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Integrative competing endogenous 
RNA network analyses identify 
novel lncRNA and genes implicated 
in metastatic breast cancer
Dulari K. Jayarathna 1,2, Miguel E. Rentería 2,3, Jyotsna Batra 1,3,4 & Neha S. Gandhi 1,4*

Competing endogenous RNAs (ceRNAs) have gained attention in cancer research owing to their 
involvement in microRNA-mediated gene regulation. Previous studies have identified ceRNA 
networks of individual cancers. Nevertheless, none of these studies has investigated different 
cancer stages. We identify stage-specific ceRNAs in breast cancer using the cancer genome atlas 
data. Moreover, we investigate the molecular functions and prognostic ability of ceRNAs involved 
in stage I–IV networks. We identified differentially expressed candidate ceRNAs using edgeR and 
limma R packages. A three-step analysis was used to identify statistically significant ceRNAs of each 
stage. Survival analysis and functional enrichment analysis were conducted to identify molecular 
functions and prognostic ability. We found five genes and one long non-coding RNA unique to the 
stage IV ceRNA network. These genes have been described in previous breast cancer studies. Genes 
acted as ceRNAs are enriched in cancer-associated pathways. Two, three, and three microRNAs from 
stages I, II, and III were prognostic from the Kaplan–Meier survival analysis. Our results reveal a set of 
unique ceRNAs in metastatic breast cancer. Further experimental work is required to evaluate their 
role in metastasis. Moreover, identifying stage-specific ceRNAs will improve the understanding of 
personalised therapeutics in breast cancer.

Breast cancer (BC) is currently diagnosed in 1 in 8 Australian women over their lifetime, making it as the primary 
cause of female cancer-associated deaths in Australia. Decades of studies have identified candidate prognostic 
biomarkers for BC. Recent bioinformatic and experimental studies have found that microRNAs (miRNAs) can 
act as biomarkers in BC as they play a crucial role in transcriptional and post-transcriptional gene regulation. 
miRNAs belong to a group of small non-coding RNAs with 19–25 nucleotides in length. According to conven-
tional RNA logic, miRNAs inhibit/degrade gene expression binding with miRNA response elements (MREs) of 
messenger RNAs (mRNAs)1. Salmena,  Poliseno2 introduced the competing endogenous RNA (ceRNA) hypoth-
esis revealing the bi-directional regulation mechanism of miRNAs. The ceRNA logic explains that non-coding 
RNA transcripts such as long non-coding RNAs (lncRNAs) with similar MREs can also bind with the relevant 
miRNAs modulating gene regulation and protein networks. Due to these reasons, ceRNAs have gained consider-
able attention in cancer studies.

Previous bioinformatics and experimental studies have identified many ceRNAs associated with BC  risk3. 
Apart from generalising results for BC incidents, different cancer stages can also severely impact response to 
therapy and mortality. In BC, stage I refers to a tumour or small size confined to the breast; stage II explains 
the disease that has locally advanced beyond the breast; stage III describes BC has spread to the neighbouring 
organs, and stage IV refers to distant metastatic  disease4. The early stages, I and II, are considered treatable 
compared to advanced stages, III and IV, that require more radical and active treatment  strategies5. Therefore, 
identifying stage-specific biomarkers in BC will significantly contribute to understanding BC biology under 
different pathological states.
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In this study, we performed a ceRNA network analysis to identify stage-specific ceRNAs in BC, and this 
approach can be applied for any disease of interest in the future. The identified ceRNAs were further studied 
using two downstream analyses to identify their molecular functions and prognostic ability.

Materials and methods
Patients and samples collection. The expression data (RNA-seq and miRNA-seq) and clinical data of 
BC were collected from the cancer genome atlas (TCGA) that contains 1091 cases and 113 controls. The HTSeq-
counts data of RNA-seq (including protein-coding and long non-coding) and isoform quantification data of 
miRNA-seq (in BC) were downloaded to a local computing server using the genomics data commons (GDC) 
data  portal6. For selecting miRNA-seq data for individuals, a manifest file was generated using the GDC Data 
Portal. Then, the GDC data transfer tool was used to transfer data files listed in the manifest file. The differential 
expression analysis produced the "group" variable to identify differentially expressed protein-coding genes and 
long non-coding RNAs.

