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Fine‑grained multi‑focus image 
fusion based on edge features
Bin Tian 1, Lichun Yang 2 & Jianwu Dang 1*

Multi-focus image fusion is a process of fusing multiple images of different focus areas into a total 
focus image, which has important application value. In view of the defects of the current fusion 
method in the detail information retention effect of the original image, a fusion architecture based 
on two stages is designed. In the training phase, combined with the polarized self-attention module 
and the DenseNet network structure, an encoder-decoder structure network is designed for image 
reconstruction tasks to enhance the original information retention ability of the model. In the fusion 
stage, combined with the encoded feature map, a fusion strategy based on edge feature map is 
designed for image fusion tasks to enhance the attention ability of detail information in the fusion 
process. Compared with 9 classical fusion algorithms, the proposed algorithm has achieved advanced 
fusion performance in both subjective and objective evaluations, and the fused image has better 
information retention effect on the original image.

Image fusion refers to the process of extracting the most meaningful information from multiple images of dif-
ferent sources and generating an image with more information and more beneficial to subsequent applications1. 
As a branch of image fusion, multi-focus image fusion has important research significance in the field of imag-
ing. Limited by optical lenses, it is difficult to focus all objects with different depth of field2 when shooting by 
the camera. The main task of multi-focus image fusion is to fuse multiple images with different focus regions to 
get a full-focus image. At present, this technology has been widely used in robot vision, medicine, aerospace, 
military and other fields3.

According to the different research methods, image fusion algorithms can be divided into traditional fusion 
methods and deep learning-based methods. Since 1980s, Burt4 first applied Laplace Pyramid in the field of image 
fusion. Since then, pyramid decomposition methods such as low-pass pyramid, morphological pyramid and con-
trast pyramid5 have been applied to image fusion tasks. However, this method has some problems, such as image 
decomposition information redundancy, unable to extract the details of the direction subband, and the fusion 
effect is not ideal6. The use of wavelet transform7 can extract detail information in multiple directions, which is 
more beneficial to the preservation of detail information than pyramid transform. Since then, there have been 
many excellent image fusion algorithms, such as DCT8, NSCT9, DWT10, NSST11 and so on. GFF proposed by Li12 
introduces the concepts of pixel saliency and image spatial continuity. And the guide filter is used to reconstruct 
the weight, which has a certain anti-noise ability. However, the saliency mapping generated by this method can 
not retain all the features of the image. MGFF proposed by Bavirisetti13 introduces the concept of multi-scale 
decomposition on the basis of guided filtering, which can find the visual significance of the whole scene from 
two images with different vision. However, due to the lack of selectivity to the information of each layer in the 
process of integration, the fused image is often prone to overlap blur and image brightness difference. Although 
the traditional fusion method has good interpretability, it is limited by the design of fusion rules, which to a 
certain extent limits the performance improvement of the traditional fusion method14.

