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OPEN A small-dataset-trained deep

learning framework for identifying
atoms on transmission electron
microscopy images
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To accurately identify atoms on noisy transmission electron microscope images, a deep learning

(DL) approach is employed to estimate the map of probabilities at each pixel for being an atom

with element discernment. Thanks to a delicately-designed loss function and the ability to extract
features, the proposed DL networks can be trained by a small dataset created from approximately
30 experimental images, each with a size of 256 x 256 pixels2. The accuracy and robustness of the
network were verified by resolving the structural defects of graphene and polar structures in PbTiO5/
SrTiO; multilayers from both the general TEM images and their imitated images on which intensities
of some pixels lost randomly. Such a network has the potential to identify atoms from very few images
of beam-sensitive material and explosive images recorded in a dynamical atomic process. The idea of
using a small-dataset-trained DL framework to resolve a specific problem may prove instructive for
practical DL applications in various fields.

Identifying the atomic positions in the plane of transmission electron microscope (TEM) images at atomic
resolution with the precision of a picometer or sub-picometer is a key issue to the solution of characteriz-
ing the properties of a nanomaterial. Such a task is beneficial to material research including crystal structure
characterization!=3, atomic polarization of polar structures*™S, stress and strain’, defect or surface mitigation®*,
and sequential catalyst reactions”!?, etc. However, the conventional methods for identifying the positions of
atoms''™** heavily depend on the quality of the acquired images and the factors affecting image quality include
the inevitable noise, the intensities relating to the ability of atoms to scatter electrons in the scanning transmis-
sion electron microscope (STEM) images, and the lens distortion in the high-resolution transmission electron
microscope (HRTEM) images. What’s more, the electron dose is one of the other factors since it is limited when
acquiring HRTEM images for a beam-sensitive material'®!’.

Therefore, before using the conventional methods, a map of probabilities at each pixel for an atom that is
most likely to appear (a probability map, for short) needs to be estimated first. Image-to-image mapping is one of
the most adept domains of deep learning'®-*. To our best knowledge, the existing deep-learning-driven studies
for generating the probability map using the Fully Convolutional Networks (FCNs) are all based on the U-Net
framework associated with a mean square error (MSE) loss function®'"*%. To train these networks, a training
set must contain a lot of input-output pairs, in which the term “input” refers to one TEM image and the term
“output” is its probability map which denotes the probabilities for each pixel being an atom. However, a typical
number of approximately 2000 input-output pairs*?? or pairs generated from 500 random atomic structures are
required to construct a dataset. As a result, it is more feasible to train on a simulated image dataset. Furthermore,
to better predict the experimental images with higher accuracy, iterative retraining is required. Thus, an updated
training set should include the input-output pairs created from some experimental images, which have been able
to be predicted well from the previous trained model. In the mentioned methods, making datasets containing a
such number of input-output pairs may be one disadvantage. This is because the experimental images and their
outputs cannot always be obtained easily, especially when the experimental images are contaminated by heavy
noise or the number of TEM images of the beam-sensitive specimen is very limited.

In this paper, a new deep learning algorithm based on the generative adversarial networks (GANs)®, called
atom-predicting generative adversarial networks (AP-GANS), is proposed to predict the probability map of

College of Electronic Engineering, South China Agricultural University, Guangzhou 510642, Guangdong,
China. ?State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang
University, Hangzhou 310027, Zhejiang, China. *email: linfang@scau.edu.cn

Scientific Reports |

(2023) 13:2631 | https://doi.org/10.1038/s41598-023-29606-9 nature portfolio


http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-29606-9&domain=pdf

www.nature.com/scientificreports/

TEM images, which has a hybrid loss function and can be trained by a small training set. In applications, the
performance of AP-GANS is tested by the images and their imitated images on which intensities of some pixels
were lost randomly.

Methods
The AP-GANS consist of two sub-models: a generator model and a discriminator model. As shown in Fig. 1a,
the generator model generates fake images resembling the output images, whose principle is to estimate the
probability map. The discriminator model in Fig. 1b is to distinguish fake images from the output images. Due
to their different characteristics, the generator model and the discriminator model are often jointly trained, but
each model has its own architecture and loss functions.