Differential expression analysis. Firstly, we removed TCGA BC samples with duplicated sample IDs. 
Then samples that are neither solid tissue normal nor primary tumour were removed as we compared primary 
tumour and healthy samples in the differential expression analysis. First, we performed the counts per million 
(CPM) normalisation to correct sample library size differences. The low-expressed genes that log (CPM) < 1 in 
more than 50% of the samples were removed before the differential expression  analysis7. Ignoring low-expressed 
genes improves the total count of differentially expressed genes and enhances sensitivity and precision. Raw 
counts expression data were re-normalised using the TMM (trimmed mean of M values) method implemented 
in the edgeR (3.40.0) R package (https:// bioco nduct or. org/ packa ges/ relea se/ bioc/ html/ edgeR. html) to compare 
expression levels between samples (excluding low-expressed genes)8. The normalised data were transformed 
into a standard scale using the voom function in the limma (3.54.0, https:// bioco nduct or. org/ packa ges/ relea se/ 
bioc/ html/ limma. html) (linear modelling for microarrays) R  package9. Previous RNA-seq data analysis-related 
works have recommended this hybrid technique, TMM normalisation with voom transformation, due to its bet-
ter performance in data  preprocessing10,11. Moreover, Oshlack et al.  have shown TMM normalisation is robust 
and outperforms library size  normalisation12. In differential expression analysis, linear models were fitted for 
each gene using the "lmFit" function implemented in the limma (3.54.0, https:// bioco nduct or. org/ packa ges/ relea 
se/ bioc/ html/ limma. html) R  package9. Then eBayes moderation was applied using information across all the 
genes to obtain more precise estimates of gene-wise variability. Four differential expression analyses were con-
ducted for stage I to IV-control comparisons. The cancer stage was determined using the "pathologic stage" as it 
provides more accurate information combining results from clinical examinations and surgeries. We gathered 
181 (19% basal-like, 5% HER2+, 62% luminal A, 13% luminal B, and 1% normal-like), 619 (21% basal-like, 13% 
HER2+, 40% luminal A, 25% luminal B, and 1% normal-like), 247 (12% basal-like, 16% HER2+, 40% luminal A, 
29% luminal B, and 3% normal-like), and 20 (17% basal-like, 16% HER2+, 25% luminal A, and 42% luminal B) 
samples for stages I, II, III, and IV, respectively. In each stage-specific expression analysis, differentially expressed 
mRNAs, lncRNAs, and miRNAs were defined at |log2-fold change (FC)|> 1 and Benjamini–Hochberg (BH)-
adjusted p value (default in limma package) < 0.0513.

Competing endogenous RNA network analysis. The differentially expressed mRNAs, lncRNAs, and 
miRNAs in each cancer stage were applied in the stage-specific ceRNA network analysis. The ceRNA network 
analysis consists of three main steps: (1) identifying lncRNA-mRNA pairs that share the significant number of 
miRNAs, (2)  selecting positively correlated lncRNA-mRNA pairs, and (3) jointly estimating the significance of 
multiple miRNAs in lncRNA-mRNA pairs. These three steps are described in detail in previous ceRNA  papers14,15. 
The mRNA-miRNA and lncRNA-miRNA interactions are required to perform steps i and iii. We used miRcode 
and starBase databases for miRNA-target  predictions16,17. The miRcode database facilitates mRNA-miRNA and 
lncRNA-miRNA target predictions using a broad searchable map that contains 10,419 lncRNAs. The starBase 
includes miRNA-mRNA interactions predicted by analysing 108 CLIP-seq datasets. Steps i and ii were per-
formed using the hypergeometric test and the Pearson correlation test, respectively. These two testing methods 
have been implemented in the GDCRNATools (1.18.0, https:// bioco nduct or. org/ packa ges/ relea se/ bioc/ html/ 
GDCRN ATools. html) R/Bioconductor  package18. The third step, multiple sensitivity correlation (mscor) analy-
sis, was executed using the SPONGE (1.20.0, https:// bioco nduct or. org/ packa ges/ relea se/ bioc/ html/ SPONGE. 
html) (sparse partial correlation on gene expression) R/Bioconductor  package19. The significant ceRNA inter-
actions were filtered by three user-defined thresholds, (1) false discovery rate (FDR) < 0.01 in hypergeometric 
test, (2) Pearson correlation coefficient > 0.40, and (3) the adjusted p value of mscor in SPONGE method < 0.05. 
The resulting lncRNA-miRNA-mRNA associations in each BC stage were combined into a single column, as 
"<lncRNA gene ensemble ID>_<gene ensemble ID>_<miRNA name>". Then set of values in each BC stage were 
applied into a four-sets (for four stages) Venn diagram representation.