In recent years, with the development of deep learning, with the strong ability of feature extraction and infor-
mation reconstruction of neural network, it has been widely used in the field of image fusion. Liu15 introduced 
convolution neural network into the field of image fusion for the first time, and constructed a convolution neural 
network architecture based on Siamese structure for multi-focus image fusion task. The positive and negative 
sample pairs are constructed by Gaussian blurring of the original image. The convolution neural network is 
used to distinguish the clear pixels of the image block, and the final fusion task is realized through a series of 
post-processing operations. Compared with the traditional algorithm, the experiment has achieved remarkable 
results and has better fusion performance. However, the training cost of this method is high, and it takes mil-
lions of pixel blocks and thousands of iterations to achieve a good discriminant performance. Since then, Ram 
Prabhakar16 and others introduced unsupervised learning into the field of image fusion and proposed DeepFuse 
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as a general image fusion framework. DeepFuse adopts the encoder-decoder structure and uses the structure 
similarity function as the loss function for image reconstruction. In the fusion stage, the encoder is directly 
used to encode and add the original image, and then passed into the decoder for decoding output to achieve 
the end-to-end image fusion. However, the fusion method of direct addition in DeepFuse is rough, so the fused 
image still retains the fuzzy information of the defocus region. For this reason, Li17 and others put forward the 
DenseFuse fusion task. DenseFuse uses DenseNet structure to design the encoder, which aims to retain the 
multi-scale information of the original image. At the same time, DenseFuse improved the fusion strategy, put 
forward the L1 − norm fusion strategy, and achieved better results. DIFNet proposed by Hyungjoo Jung18 uses 
the eigenvector of the structure tensor to represent the direction of the maximum and minimum contrast of the 
multi-channel image and combines the image intensity information to construct a general fusion architecture. 
Although DIFNet is simple in structure. However, the fusion strategy of DIFNet is also rough, so the fusion image 
still has the defocus information of the original image, which can not maximize the effective information. SESF-
Fuse proposed by Boyuan Ma19 considers the attributes of multi-focus images, designs a fusion strategy based on 
feature gradient, and achieves better discrimination performance. The SDNet proposed by Zhang20 constructs 
the fusion task directly from the gradient information and intensity information of the original image. Different 
from the traditional encoder-decoder structure, the result of SDNet coding is the fused image. The decoding 
process is the decoding process from the fused image to the original image. SDNet has achieved advanced fusion 
performance in a variety of fusion tasks, and has a good effect on preserving the texture details and luminance 
information of the original image. Although it is feasible to use the gradient information and intensity informa-
tion of the image to consider the multi-focus fusion problem, it is not enough to consider these two features. 
Therefore, compared with the original image, the fused image has obvious color difference and a little loss of 
detail information. Starting from the image texture details, Zhang21 proposed MFF-GAN for multi-focus image 
fusion task. MFF-GAN uses the method of generating countermeasure network and self-supervised learning 
for image fusion, and achieves a better effect of texture detail retention, especially at the boundary of the focus 
region. However, it is precisely because MFF-GAN pays too much attention to the texture details of the image, 
resulting in less attention to the global information of the image, resulting in a lack of overall information reten-
tion of the fused image.

In order to improve the transfer ability of the fused image to the overall information and detail information 
of the original image, and to achieve better edge transition effect between the focused area and the defocused 
area. A two-stage image fusion algorithm based on fine-grained features and edge feature maps of the original 
image is proposed. Specific contributions are as follows.

•	 From the perspective of overall information coding of the original image, an encoder-decoder structure 
network based on DenseNet network and polarization self-attention module is designed. Compared with 
similar designs, it has better original information coding effect and lower reconstruction loss.

•	 From the perspective of pixel-by-pixel discrimination of the focused attributes of the encoded feature map, 
an image fusion strategy based on edge feature map is designed. Compared with the method of directly using 
the original image or the encoded feature map for fusion processing, it achieves lower discrimination error.

Methods
Overview of methods.  As shown in Fig. 1, the fusion algorithm is divided into two stages. In the training 
phase, we use the DenseNet network structure22 and the polarization self-attention module23(PSA) to construct 
the encoder-decoder structure for image reconstruction tasks. Among them, the use of DenseNet network struc-
ture is mainly to retain the multi-level information of the original image as much as possible. The polarization 
self-attention module is mainly to enhance the performance of the network on fine-grained pixel-level tasks. 
Under low computational overhead, the long-distance dependence of high-resolution input/output features is 
enhanced to estimate highly nonlinear pixel semantics. At the same time, we first randomly cut the original 
image into 64× 64 image blocks and pass them into the model for training after a series of digital enhancement 

Figure 1.   Fusion architecture diagram.
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processing. This step is mainly to coordinate the PSA module to improve the model’s ability to focus on fine-
grained information. In the fusion stage, the input of the model is the original image that does not need to be 
cropped. After using the trained encoder to encode the original image information, the encoded feature map is 
subjected to Gaussian smoothing and guided filtering respectively, and then cross-subtracted with the encoded 
feature map to obtain the corresponding edge feature map. Then, the gray variance product function is used to 
discriminate the focus area pixel by pixel, and the decision map is generated. After mathematical morphology 
processing, the final image fusion task is performed using a weighted method.