The training set can be composed of simulated input-output image pairs only, experimental input-output
image pairs only, or a mix of them. The input image is the simulated or experimental TEM image, and the output
image is the probability map on which solid points are plotted on the positions of each atom and the background
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Figure 1. Application of AP-GANSs towards identifying atomic columns on images at the atomic scale. (a, b)
Schematic architectures of (a) generator and (b) discriminator in AP-GANSs and disassemble layers are at the
below. The green ball represents the input and the output of a residual block are added element by element.
In (b), a thicker yellow layer represents more filters involved in Convolution2D. (c) Schematics of the “semi-
supervised” approach. One schematic input-output pair in the training set is enclosed by a red dashed box in
the bottom left corner.
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is black. One schematic input-output image pair is illustrated in the bottom left box in Fig. lc. To prepare the
output image of an experimental image, the position of atoms should be identified by using the traditional
methods'!"!* or with the assistance of CalAtom software®, and then solid points are drawn according to these
positions. If the experimental images are too noisy to identify the atomic positions reliably, atomic positions can
be identified in caution from the filtered images?”*%, while the input images are the raw experimental images.
Alternatively, the training set can include only the simulated image pairs and the simulation conditions of the
input images should be as similar as possible to the experimental images. When preparing a simulated image
pair, the output image is drawn according to its atomic structure on the projection plane and the input image is
simulated from this atomic structure. In this work, images are simulated by using TOTEM software®.

The architecture of the generator model mainly consists of 15 residual blocks, which contain the convolutional
layers 'Convolution2D’ for feature extraction and the batch normalization layers for speeding up the training
process and preventing overfitting, as shown in Fig. 1a. Each residual block applies a technique called skip
connections to alleviate the vanishing/exploding gradient problems®. The activation function of the generator
model includes the ReLU function®. The discriminator model simply contains the convolutional layers to extract
features, whose activation functions are the Leaky ReLU function and Softmax function?!.

To minimize the loss functions, the generator model and the discriminator model are trained until reaching
a Nash equilibrium. Training network heavily depends on minimizing the loss function. In general, networks
trained with a hybrid loss function often yield better prediction results than those trained with a standalone loss
function®2. To highlight the atomic columns and depress intrinsic noise in experimental images, the loss functions
of the generator model are deliberate and composed of three parts with different weights (see Supplementary
Egs. (1-7) and Supplementary Table S1 for hyperparameters of network training), which are the adversarial
loss of the generator model and the discriminator model, the loss of the structural similarity (SSIM)??, and the
loss of the peak signal-to-noise ratio (PSNR)?*% The adversarial loss is an inherent loss to compel the generator
model for outputting high-quality fake images to deceive the discriminator model. The loss of SSIM is intro-
duced to improve the performance of the generator model to identify atomic columns on the boundaries of the
experimental images and promote training efficiency. The loss of the PSNR is employed to reduce the impact of
noise and output fake images with good PSNR. The loss function of the discriminator model is the MSE of the
output images and fake images.

The flowchart of a semi-supervised training approach based on AP-GANSs is shown in Fig. 1c. (i) Prepare the
input-output image pairs for the training set. (ii) Train the network and minimize the loss functions. (iii) Feed
the test set into the generator model to get the predictions. The generator model trained with a small training
set such as ten or tens of pairs is used to predict the probability map of images in the test set, whose qualities
depend on the complexity of the material sample. (iv) Update the training set and semi-supervision refers to
this step. In the beginning, approximately ten input-output image pairs in the training set are sufficient to train
the proposed AP-GAN:S for resolving atomic columns of one crystalline structure, such as graphene containing
boundaries and defects. In order to obtain good predictions for every image in the test set, especially when the
test set includes a certain number of images with specific features which are not included in the training set,
pairs containing these specific features should be included to enrich the training set and to further optimize the
AP-GANS . (v) Quantify the atom positions from the predictions. In this step, the conventional methods!!-1>2
and the atom recognition program (ARP) can be used to measure the atoms on the predicted probability map
(Flowchart in Supplementary Fig. S1). In the application, the trained AP-GANSs can be directly applied to predict
the probability map for the images in the test set. In the following sections, the training set and the test set are
completely separated.