Functional enrichment analysis. A total of unique 47 aberrantly expressed genes (25 from stage I, 42 of 
stage II, 40 of stage III, and 47 of stage IV) were analysed to understand the biological functions of identified 
ceRNAs in this study. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) func-
tional enrichment analyses were conducted using the R/Bioconductor clusterProfiler (4.6.0, https:// bioco nduct 
or. org/ packa ges/ relea se/ bioc/ html/ clust erPro filer. html) R  package20.

Survival analysis. Survival analysis was performed using the Kaplan–Meier (K–M) survival curves, 
implemented in the survival (3.4.0, https:// cran.r- proje ct. org/ web/ packa ges/ survi val/ index. html) R package to 
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explore the impact of the expression level of RNAs/miRNAs on the prognostic survival of  patients21. For each 
gene/lncRNA/miRNA, the tumour samples were divided into two groups (low-expressed and high-expressed) 
according to the median expression level. The log-rank test (Mantel–Haenszel test) was used as the statistical 
method for the K–M curves. The log-rank test statistic has a chi-square (χ2) distribution with one degree of free-
dom. Therefore, significant genes, lncRNAs and miRNAs were chosen under the χ2 test statistic p value < 0.05. 
The survival-significant mRNAs were checked for tumour-suppressive/oncogenic/cancer-driven roles using the 
CancerMine  database22.

Ethical approval. The study was approved by the Human Research Ethics Committees of the Queensland 
University of Technology (protocol code: 1900001147, date of approval: 19 December 2019) and the QIMR 
Berghofer Medical Research Institute (protocol code: P1051, date of approval: 23 August 2019).

Results
Differential expression analysis results. First, we conducted stagewise differential expression analysis 
to determine which genes, lncRNAs, and miRNAs are expressed at different levels between tumour and healthy 
groups. The number of up/downregulated lncRNAs, genes and miRNAs are available in Table 1.

The above-listed mRNAs, lncRNAs, and miRNAs were involved in the ceRNA network analysis.

Competing endogenous RNA networks of BC stages. We constructed four ceRNA networks for 
BC stages I–IV. In Table 2, we have included the count of significant ceRNA associations in each BC stage. The 
number of lncRNAs, genes, and miRNAs involved in stage-specific ceRNA networks is given within brackets.

According to Table 2, stage II and IV analyses have resulted in a considerably large set of ceRNA networks 
compared to stages I and III.

The detailed list of significant lncRNA-mRNA-miRNA associations of each BC stage is available in Sup-
plementary Information. The Cytoscape tool version 3.9.1 (https:// cytos cape. org/ downl oad. html)23 was used 
to visualise ceRNA networks in each BC stage. Figures 1, 2, 3 and 4 illustrates ceRNA networks for BC stage 
I, II, II, and IV, respectively. In Figs. 1, 2, 3 and 4, blue-, green-, and yellow-coloured squares represent genes, 
lncRNAs, and miRNAs, respectively.

According to Figs. 1, 2, 3 and 4, hsa-miR-374a-5p and 374b-5p tend to build up separated ceRNA clusters 
in each BC stage. As shown in Fig. 4, the KLF5 gene and TRAF3IP2-AS1 lncRNA, unique to stage IV, create a 
unique triplet with hsa-miR-153-3p.

The lncRNAs, genes and miRNAs list of significant ceRNA associations were combined for a single vari-
able as "<lncRNA gene ensemble ID>_<gene ensemble ID>_<miRNA name>" (Ex: ENSG00000234456_
ENSG00000125845_hsa-miR-374b-5p). The values of gene ensemble ID, lncRNA ensemble ID, and the derived 
variable columns were inserted into a four-set Venn diagram representation (indicating four BC stages) as 
Fig. 5a–c, respectively.

According to Fig. 5, most lncRNAs, mRNAs, and lncRNA-mRNA-miRNA associations found in each BC stage 
ceRNA network have been shared among more than one stage. One lncRNA (TRAF3IP2-AS1) and five mRNAs 
(KDR, SGCB, PRTG , KLF5, and PCNX1) have been observed only in the stage-IV-specific ceRNA network. We 
identified 29 and 15 unique ceRNA associations in stage-III and stage-IV BC, respectively.