Loss function.  In this paper, the comprehensive loss function used by TransMEF24 is used, but the weight 
design of each loss function is reconsidered. (in view of the fact that TransMEF is mainly used for the considera-
tion of multi-exposure fusion tasks) details are as follows.

where Lp represents represents the pixel loss function; Lssim represents the structural similarity loss function ; LTV 
represents the total variance loss function. a, b, c are the weight corresponding to each loss function. Different 
from TransMEF, this paper sets a, b, c as 1, 20, 1 respectively to enhance the model’s ability to pay attention to 
the structural similarity of reconstructed images in image reconstruction training tasks.

The Lp loss function is used to measure the degree of pixel loss in the reconstruction task. The calculation 
method is as follows:

where Lout and Lin represent the input image and the reconstructed image, respectively, and || · ||2 represents the 
Euclidean distance between the them.

The Lssim loss function is used to measure the transfer of structural information in the reconstruction task. 
The calculation method is as follows:

LTV comes from VIFNet25. It is mainly used to consider the gradient information retention of the recon-
structed image and further eliminate the influence of noise. It is calculated as follows:

where R(p, q) represents the difference between the source image and the reconstructed image; p and q represent 
the horizontal and vertical coordinates of the image pixels, respectively.

Fusion strategy.  Decision diagram generation.  In the fusion stage, a trained encoder is used to encode the 
fused image. Then, the encoded feature map is cross-subtracted with the original feature map using a Gaussian 
smoothing filter template with a size of 11× 11 and guided filtering processing to obtain the corresponding edge 
feature map.The gray variance product function(SMD2) is used to determine the pixel level of image clarity ac-
cording to the channel26.After mathematical morphology processing (A circular morphological operator is used 
here, and the threshold of 0.1×H ×W is used for opening and closing operations to eliminate independent 
small areas), the final decision diagram is obtained.

Fr(x, y) and Fc(x, y) represent the row and column frequencies of the image, respectively.
Through the above method, the spatial frequency calculation results of images at different focusing positions 

are obtained respectively. The method of generating the initial weight map according to the frequency calcula-
tion results is shown in formula 9.

(1)L = aLp + bLssim + cLTV

(2)Lp = ||Iout − Iin||2

(3)Lssim = 1− ssim(Iout , Iin)

(4)R(p, q) =Iout(p, q)− Iin(p, q)

(5)LTV =
∑

p,q

(||R(p, q+ 1)− R(p, q)||2 + ||R(p+ 1, q)− R(p, q)||2)
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0 otherwise
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Weight fusion.  According to the generated final decision map, the final image fusion is performed in a weighted 
manner, and the calculation method is shown in Formula 10.

Fusion evaluation indicators.  So far, there is no evaluation method that can be applied to all fusion algo-
rithms. Therefore, subjective evaluation and objective evaluation indexes are used to evaluate the fused image 
from two aspects. In the objective evaluation index, MI(mutual information)27, SSIM(structural similarity)28, 
PSNR(peak signal to noise ratio)29, AG(evaluation gradient)30, SF(spatial frequency)31, QMI32 andQAB/F33 were 
used to evaluate the fused image. The specific explanation is as follows.

MI(Mutual Information)
Mutual information represents how much information of the source image is transferred to the fused image. 

The larger the mutual information value, the better the image fusion effect.
SSIM(structural similarity)
SSIM is used to measure the structural similarity between the fused image and the source image. The larger 

the SSIM value, the more similar the structure of the fused image to the structure of the source image.
PSNR(peak signal-to-noise ratio)
The peak signal-to-noise ratio is used to measure the ratio between the effective information of the image and 

the noise, which can reflect whether the image is distorted. The greater the PSNR, the better the image quality.
AG(average gradient)
The average gradient can reflect the ability of the image to express the contrast of small details, and also 

reflect the characteristics of texture transformation in the image. Therefore, the greater the average gradient, 
the clearer the image.

SF(Spatial Frequency)
Spatial frequency reflects the overall activity of the image in the spatial domain, that is, the change rate of 

image gray. The larger the spatial frequency, the better the quality of fused image.
QMI

QMIeliminates the impact of information entropy on the fusion image quality assessment results, can better 
measure the amount of information transfer between the original image and the fused image. The larger the 
QMI , the better the image fusion.

