the structural similarity (SSIM)32, and the 
loss of the peak signal-to-noise ratio (PSNR)32. The adversarial loss is an inherent loss to compel the generator 
model for outputting high-quality fake images to deceive the discriminator model. The loss of SSIM is intro-
duced to improve the performance of the generator model to identify atomic columns on the boundaries of the 
experimental images and promote training efficiency. The loss of the PSNR is employed to reduce the impact of 
noise and output fake images with good PSNR. The loss function of the discriminator model is the MSE of the 
output images and fake images.

The flowchart of a semi-supervised training approach based on AP-GANs is shown in Fig. 1c. (i) Prepare the 
input–output image pairs for the training set. (ii) Train the network and minimize the loss functions. (iii) Feed 
the test set into the generator model to get the predictions. The generator model trained with a small training 
set such as ten or tens of pairs is used to predict the probability map of images in the test set, whose qualities 
depend on the complexity of the material sample. (iv) Update the training set and semi-supervision refers to 
this step. In the beginning, approximately ten input–output image pairs in the training set are sufficient to train 
the proposed AP-GANs for resolving atomic columns of one crystalline structure, such as graphene containing 
boundaries and defects. In order to obtain good predictions for every image in the test set, especially when the 
test set includes a certain number of images with specific features which are not included in the training set, 
pairs containing these specific features should be included to enrich the training set and to further optimize the 
AP-GANs. (v) Quantify the atom positions from the predictions. In this step, the conventional  methods11–15,26 
and the atom recognition program (ARP) can be used to measure the atoms on the predicted probability map 
(Flowchart in Supplementary Fig. S1). In the application, the trained AP-GANs can be directly applied to predict 
the probability map for the images in the test set. In the following sections, the training set and the test set are 
completely separated.

Results
Application on HRTEM images of graphene. A free-standing graphene is mounted onto a SiN (silicon 
nitride) TEM grid and heated to 800 °C to clean the amorphous contamination in a DENSsolutions heating 
holder in in-situ TEM, which is a FEI™ Titan G2 80–300 microscope equipped with a Cs corrector and a mono-
chromator operating at 80 kV. Each frame of the HRTEM images is recorded by a Gatan CCD (Ultrascan 1000) 
with an exposure time of 1 s and a sampling rate of 0.23 Å/pixel. A total number of 30 frames of images with 
line defect evolution of graphene at atomic resolution are recorded. According to the measured  aberrations33, 
the simulated images could be similar to the experimental images. Additionally, due to noise with a signal-to-
noise-ratio (SNR) of 2.35, the carbon atoms cannot be successfully identified on raw HRTEM images, and the 
simulated images were contaminated by noise at the same level.

The training set is a combination of the simulated and experimental images, since the astigmatism was not 
corrected if all the input–output pairs are only collected from the experimental images. Figure 2a and c shows 
one sample of the experimental and simulated input–output image pairs, in which the identified atoms are plot-
ted in green spots within a dark background, as shown in Fig. 2b and d. In the simulation, carbon atoms are 
shifted randomly in 3-dimensional space with an average magnitude of 10.0 pm on the projection plane along 
the incident-electron direction, and each TEM image was simulated from one random configuration of atoms. 
Therefore, the atoms are not located on the ideal hexagonal lattice, which helps to analyze the precision of the 
atomic position on the predicted probability map. Additionally, graphene containing line defects and irregular 
boundaries enriches features on images (See Supplementary Fig. S2 for more input–output pairs). It is worth 
mentioning that the size of the input–output images is relatively small (256*256  pixels2) with a sampling rate 
of 0.23 Å/pixel.

In this paper, an iterative training procedure was adopted. First, only 5 experimental images and 5 simulated 
images were randomly chosen as the input–output pairs in the training set. The AP-GANs were trained for 400 
epochs and the best model was chosen to give the best prediction results for all the selected experimental images 
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with representative features in the test set. Due to the reason that some regions containing specific features on the 
experimental images were unable to be predicted if applying the AP-GANs trained by the simulated input–output 
image pairs, more images with specific features were added for network training. The term “specific features” 
refers to some structural or image features, such as line defects, graphene edges, etc. In the next iteration, 5 addi-
tional experimental pairs and 5 random simulated pairs were added to the training set to retrain the AP-GANs. 
In this experiment, the model converged and achieved satisfactory prediction results for all the experimental 
images once there were 60 image pairs in total in the training set.