Table 1.  Counts of differentially expressed (up/down) lncRNAs, mRNAs, and miRNAs in each BC stage. 
lncRNA long non-coding RNA, mRNA messenger RNA, miRNA microRNA, Up up-regulated, Down down-
regulated.

Breast cancer stage

lncRNA mRNA miRNA

Up Down Up Down Up Down

I 50 45 1199 711 48 61

II 75 39 1385 779 62 67

III 71 43 1290 822 50 61

IV 90 43 1350 989 54 66

Table 2.  The lncRNA-associated ceRNA networks for different breast cancer stages. lncRNA long-non-coding 
RNA, ceRNA competing endogenous RNA, mRNA messenger RNA, miRNA microRNA.

Breast cancer stage Number of ceRNA associations (number of involved unique lncRNAs, mRNAs, and miRNAs in the network)

I 48 (2, 25, 3)

II 127 (5, 42, 55)

III 86 (5, 40, 44)

IV 142 (6, 47, 59)

https://cytoscape.org/download.html
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Functional enrichment analysis for stage-specific competing endogenous RNA networks. We 
conducted functional enrichment analyses on 25, 42, 40, and 47 genes obtained from the stage I, stage II, stage 
III, and stage IV ceRNA networks. None of the stage-specific genes was enriched in KEGG  pathways24. Two 
genes resulting from stage I analysis were enriched in four CoA ligase activity-associated GO-molecular func-
tion (GO-MF) pathways. The GO-MF hormone-binding pathway was significant across stages II, III, and IV. In 
stage IV, six genes were enriched in three GO-cellular components (CC) pathways, membrane raft, membrane 
microdomain, and membrane region. Figure 6 illustrates GO pathway results for each BC stage.

Survival analysis for stage-specific competing endogenous RNA networks. K-M survival anal-
yses and log-rank tests were performed to identify the potential stage-specific differentially expressed genes, 
lncRNAs and miRNAs strongly correlated with BC patients’ prognostic characteristics. The significant genes, 
lncRNAs and miRNAs, were chosen under p value < 0.05. We found two, three, three, and one gene(s) as prog-

Figure 1.  ceRNA network for stage I BC, was constructed by the Cytoscape  tool23.

Figure 2.  ceRNA network for stage II BC, was constructed by the Cytoscape  tool23.
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nostic biomarkers in stage I, stage II, stage III, and stage IV, respectively and described in Table 3. None of the 
lncRNAs was identified as biomarkers in stage-specific BC survival analysis. In miRNA-based survival analyses, 
two, three, and three miRNAs were statistically significant in stage I, stage II, and III, respectively. Figure 7 illus-
trates K–M curves for the top significant miRNA of each stage, hsa-miR-106b-5p in stage I, hsa-miR-31-5p in 
stage II, and hsa-miR-551b-3p in stage III.

Discussion
This study identified stage-specific lncRNA-mRNA-miRNA ceRNA associations in BC. According to ceRNA 
network analysis results, most ceRNA associations were shared across all four stages. In contrast, one lncRNA 
(TRAF3IP2-AS1) and five genes (KDR, PRTG , KLF5, SGCB, and PCNX1) were statistically significant only in 
metastatic BC, i.e., stage IV. The lncRNA TRAF3IP2-AS1 has been previously reported in renal cell carcinoma 
and glioblastoma but not in  BC25.

Figure 3.  ceRNA network for stage III BC, was constructed by the Cytoscape  tool23.

Figure 4.  ceRNA network for stage IV BC, was constructed by the Cytoscape  tool23.
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Figure 5.  Venn diagram representation for mRNAs (a), lncRNAs (b), and competing endogenous RNAs 
(ceRNAs) (c) included in stage-specific significant ceRNA associations. Blue, Red, green, and yellow-coloured 
sets represent stage I, stage II, stage III, and stage IV, respectively. Most of the mRNAs and lncRNAs have been 
shared among four stages. Five genes, KDR, SGCB, PRTG , KLF5, and PCNX1 and one lncRNA, TRAF3IP2-AS1, 
were observed only in stage IV, metastatic stage.