Results

Application on HRTEM images of graphene. A free-standing graphene is mounted onto a SiN (silicon
nitride) TEM grid and heated to 800 °C to clean the amorphous contamination in a DENSsolutions heating
holder in in-situ TEM, which is a FEI™ Titan G2 80-300 microscope equipped with a Cs corrector and a mono-
chromator operating at 80 kV. Each frame of the HRTEM images is recorded by a Gatan CCD (Ultrascan 1000)
with an exposure time of 1 s and a sampling rate of 0.23 A/plxel A total number of 30 frames of images with
line defect evolution of graphene at atomic resolution are recorded. According to the measured aberrations®,
the simulated images could be similar to the experimental images. Additionally, due to noise with a signal-to-
noise-ratio (SNR) of 2.35, the carbon atoms cannot be successfully identified on raw HRTEM images, and the
simulated images were contaminated by noise at the same level.

The training set is a combination of the simulated and experimental images, since the astigmatism was not
corrected if all the input-output pairs are only collected from the experimental images. Figure 2a and c shows
one sample of the experimental and simulated input-output image pairs, in which the identified atoms are plot-
ted in green spots within a dark background, as shown in Fig. 2b and d. In the simulation, carbon atoms are
shifted randomly in 3-dimensional space with an average magnitude of 10.0 pm on the projection plane along
the incident-electron direction, and each TEM image was simulated from one random configuration of atoms.
Therefore, the atoms are not located on the ideal hexagonal lattice, which helps to analyze the precision of the
atomic position on the predicted probability map. Additionally, graphene containing line defects and irregular
boundaries enriches features on images (See Supplementary Fig. S2 for more input-output pairs). It is worth
mentioning that the size of the input-output images is relatively small (256*256 pixels?) with a sampling rate
of 0.23 A/pixel.

In this paper, an iterative training procedure was adopted. First, only 5 experimental images and 5 simulated
images were randomly chosen as the input-output pairs in the training set. The AP-GANs were trained for 400
epochs and the best model was chosen to give the best prediction results for all the selected experimental images
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Figure 2. Predictions and their accuracy of modes trained via a mixture of simulated images and experimental
images. (a—d) Two sets of the input-output image pairs. (a) An input image intercepted from one experimental
image, and (b) the output image prepared from the atomic positions identified by using the traditional method.
(c) A simulated input image and (d) the output image with atoms plotted according to its known structure. (e)
An experimental image in the test set and (f) its prediction. (g) The region extracted from the red box in (e), in
which the yellow circles are the positions of the atoms measured from the probability map. (h-m) Evolution of
the line defects and the holes in graphene extracted from the (h) 1st, (i) 10th, (j) 15th, (k) 20th, (1) 25th and (m)
30th frames in this image series.

with representative features in the test set. Due to the reason that some regions containing specific features on the
experimental images were unable to be predicted if applying the AP-GANS trained by the simulated input-output
image pairs, more images with specific features were added for network training. The term “specific features”
refers to some structural or image features, such as line defects, graphene edges, etc. In the next iteration, 5 addi-
tional experimental pairs and 5 random simulated pairs were added to the training set to retrain the AP-GANS.
In this experiment, the model converged and achieved satisfactory prediction results for all the experimental
images once there were 60 image pairs in total in the training set.

The generator model was able to successfully predict the probability map for the experimental and simulated
images in the test set. The probability map of an experimental image of Fig. 2e is shown in Fig. 2f, whilst the
highlighted region is shown in Fig. 2g. Additionally, continuous structural evolution was revealed clearly, as
shown in Fig. 2h-m (the corresponding raw images are in Supplementary Fig. S3). In this structural evolution,
atoms were lost and rearranged ceaselessly around the defects due to beam radiation.

Then, the precision of the atomic positions identified from the predicted probability map was measured by
applying the trained AP-GANS to the simulation images in the test set. Two trained AP-GANs were tested: (i)
one was trained by the training set consisting of a combination of the simulated and experimental input-output
image pairs, which is the same as the AP-GANS that are used for predicting the probability map of Fig. 2e; (ii)
the other AP-GANSs were trained by the training set containing only 60 simulated input-output image pairs. A
simulated image, its probability map predicted from the first AP-GANSs and its highlighted region are shown in
Fig. 3a-c, respectively. Similarly, the probability map predicted from the second AP-GANSs and its highlighted
region is shown in Fig. 3d and e. Atoms plotted in yellow circles were measured from the probability maps, and
comparably, the ground truth positions of the atoms were known from the atomic structure and marked by the
green crosses in Fig. 3¢ and e. For the first and second AP-GANG, the root mean square errors (RMSEs) between
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Figure 3. The precision of networks trained by different training sets. (a) A simulated image in the test set,

and (b) its probability map predicted from the AP-GANS trained by the training set mixed with the simulated
and experimental input-output image pairs. (c) A region extracted from (a), on which yellow circles are atom
positions measured from (b). (d) The probability map predicted from the AP-GANSs trained by the simulated
training set. (e) A region extracted from (a), on which yellow circles are atom positions measured from (d). (£, g)
Histogram of position errors between the true and those measured from the (c) and (e) image, respectively. And
the errors are counted from approximately 800 positions. (h) Atoms are measured directly from the phase of the
simulated wave of (a) with the assistance of CalAtom software. (i) Histogram of errors between the ground truth
and those measured from (h).