The generator model was able to successfully predict the probability map for the experimental and simulated 
images in the test set. The probability map of an experimental image of Fig. 2e is shown in Fig. 2f, whilst the 
highlighted region is shown in Fig. 2g. Additionally, continuous structural evolution was revealed clearly, as 
shown in Fig. 2h–m (the corresponding raw images are in Supplementary Fig. S3). In this structural evolution, 
atoms were lost and rearranged ceaselessly around the defects due to beam radiation.

Then, the precision of the atomic positions identified from the predicted probability map was measured by 
applying the trained AP-GANs to the simulation images in the test set. Two trained AP-GANs were tested: (i) 
one was trained by the training set consisting of a combination of the simulated and experimental input–output 
image pairs, which is the same as the AP-GANs that are used for predicting the probability map of Fig. 2e; (ii) 
the other AP-GANs were trained by the training set containing only 60 simulated input–output image pairs. A 
simulated image, its probability map predicted from the first AP-GANs and its highlighted region are shown in 
Fig. 3a–c, respectively. Similarly, the probability map predicted from the second AP-GANs and its highlighted 
region is shown in Fig. 3d and e. Atoms plotted in yellow circles were measured from the probability maps, and 
comparably, the ground truth positions of the atoms were known from the atomic structure and marked by the 
green crosses in Fig. 3c and e. For the first and second AP-GANs, the root mean square errors (RMSEs) between 

Figure 2.  Predictions and their accuracy of modes trained via a mixture of simulated images and experimental 
images. (a–d) Two sets of the input–output image pairs. (a) An input image intercepted from one experimental 
image, and (b) the output image prepared from the atomic positions identified by using the traditional method. 
(c) A simulated input image and (d) the output image with atoms plotted according to its known structure. (e) 
An experimental image in the test set and (f) its prediction. (g) The region extracted from the red box in (e), in 
which the yellow circles are the positions of the atoms measured from the probability map. (h–m) Evolution of 
the line defects and the holes in graphene extracted from the (h) 1st, (i) 10th, (j) 15th, (k) 20th, (l) 25th and (m) 
30th frames in this image series.
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the measured positions of atoms and their ground truths were 6.36 ± 3.62 pm and 6.20 ± 3.43 pm, respectively. 
Figure 3f and g shows the histogram of position errors, in which the errors and histograms are counted from 
about 800 positions.

These two values are close, indicating that the training set which consists of a combination of the simulated 
and experimental input–output image pairs did not significantly change the precision of the probability maps 
predicted from the AP-GANs for the simulated images, as well as for the experimental images. It can be con-
cluded that the precision of the probability maps predicted for the experimental images is close to these two 
values. And comparably, the precision is 21.54 ± 14.84 pm if applying the traditional methods to directly label 
atomic positions. Additionally, a statistical error, as one part of the precision, comes from the limitations of the 
CalAtom software and the image resolution. Figure 3h shows that the atoms measured directly from the phase 
of the simulated wave of Fig. 3a by using CalAtom, and Fig. 3i shows the histogram of these position errors. 
Measured from Fig. 3i, the bias of the atom positions is limited to 1.88 ± 1.00 pm, and it is certainly involved in 
the position errors when measuring the precision of the atomic position from the probability map.

The noise level, of course, affects the precision of measuring the atoms. If the AP-GANs were trained by a 
noisier training data set and then predicted the noisier test set, the precision of measuring atom position becomes 
worse. Supplementary Fig. S4 showed the simulated images of varying SNR and their predictions. For example, 
for the simulated image with its SNR equaling to 0.22, the precision of measuring atom position is the worst as 
33.58 ± 23.89 pm; and if the image SNR equals to 1.38, the precision of the atom position measured from the 
predicted images is 11.94 ± 8.64 pm.