QAB/F

QAB/F can better reflect how much edge information in the source image is transmitted to the fused image. 
The greater the value of QAB/F indicates that the fused image retains more edge information of the source image 
and the fusion effect is better.

Experiments
Experimental settings.  In this paper, 10,000 images from the MS-COCO2014 data set34 are selected for 
training, and 38 pairs of public multi-focus images35,36 are selected for test evaluation. The images used in the 
training phase were all processed with data enhancement (randomly cut to 64× 64 size, randomly rotated, and 
randomly transformed in brightness, contrast and tone). The batchSize selected in this paper is 32, the learning 
rate is 1× 10−4 , and the number of iterations is 50. AdamW optimizer and Warm up learning rate strategy are 
used for model training.

The hardware platforms used in the experiment are NVIDIA RTX3080 GPU, 12th Gen Intel(R) Core(TM) 
i7-12700KF CPU and 32GB memory. The software platform used is Pycharm integrated development environ-
ment. The programming language used is Python and Pytorch, Skimage and OpenCV libraries are mainly used 
for experiments.

Image fusion evaluation.  In order to evaluate the performance of the fusion algorithm in this paper, 
we choose GFF12 and MGFF13 based on traditional fusion strategy, and end-to-end DeepFuse16, DenseFuse17, 
DIFNet18, SDNet20 and MFF-GAN21 based on deep learning. Nine algorithms, CNN15 and SESF-Fuse19, which 
need post-processing operation, are compared with this algorithm by subjective and objective evaluation 
indexes, as follows.

Subjective evaluation.  Using this algorithm for image fusion, visualization 7 pairs of images before and after 
fusion and the corresponding decision map results are shown in Fig. 2.

From Fig. 2, we can see that the clear and non-clear areas of the focused image can be accurately identified by 
this algorithm, and the fused image is more clear subjectively. In order to further analyze the fusion performance 
of this algorithm compared with other algorithms. Here, several different fusion images are selected to compare 
the sharpness of the fused local image and the difference between the fused image and the original image.

The local magnification comparison result of the fused image is shown in Figs. 3, 4.
From the local magnification images of the fused images of various algorithms in Fig. 3 (the red marked area 

in the upper left corner of each image), we can see that there is obvious blur in the fused images using DeepFuse, 
DenseFuse, DIFNet and SDNet algorithms for multi-focus image fusion. GFF, MGFF, CNN, MFF-GAN, SESF 
and the algorithm in this paper are relatively good. The reason is that both DeepFuse and DenseFuse use a simple 
coding feature graph addition method to carry out the fusion task, and the final fused image is obtained after 
decoding by the decoder. This fusion method can not take into account the difference information between the 
original images, and only plays a comprehensive role in the information of the original images, which weakens 

(10)F(i, j) = D(i, j)A(i, j)+ (1− D(i, j))B(i, j)
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the difference information between the original images to a certain extent. DIFNet uses concat for image fusion 
also has the same problem, so the fused image still retains the information of the defocus region of the original 
image. SDNet introduces the gradient information and intensity information of the image to consider the fusion 
image. Compared with DeepFuse and DenseFuse, the fusion effect is relatively better, but there is still some loss 
of detail information, so the fusion image still has some fuzziness.

As can be seen from Fig. 4, the loss of detail information of the fused image using MGFF, CNN, DenseFuse 
and DIFNet algorithms is still obvious. Although the GFF, DenseFuse, MFF-GAN and SDNet algorithms have 
the ability to retain the detail information, the detail information of the fused image is still slightly weakened. 
The second line of text in the local magnified image in the upper left corner of the fusion image corresponding 
to the algorithm is particularly blurred, and the specific letters can not be distinguished, but the image fused by 
SESF algorithm and this algorithm can still recognize the specific text content.

In addition, in order to more accurately measure the original information loss of the fused image after using 
various algorithms for multi-focus image fusion, it is considered from the point of view of the difference map 
(the difference between the fused image and the original image). The specific results are shown in Figs. 5, 6.

Figure 2.   Fusion image results35,36.

Figure 3.   Image local comparison 1(Lytro 1735).
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Figure 4.   Image local comparison 2(Savic pepsi36).