the measured positions of atoms and their ground truths were 6.36 +3.62 pm and 6.20 +3.43 pm, respectively.
Figure 3f and g shows the histogram of position errors, in which the errors and histograms are counted from
about 800 positions.

These two values are close, indicating that the training set which consists of a combination of the simulated
and experimental input-output image pairs did not significantly change the precision of the probability maps
predicted from the AP-GANS for the simulated images, as well as for the experimental images. It can be con-
cluded that the precision of the probability maps predicted for the experimental images is close to these two
values. And comparably, the precision is 21.54 + 14.84 pm if applying the traditional methods to directly label
atomic positions. Additionally, a statistical error, as one part of the precision, comes from the limitations of the
CalAtom software and the image resolution. Figure 3h shows that the atoms measured directly from the phase
of the simulated wave of Fig. 3a by using CalAtom, and Fig. 3i shows the histogram of these position errors.
Measured from Fig. 3i, the bias of the atom positions is limited to 1.88+1.00 pm, and it is certainly involved in
the position errors when measuring the precision of the atomic position from the probability map.

The noise level, of course, affects the precision of measuring the atoms. If the AP-GANs were trained by a
noisier training data set and then predicted the noisier test set, the precision of measuring atom position becomes
worse. Supplementary Fig. S4 showed the simulated images of varying SNR and their predictions. For example,
for the simulated image with its SNR equaling to 0.22, the precision of measuring atom position is the worst as
33.58 £23.89 pm; and if the image SNR equals to 1.38, the precision of the atom position measured from the
predicted images is 11.94 + 8.64 pm.

To further evaluate the performance of the proposed AP-GANS, a comparison is conducted to evaluate the
prediction results between the AP-GANs and two FCNs-based frameworks, the results of which are shown in
Fig. 4a-d. The framework used in*' is denoted as FCNs1, whilst another architecture adopted in** is denoted as
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Figure 4. Comparison of the predictions of AP-GANs, FCNs1 and FCNs2 for the same experimental images

in the test set. (a) The experimental image, and (b-d) their probability maps were obtained via (b) the proposed
AP-GANg, (c) FCNsl in 2! and (d) FCNs2 in 2. (e) Imitated low-dose image simulated from (a). (f, g) Atom
maps were predicted by using (f) AP-GANSs and (g) FCNs2, respectively. (h, i) Regions extracted from (f) and
(@), respectively. The darker yellow dots were estimated from (a) normal images via using AP-GANs and FCNs2,
and green dots were predicted by ARP and green crosses highlight the clear artefacts.

FCNs2. The two FCNs-based frameworks are trained with the same 60 input-output image pairs. In Fig. 4a-d, the
results indicate that the AP-GANS significantly outperform both the FCNs frameworks in identifying the atomic
columns in the experimental images with defects. For instance, some atoms at the boundaries of the defects are
missing in the predictions. Such a phenomenon is intensified by the prediction of FCNs1, as indicated by the red
arrows in Fig. 4c-d. More experimental results can be seen in Supplementary Fig. S5.