To further evaluate the performance of the proposed AP-GANs, a comparison is conducted to evaluate the 
prediction results between the AP-GANs and two FCNs-based frameworks, the results of which are shown in 
Fig. 4a–d. The framework used  in21 is denoted as FCNs1, whilst another architecture adopted  in22 is denoted as 

Figure 3.  The precision of networks trained by different training sets. (a) A simulated image in the test set, 
and (b) its probability map predicted from the AP-GANs trained by the training set mixed with the simulated 
and experimental input–output image pairs. (c) A region extracted from (a), on which yellow circles are atom 
positions measured from (b). (d) The probability map predicted from the AP-GANs trained by the simulated 
training set. (e) A region extracted from (a), on which yellow circles are atom positions measured from (d). (f, g) 
Histogram of position errors between the true and those measured from the (c) and (e) image, respectively. And 
the errors are counted from approximately 800 positions. (h) Atoms are measured directly from the phase of the 
simulated wave of (a) with the assistance of CalAtom software. (i) Histogram of errors between the ground truth 
and those measured from (h).
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FCNs2. The two FCNs-based frameworks are trained with the same 60 input–output image pairs. In Fig. 4a–d, the 
results indicate that the AP-GANs significantly outperform both the FCNs frameworks in identifying the atomic 
columns in the experimental images with defects. For instance, some atoms at the boundaries of the defects are 
missing in the predictions. Such a phenomenon is intensified by the prediction of FCNs1, as indicated by the red 
arrows in Fig. 4c–d. More experimental results can be seen in Supplementary Fig. S5.

Furthermore, the AP-GANs outperform the FCNs frameworks in terms of fewer artefacts especially when 
applying to images in which some pixels lost their intensities randomly. The artefacts mean that the shape and 
intensity of the emerged bright spots are similar to that of an atom, but in fact the central positions of these spots 
should not be an atom. The 30% of the pixels in each HRTEM image were randomly set to be zero values in both 
of the training and test sets, which was attempted to imitate the low-dose images. Should be mentioned that, 
some pixels were completely dark in these imitated images, which is the common feature as the real low-dose 
image; but the noise statistical characteristics of the imitated images may be different from the real low-dose 
image. All the networks are retrained afterward. In Fig. 4e, an imitated low-dose image of the test set is illus-
trated, in which there exists nearly no lattice or vacancies. In fact, Fig. 4e is generated from Fig. 4a by reducing 
the SNR from 2.35 to 0.03, but it becomes evidently difficult to predict the atom positions. The results obtained 
by AP-GANs and FCNs2 are shown in Fig. 4f and g, respectively, from which we may conclude that both of the 
approaches have the potential for atom position predictions. However, at the boundary regions in Fig. 4h and 
i extracted from Fig. 4f and g, we found the atoms predicted by AP-GANs are better: fewer artefacts that are 
marked by green crosses, and fewer atoms are missing compared with the prediction from the normal image. 
The position precision of the maps obtained by AP-GANs is 11.22 ± 6.13 pm, while that of the maps obtained by 
FCNs2 is 13.30 ± 7.38 pm. Such precision values were counted from a total of 10 images in the test set and the 
artefacts marked by green crosses on FCNs2 results in Fig. 4i were excluded. Additionally, artefacts that appeared 
on vacuum regions predicted by FCNs2 are illustrated for both the simulated and experimental images in Sup-
plementary Fig. S6 and Supplementary information 1 and 2.

Atom identification with element discernment on STEM images of  PbTiO3/SrTiO3 multilay‑
ers. This experiment is conducted on STEM images of polar structures to achieve domain structure, elemen-
tal information at atomic resolution and atom displacement vector map relating to polarization. The  PbTiO3/
SrTiO3 multilayers, about 50 nm thick, were acquired in the high-angle annular dark field (HAADF) mode on 
spherical aberration corrected TEM (FEI Titan G2 80–200 ChemiSTEM) with a sampling rate of 0.29 Å/pixel 
and the incident electrons being along [010] direction 4. Figure 5a shows one of the experimental images with 
crystalline structures of  PbTiO3 and  SrTiO3 marked. This specimen was investigated via atomic-resolution EDS-
mapping4, showing that the interface between the PbTiO3 and SrTiO3 layers is sharp at the atomic scale.