Figure 5.   Comparison of difference between fused image and original image 1(Lytro 735).
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As can be seen from Fig. 5, the information loss in the focus region of the original image is more obvious in 
the image fused with MGFF, DeepFuse, DenseFuse and DIFNet algorithms. There are also a lot of information 
loss in MFF-GAN and SDNet algorithms. Although the retention effect of CNN is better than the above algo-
rithm, there is still a little loss of original information. In comparison, GFF, SESF and the algorithm proposed in 
this paper are better in preserving the overall information of the focus region of the original image.

However, as far as the boundary of the focus region of the image is concerned, from the local magnifica-
tion of the focus boundary of the GFF and SESF algorithms in Fig. 6, we can see that the focus boundary of the 
image fused by GFF and SESF algorithms has a little incomplete phenomenon. It is worth noting that the SESF 
algorithm is less incomplete than the GFF algorithm. The reason is that the GFF algorithm is the focus attribute 
discrimination directly on the original image, while the SESF algorithm is the focus attribute discrimination task 
on the corresponding feature image after encoding the original image. This shows that the feature coding of the 
original image can reduce the noise of the original image and reduce the incomplete degree of the focus edge. 
This algorithm adopts the same idea as SESF, first encodes the feature, and then discriminates the focus attribute 
on the encoded feature graph. At the same time, this algorithm adds the edge feature extraction processing of 
the coded feature graph and the focus attribute discrimination task combined with the edge feature information 
of the encoded feature graph. It can be seen that the focus boundary of the fusion image using this algorithm 
is relatively smooth, and there is no obvious incomplete phenomenon, which also proves the rationality of the 
method proposed in this paper.

According to the analysis of the retention effect of the image detail information in the local magnified image 
in the subjective evaluation and the overall information in the focus region of the original image after fusion in 
the difference map, the performance of this algorithm is better than that of other algorithms.

Objective evaluation.  In order to quantify the fusion effect of various algorithms, MI, SSIM, PSNR, AG, SF, 
QMI and QAB/F have a total of 7 objective evaluation indicators compared the combined image, and the results 
are shown in Table 1.

As can be seen from Table 1, among the seven fusion indexes, this algorithm achieves 3 optimal fusion per-
formance, which is better than the other 9 fusion algorithms. Compared with the GFF and MGFF algorithms 
based on the traditional fusion strategy, this algorithm surpasses all the indexes in an all-round way. Compared 
with the DeepFuse, DenseFuse, DIFNet, MFF-GAN and SDNet algorithms based on deep learning end-to-end 
fusion network, this algorithm is better than them in 6, 5, 7, 4 and 6 indexes, respectively. Compared with the 
CNN and SESF algorithms based on the need post-processing operation, the algorithm in this paper has 7 and 
5 indexes that exceed them respectively.

To sum up, combined with the results of subjective evaluation and objective evaluation, we can see that this 
algorithm has a better ability to retain the original information than other algorithms in multi-focus fusion tasks. 
On the whole, better fusion performance has been achieved.

Figure 6.   Comparison of difference between fused image and original image 2(Savic temple36).
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Fusion time evaluation.  In order to meet the needs of practical applications, we increase the analysis of the 
fusion time of each algorithm. Fusion experiments were performed on 38 pairs of public test fusion datasets. 
Considering that the initial running algorithm is affected by factors such as resource loading, this will bring an 
increase in time. At the same time, the fusion time of different images is not the same. Therefore, we ran each 
algorithm 11 times and calculated the duration from the second time. The final fusion duration is the average of 
10 calculations, as shown in Table 2.

As can be seen from Table 2, although the proposed algorithm improves the discrimination accuracy by ana-
lyzing the edge features of the encoded feature map to distinguish the focus area of the image, it also brings an 
increase in the duration. Compared with SESF, which needs post-processing, the time of image fusion algorithm 
is increased by about 0.08 s, which is acceptable. It is worth mentioning that the fusion time of each algorithm is 
only a relative concept and cannot be generalized. Because the fusion time will be significantly different due to the 
programming language and whether the code optimization is performed. For example, the original DenseFuse 
algorithm written in Tensorflow does not have such a fast fusion rate, but the original author achieved a faster 
fusion rate after using Pytorch. The length of CNN ’s fusion time is also debatable, because CNN is written in 
Matlab language, so he cannot use CUDA to accelerate calculations like Tensorflow or Pytroch code37.