Furthermore, the AP-GANs outperform the FCNs frameworks in terms of fewer artefacts especially when
applying to images in which some pixels lost their intensities randomly. The artefacts mean that the shape and
intensity of the emerged bright spots are similar to that of an atom, but in fact the central positions of these spots
should not be an atom. The 30% of the pixels in each HRTEM image were randomly set to be zero values in both
of the training and test sets, which was attempted to imitate the low-dose images. Should be mentioned that,
some pixels were completely dark in these imitated images, which is the common feature as the real low-dose
image; but the noise statistical characteristics of the imitated images may be different from the real low-dose
image. All the networks are retrained afterward. In Fig. 4e, an imitated low-dose image of the test set is illus-
trated, in which there exists nearly no lattice or vacancies. In fact, Fig. 4e is generated from Fig. 4a by reducing
the SNR from 2.35 to 0.03, but it becomes evidently difficult to predict the atom positions. The results obtained
by AP-GANs and FCNs2 are shown in Fig. 4f and g, respectively, from which we may conclude that both of the
approaches have the potential for atom position predictions. However, at the boundary regions in Fig. 4h and
i extracted from Fig. 4f and g, we found the atoms predicted by AP-GANSs are better: fewer artefacts that are
marked by green crosses, and fewer atoms are missing compared with the prediction from the normal image.
The position precision of the maps obtained by AP-GANs is 11.22+6.13 pm, while that of the maps obtained by
FCNs2 is 13.30£7.38 pm. Such precision values were counted from a total of 10 images in the test set and the
artefacts marked by green crosses on FCNs2 results in Fig. 4i were excluded. Additionally, artefacts that appeared
on vacuum regions predicted by FCNs2 are illustrated for both the simulated and experimental images in Sup-
plementary Fig. S6 and Supplementary information 1 and 2.

Atom identification with element discernment on STEM images of PbTiO;/SrTiO; multilay-
ers. This experiment is conducted on STEM images of polar structures to achieve domain structure, elemen-
tal information at atomic resolution and atom displacement vector map relating to polarization. The PbTiO,/
SrTiO; multilayers, about 50 nm thick, were acquired in the high-angle annular dark field (HAADF) mode on
spherical aberration corrected TEM (FEI Titan G2 80-200 ChemiSTEM) with a sampling rate of 0.29 A/pixel
and the incident electrons being along [010] direction *. Figure 5a shows one of the experimental images with
crystalline structures of PbTiO; and SrTiO; marked. This specimen was investigated via atomic-resolution EDS-
mapping?, showing that the interface between the PbTiO3 and SrTiO3 layers is sharp at the atomic scale.

To obtain the polarization map, the positions of oxygen atoms and Ti atoms should be measured. Although
the oxygen atoms cannot be detected in STEM images, the centers of Pb and Sr atoms are able to replace the
centers of the Ti-centered’ oxygen atoms, such that the Pb/Sr atoms can be measured directly by CalAtom. The
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Figure 5. Probability map with element discernment and atom displacement vector map on STEM images of
PbTiOs/SrTiO; superlattice. (a) One experimental STEM image of PbTiO,/SrTiO; superlattice in the test set.
Purple, red, green, and yellow balls denote the positions of Sr**, Pb**, Ti**, and O* columns respectively, and
orange dashed lines indicate the interface between PbTiO; and SrTiO;. (b) The compressed image simulated
from the red region of (a). (¢, d) Probability maps with element discernment and (e, f) Ti atom displacement
vector maps relating to polarization, corresponding to the red region of (a) and predicted from experimental
STEM images in (c, e) traditional mode and (d, f) compressed mode. (g) The magnified displacement of each
position was obtained by comparing (d) with (c). The inserts are the absolute displacements of all positions with
units of pixels. Red and blue arrows (dots) represent the Ti and Pb/Sr sites, respectively.

positions of Ti atomic columns infer the offset of the Ti-centered” oxygen octahedra for defining the electric
dipole. And the main problem is to identify the positions of Ti atoms, caused by the low intensity of Ti atoms
and the disturbance from Pb/Sr atoms. Aiming at this problem, when creating the experimental pairs, the TEM
images of a thin specimen were preferentially selected to prepare the input-output experimental pairs, on which
the positions of Ti atoms could be identified. If some of the positions of the Ti atoms are obviously wrong due
to the disturbance from the intensity of Pb/Sr atoms by using traditional methods, these positions should be
corrected manually.

To train the AP-GANS, only experimental images were included in the input-output pairs, where the posi-
tions of Pb/Sr and Ti sites were quantified with the assistance of CalAtom. One input image corresponded to one
output image with atoms of different species marked by different colors, and the atomic resolution EDS-mapping
obtained in the experiment played an important role when we preparing the training set as it indicated the
approximate range of intensity for different atomic columns. The Pb, Sr and Ti atoms were labeled by magenta,
cyan and yellow color dots in the training set. As very few atoms of Pb and Sr atoms were mixed in the interface
and the sample is uniformly thick, the intensity fluctuation is attributed to the elemental species of the atoms.
The performance of the AP-GANSs entirely depends on the characteristics of the prepared training set. In the
training process, 5 input-output pairs were added to the training set at each iteration. The probability maps
with element discernment predicted from the models trained by 10, 20 and 30 input-output pairs are shown in
Supplementary Fig. S7, respectively.