To obtain the polarization map, the positions of oxygen atoms and Ti atoms should be measured. Although 
the oxygen atoms cannot be detected in STEM images, the centers of Pb and Sr atoms are able to replace the 
centers of the Ti-’centered’ oxygen atoms, such that the Pb/Sr atoms can be measured directly by CalAtom. The 

Figure 4.  Comparison of the predictions of AP-GANs, FCNs1 and FCNs2 for the same experimental images 
in the test set. (a) The experimental image, and (b–d) their probability maps were obtained via (b) the proposed 
AP-GANs, (c) FCNs1 in 21 and (d) FCNs2 in 22. (e) Imitated low-dose image simulated from (a). (f, g) Atom 
maps were predicted by using (f) AP-GANs and (g) FCNs2, respectively. (h, i) Regions extracted from (f) and 
(g), respectively. The darker yellow dots were estimated from (a) normal images via using AP-GANs and FCNs2, 
and green dots were predicted by ARP and green crosses highlight the clear artefacts.
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positions of Ti atomic columns infer the offset of the Ti-’centered’ oxygen octahedra for defining the electric 
dipole. And the main problem is to identify the positions of Ti atoms, caused by the low intensity of Ti atoms 
and the disturbance from Pb/Sr atoms. Aiming at this problem, when creating the experimental pairs, the TEM 
images of a thin specimen were preferentially selected to prepare the input–output experimental pairs, on which 
the positions of Ti atoms could be identified. If some of the positions of the Ti atoms are obviously wrong due 
to the disturbance from the intensity of Pb/Sr atoms by using traditional methods, these positions should be 
corrected manually.

To train the AP-GANs, only experimental images were included in the input–output pairs, where the posi-
tions of Pb/Sr and Ti sites were quantified with the assistance of CalAtom. One input image corresponded to one 
output image with atoms of different species marked by different colors, and the atomic resolution EDS-mapping 
obtained in the experiment played an important role when we preparing the training set as it indicated the 
approximate range of intensity for different atomic columns. The Pb, Sr and Ti atoms were labeled by magenta, 
cyan and yellow color dots in the training set. As very few atoms of Pb and Sr atoms were mixed in the interface 
and the sample is uniformly thick, the intensity fluctuation is attributed to the elemental species of the atoms. 
The performance of the AP-GANs entirely depends on the characteristics of the prepared training set. In the 
training process, 5 input–output pairs were added to the training set at each iteration. The probability maps 
with element discernment predicted from the models trained by 10, 20 and 30 input–output pairs are shown in 
Supplementary Fig. S7, respectively.

When the number of input–output image pairs in the training process reached approximately 30, we noticed 
that the positions of Ti atoms on the probability map of atoms with element resolved were stabilized, comparing 
the predicted results with that of mutually measured by CalAtom. The probability map with element discernment 
corresponding to the red region of Fig. 5a is shown in Fig. 5c, which is in the test set. Furthermore, the validity of 
the predictions is verified by the displacement vector map of Ti atoms, which is shown in Fig. 5e and in agreement 
with the previous  work4 (Also see displacement vector map of a fused region in Supplementary Fig. S8). Focus-
ing on a small region where the positions determined from the probability map deviated with random distances 
from those obtained by using the traditional method and manual correction, it is interesting that the intensity of 
Ti atoms measured from the probability map has a better statistical performance: a slightly larger average, and 
a slightly narrower standard deviation. This indicates that the intensity distributions of the local Ti atoms are 
closer to each other, which is more reasonable. See the details about the comparison in Supplementary Fig. S9.