Figure 6.  Pathway enrichment analysis results for genes included in stage-specific competing endogenous RNA 
networks in breast  cancer20. Four, one, one, and four gene-ontology pathways were statistically significant in 
stages I, II, III, and IV, respectively. The CoA ligase activity-related pathways have been significant only in stage 
I. The hormone-binding pathway was significant among stages II, III, and IV.
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According to AACR (American Association for Cancer Research) project GENIE (Genomics Evidence Neo-
plasia Information Exchange), the KDR gene is altered in 1.54% of BC patients. It can play an essential role in 
mediating endothelial cells proliferation, migration, and  permeability26. Endothelial cells are actively involved 
in cancer  metastasis27. The PRTG  gene has not been previously described in BC. Nevertheless, PRTG  has been 
identified as an oncogenic protein in gastric carcinogenesis by activating the downstream cGMP/PKG signal-
ling  pathway28.

The KLF5 gene is found to play a role in BC, but its precise function remains determined. On the one hand, 
the KLF5 locus at chromosome 13 is frequently deleted in human BC, and its protein is degraded by the WWP1 
oncogenic ubiquitin E3 ligase, which suggests a tumour-suppressor  function29. On the other hand, increased 
expression of KLF5 is associated with expression of the HER2 oncoprotein and shorter survival in BC patients 
suggesting an oncogenic function of KLF5 in  BC30. A recent bioinformatic study has found that SGCB protein is 
specific in basal A subtyped BC gene regulatory  networks31. The PCNX1 has been a potential marker of response 

Table 3.  Statistically significant genes from stage-specific survival analyses. HR hazard ratio.

Stage Gene HR p-value

I BMP2 0.2934 0.0233

I BACH2 0.2817 0.0185

II DUSP6 0.5397 0.0122

II ACSL1 1.8924 0.0111

II MYCBP2 1.6608 0.0388

III DST 0.5074 0.0234

III PDZD2 1.9969 0.0291

III AHNAK 0.2718 0.0221

IV MID1 0.0895 0.0143

Figure 7.  Kaplan–Meier survival plots for the top significant miRNAs in stage-specific breast cancer 
 networks21. The high-expressed hsa-miR-106b-5p (a), hsa-miR-31-5p (b), and hsa-miR-551b-3p (c) were 
prognostic in stage I, II, and III, respectively. None of the microRNAs in the stage IV ceRNA network was 
significant from survival analysis.
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to chemotherapy in BC, and therapeutic modulation of its activities could enhance chemotherapy  responses32. 
The BC studies mentioned above have described four out of five genes found from our stage IV-specific ceRNA 
network, and none of these studies explains their contribution to metastatic BC. Therefore, wet-lab experiments 
will be carried out in the future to investigate their role in BC metastatic nature.

Two downstream analyses, functional enrichment analysis and survival analysis, have ensured stage-specific 
ceRNA components found in our study. All statistically significant genes resulting from stagewise survival analy-
ses have been previously reported in cancer  studies22. BMP2 from the stage I survival analysis has shown onco-
genic function in  BC33. Only DUSP6 and ACSL1 in stage II have acted as an oncogene and a tumour suppressor 
in BC,  respectively34, 35. DST and AHNAK genes that were significant from the stage III survival analysis have 
shown tumour suppressive characteristics in both experimental and computational BC  studies36–40. In stage IV, 
we identified MID1 as the only survival significant gene and it has been linked with invasive lobular  carcinoma22. 
The invasive lobular carcinoma is the second most common type of BC. It originates in the milk-producing gland 
(lobules) of the breast. Invasive cancer is recognised as the cancer cells have broken out of the lobules where they 
initiated and are potential to expand to the lymph nodes and other areas of the body, leading to  metastasis41. 
Therefore, MID1 gene should be further investigated to identify its role in metastatic BC (stage IV).

We found eight miRNAs from the stage-specific survival analyses, and these miRNAs have shown a tumour-
suppressive/oncogenic role in previous BC experimental studies. The hsa-miR-106b-5p and hsa-miR-374b-5p 
were associated with the prognosis of stage I BC patients. The hsa-miR-106b-5p promoted cell migration, inva-
sion, and proliferation by targeting  FUT642. Abnormal hsa-miR-374b-5p expression in luminal-HER2-positive 
BC cells can be used for classifying clinicopathologic subtypes of  BC43. Three miRNAs, hsa-miR-150-5p and 
hsa-miR-31-5p, are significant in stage II BC survival analysis, and hsa-miR-374b-5p was significant in both 
stages I and II. The other two miRNAs, hsa-miR-150-5p and hsa-miR-31-5p, have shown an oncogenic and 
tumour-suppressive role in BC,  respectively44,45. We identified three miRNA signatures (hsa-miR-551b-3p, hsa-
miR-101-3p, and hsa-miR-26a-5p) as prognostics in stage III BC survival. Among them, hsa-miR-551b-3p have 
promoted oncogenic features in BC  cells46. In previous BC experimental studies, both hsa-miR-101-3p and 
hsa-miR-26a-5p have shown a tumour-suppressive  role47,48. We did not find statistically significant prognostic 
miRNAs from the stage IV BC survival analysis.