When the number of input-output image pairs in the training process reached approximately 30, we noticed
that the positions of Ti atoms on the probability map of atoms with element resolved were stabilized, comparing
the predicted results with that of mutually measured by CalAtom. The probability map with element discernment
corresponding to the red region of Fig. 5a is shown in Fig. 5¢, which is in the test set. Furthermore, the validity of
the predictions is verified by the displacement vector map of Ti atoms, which is shown in Fig. 5e and in agreement
with the previous work* (Also see displacement vector map of a fused region in Supplementary Fig. S8). Focus-
ing on a small region where the positions determined from the probability map deviated with random distances
from those obtained by using the traditional method and manual correction, it is interesting that the intensity of
Ti atoms measured from the probability map has a better statistical performance: a slightly larger average, and
a slightly narrower standard deviation. This indicates that the intensity distributions of the local Ti atoms are
closer to each other, which is more reasonable. See the details about the comparison in Supplementary Fig. S9.

A similar task testing AP-GANs was carried out for the compressed images, which were attempted to imitate
the images acquired in the compressive sensing (CS) mode without restoration*. To imitate the compressed
images, we randomly chose 30% of the total image pixels to preserve their intensities while setting that of the
remaining pixels to zero, which simulates a scanning along a random trajectory to reduce the STEM acquirement
time. One compressed image is shown in Fig. 5b. Then, the AP-GANs were retrained. The probability maps of
atoms with element discernment are shown in Fig. 5d, which is the same example as Fig. 5¢ but predicted from
the compressed image. Despite the bad quality of the compressed image, the polarization structure agrees with
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that obtained on the normal image, shown in Fig. 5f. The biases between the two sets of positions are magnified
and plotted as vectors for each position in Fig. 5g. The inserted figure in Fig. 5g gives the absolute biases in pixel
units, showing that all of the biases are less than one pixel. Statistics show the position deviations of Ti and Pb/
Sr sites are 7.0 and 5.2 pm, respectively when comparing the positions obtained from the probability maps of
the compressed images with those measured from the normal-dose case. More importantly, the directions of
position deviations are random in Fig. 5g. (Also see examples in Supplementary Fig. S10).

Discussion and conclusion
We employ AP-GANS s to estimate the probability map of atoms at each pixel or the probability map with element
discernment, in order to identify blurred atoms especially for images in which some pixels lose their intensi-
ties randomly. The advantages of the proposed method benefit from the hybrid loss functions, the scheme of
enriching the training set, and the property of AP-GANS self: (i) feature extraction from boundaries, defects, and
noise suppression rely on SSIM, PSNR, and MSE in the hybrid loss functions of the generator model, while only
MSE is used in the previous studies?!?%; (ii) to enrich more features of an updated training set, the new added
input-output pairs are created from the experimental images that cannot be estimated very well, which differs
from the scheme used by FCNs2; (iii) the AP-GANSs are able to extract more image features than FCN, due to
the deeper and more complex network architectures of AP-GAN:S; (iv) different from the previous deep learning
frameworks, three color channels are reserved because it can be linked to elemental information on TEM image.
In order to make the AP-GANS better to predict the probability map for the experimental images, experimen-
tal input-output pairs must be included in the training set, since their features are directly related to the images to
be analyzed. In this paper, only about 30 experimental images of 256*256 pixels? are used in the training set, and
the total pixel area of all the training set is small, only equaling to the half pixel area of one image of 2048¥2048
pixels?. The application on graphene has proven that the AP-GANs are more reliable than the existing networks,
especially when only 70% of the pixels are reserved. The probability map with element discernment and polar
structure of PbTiO,/SrTiO; multilayers are resolved with high accuracy, only reserving 30% pixels. We will be
able to train a network using a smaller training set if a well-designed loss function or network is adopted, which
is important for developing TEM techniques in the future. Such an application also has great impacts on some
special application scenarios, e.g., single molecule imaging at the near-atomic scale, atomic structure evolution
in catalytic processes relating to the energy issue, and dynamic chemical reactions in battery research, etc.

Data availability
The data of this study will be deposited on GitHub, and the codes will also be available from the corresponding
authors, Professor Fang Lin (email: linfang@scau.edu.cn), upon reasonable request.
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