A similar task testing AP-GANs was carried out for the compressed images, which were attempted to imitate 
the images acquired in the compressive sensing (CS) mode without  restoration34. To imitate the compressed 
images, we randomly chose 30% of the total image pixels to preserve their intensities while setting that of the 
remaining pixels to zero, which simulates a scanning along a random trajectory to reduce the STEM acquirement 
time. One compressed image is shown in Fig. 5b. Then, the AP-GANs were retrained. The probability maps of 
atoms with element discernment are shown in Fig. 5d, which is the same example as Fig. 5c but predicted from 
the compressed image. Despite the bad quality of the compressed image, the polarization structure agrees with 

Figure 5.  Probability map with element discernment and atom displacement vector map on STEM images of 
 PbTiO3/SrTiO3 superlattice. (a) One experimental STEM image of  PbTiO3/SrTiO3 superlattice in the test set. 
Purple, red, green, and yellow balls denote the positions of  Sr2+,  Pb2+,  Ti4+, and  O2- columns respectively, and 
orange dashed lines indicate the interface between  PbTiO3 and  SrTiO3. (b) The compressed image simulated 
from the red region of (a). (c, d) Probability maps with element discernment and (e, f) Ti atom displacement 
vector maps relating to polarization, corresponding to the red region of (a) and predicted from experimental 
STEM images in (c, e) traditional mode and (d, f) compressed mode. (g) The magnified displacement of each 
position was obtained by comparing (d) with (c). The inserts are the absolute displacements of all positions with 
units of pixels. Red and blue arrows (dots) represent the Ti and Pb/Sr sites, respectively.
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that obtained on the normal image, shown in Fig. 5f. The biases between the two sets of positions are magnified 
and plotted as vectors for each position in Fig. 5g. The inserted figure in Fig. 5g gives the absolute biases in pixel 
units, showing that all of the biases are less than one pixel. Statistics show the position deviations of Ti and Pb/
Sr sites are 7.0 and 5.2 pm, respectively when comparing the positions obtained from the probability maps of 
the compressed images with those measured from the normal-dose case. More importantly, the directions of 
position deviations are random in Fig. 5g. (Also see examples in Supplementary Fig. S10).

Discussion and conclusion
We employ AP-GANs to estimate the probability map of atoms at each pixel or the probability map with element 
discernment, in order to identify blurred atoms especially for images in which some pixels lose their intensi-
ties randomly. The advantages of the proposed method benefit from the hybrid loss functions, the scheme of 
enriching the training set, and the property of AP-GANs self: (i) feature extraction from boundaries, defects, and 
noise suppression rely on SSIM, PSNR, and MSE in the hybrid loss functions of the generator model, while only 
MSE is used in the previous  studies21–23; (ii) to enrich more features of an updated training set, the new added 
input–output pairs are created from the experimental images that cannot be estimated very well, which differs 
from the scheme used by FCNs2; (iii) the AP-GANs are able to extract more image features than FCNs, due to 
the deeper and more complex network architectures of AP-GANs; (iv) different from the previous deep learning 
frameworks, three color channels are reserved because it can be linked to elemental information on TEM image.

In order to make the AP-GANs better to predict the probability map for the experimental images, experimen-
tal input–output pairs must be included in the training set, since their features are directly related to the images to 
be analyzed. In this paper, only about 30 experimental images of 256*256  pixels2 are used in the training set, and 
the total pixel area of all the training set is small, only equaling to the half pixel area of one image of 2048*2048 
 pixels2. The application on graphene has proven that the AP-GANs are more reliable than the existing networks, 
especially when only 70% of the pixels are reserved. The probability map with element discernment and polar 
structure of  PbTiO3/SrTiO3 multilayers are resolved with high accuracy, only reserving 30% pixels. We will be 
able to train a network using a smaller training set if a well-designed loss function or network is adopted, which 
is important for developing TEM techniques in the future. Such an application also has great impacts on some 
special application scenarios, e.g., single molecule imaging at the near-atomic scale, atomic structure evolution 
in catalytic processes relating to the energy issue, and dynamic chemical reactions in battery research, etc.

Data availability
The data of this study will be deposited on GitHub, and the codes will also be available from the corresponding 
authors, Professor Fang Lin (email: linfang@scau.edu.cn), upon reasonable request.
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