Functional enrichment analyses found molecular pathways associated with protein-coding genes in stage-
specific ceRNA networks. Two genes in Acyl-CoA Synthetase Long (ACSL) Chain family, ACSL1 and ACSL4, 
included only in stage I ceRNA networks, are enriched in four CoA ligase activity-associated pathways. There-
fore, wet-lab experiments are required to understand the tumour-suppressive/oncogenic/cancer-driven role of 
ACSL Chain family members among early-stage BC patients. Four genes found in stages II, III, and IV (NR3C1, 
AVPR1A, LEPR, and THRB) are associated with hormone binding, which plays a role in BC pathophysiology 
and defining risk. Six genes in the stage IV ceRNA network are enriched in three components in the GO-CC 
pathway: membrane raft, membrane microdomain, and membrane region. These membrane domains have shown 
an important role in cancer  metastasis49.

Our study has shared a limited set of ceRNAs with the previous ceRNA network study for overall BC cases 
by Tuersong et al.3. Four miRNAs (hsa-miR-141, hsa-miR-200a, hsa-miR-204, and hsa-miR-301b) have been 
identified in ceRNA networks in both studies. Among these four miRNAs, Tuersong et al.3 have demonstrated 
that hsa-miR-204 was downregulated and hsa-miR-301b was upregulated in patients with BRCA compared with 
healthy controls and were associated with overall survival. Our previous transcriptome-wide association study 
also demonstrated hsa-miR-204 as a tumour-suppressive miRNA in prostate cancer with statistically significant 
low expressed levels in prostate cancer cell  lines50. Moreover, we found two genes, SPRY2 and CHL1, involved 
in Tuersong et al.3 and our works (SPRY2 in stages I–IV and CHL1 in stages II, III, and IV). Observing a smaller 
number of shared ceRNAs between studies can be occurred due to higher heterogeneity between breast cancer 
stages, and it will lead to different RNA/gene expression levels. Zhou et al. conducted a ceRNA network analysis 
on BRCA subtypes, basal-like, HER2+, luminal A, and luminal  B51. The authors have identified three lncRNAs, 
NEAT1, OPI5-AS1, and AC008124.1, among all four subtype-related ceRNA networks. Moreover, three lncRNAs, 
NEAT1, FAM83H-AS1, and XIST1, were significantly differentially expressed in the basal-like subtype-related 
network. Nevertheless, we could not find a shared outcome between our study and subtype-related networks. 
This can be due to our stage-based analyses containing RNA/gene expression levels from multiple subtypes.

This study is limited to ceRNA networks mediated by microRNA expression levels. Other genomic (copy 
number alteration), transcriptomic (transcription factors), and epigenetic (DNA methylation) factors were not 
considered in the ceRNA network  analysis52. Moreover, other possible ceRNA components such as pseudogenes 
and lincRNAs were not considered. Therefore, future studies should be extended to address these concerns. 
Nevertheless, this study elucidates a new level of ceRNA network analysis, stage-specific ceRNA networks, to 
understand better common/unique ceRNA(s) among/within the stage(s) of a given cancer. Identifying novel 
stage-level cancer biomarkers will significantly contribute to the knowledge of personalised therapeutics and 
determining risk.

Conclusions
We conducted ceRNA networks analyses in four stages of BC. Only one lncRNA and five genes were significant 
in the stage IV BC ceRNA network. Further validation experiments are required to characterise their role in BC 
metastatic nature. Identifying ceRNA components across cancer stages will advance the diagnosis, risk identi-
fication, and therapeutics.
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Data availability
Publicly available TCGA BC RNA-seq and miRNA-seq expression data were downloaded through the GDC Data 
Portal (https:// portal. gdc. cancer. gov/ repos itory). All statistical analyses and graph preparations were performed 
using the R statistical software, freely available at https:// cran.r- proje ct. org/. The datasets used and/or analysed 
during the current study available from the corresponding author on reasonable request.
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