Ablation experiment.  This paper explores the loss function, model construction and fusion strategy. In 
order to verify the effectiveness of each research, a confirmatory analysis is carried out from the above three 
aspects, as follows.

Loss function analysis.  In the task of image reconstruction, this paper uses the comprehensive loss function in 
TransMEF24 and adjusts its weight. The effects of each loss function are analyzed here, and the mean and vari-
ance results of the reconstruction loss ( Lp + 20Lssim + LTV ) are shown in Table 3.

It can be seen from Table 3 that structural similarity is more important than pixel loss in image reconstruction 
tasks. Therefore, the effect is better when the weight of structural similarity loss is greater than that of pixel loss. 
In addition, it can be seen that the performance of the loss function used in this paper is also better than that of 
the loss function(Lp + 1000Lssim ) commonly used in traditional image fusion tasks, which again proves that the 
introduction of Ltv loss has the effect of reducing image noise. Therefore, on the whole, the loss function used 
in this paper is reasonable.

Table 1.   Comparison of various algorithms. Bold is the best, italic is the second best.

Algorithms

Index evaluation

MI SSIM PSNR AG SF QMI QAB/F

GFF 7.1875 0.7951 26.0317 8.2364 18.9739 0.9798 0.4499

MGFF 5.2626 0.8228 24.9116 7.2243 17.1650 0.7170 0.3933

CNN 6.0823 0.8099 25.8275 8.4265 19.2010 0.8399 0.4431

DeepFuse 5.7598 0.8503 26.2962 5.4042 12.0751 0.7841 0.3460

DenseFuse 5.7582 0.8570 28.2387 5.1400 11.4805 0.7889 0.3360

DIFNet 5.5582 0.8428 25.4697 4.7213 10.5981 0.7682 0.2604

MFF-GAN 5.4468 0.8116 24.7821 8.6212 19.8732 0.7432 0.3779

SDNet 5.6940 0.8339 26.3376 7.5673 17.4520 0.7745 0.3905

SESF 8.1600 0.8058 26.2059 8.3985 19.2819 1.1115 0.4643

Ours 8.4180 0.8054 26.2222 8.4013 19.2458 1.1469 0.4664

Table 2.   Comparison of fusion time of various algorithms. Bold is the best, italic is the second best.

Algorithms GFF MGFF CNN DeepFuse DenseFuse

Times(s) 0.9256 3.7951 220.2890 0.1756 0.0318

Algorithms DIFNet MFF-GAN SDNet SESF Ours

Times(s) 0.2808 0.1935 0.1415 0.1991 0.2834

Table 3.   Comparison of loss functions. Significant values are in bold.

Reconstruction loss Lp + 20Lssim + LTV 20Lp + Lssim + 20LTV Lp + 1000Lssim

Mean 0.1304 0.8373 0.4473

STD 0.1519 0.9499 0.5854
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Attention mechanism analysis.  In the task of image reconstruction, multiple attention mechanisms are used to 
build the model, and the corresponding model reconstruction loss is shown in Table 4.

From the reconstruction loss results of the original image encoding and decoding process using various atten-
tion mechanisms in Table 4, we can see that using PSA to build the model has less reconstruction loss than other 
attention mechanisms. The reason is that CBAM pays attention to the image information by the combination 
of space and channel. However, this is often goal-based, and is better at paying attention to local information, 
and the ability to pay attention to global information is insufficient. The way that SENet uses global context to 
calibrate the weights of different channels to adjust channel dependencies does not make full use of global context 
information. Although GCNet has stronger global attention ability, its attention effect has not been obviously 
reflected in this task for pixel blocks with a size of 64× 64 after clipping. PSA combines the advantages of both 
CBAM channel attention mechanism and spatial attention mechanism, and integrates the global modeling ability 
of self-attention mechanism, which can improve the model’s ability to pay attention to fine-grained pixels without 
increasing the computational complexity. Therefore, PSA has achieved better results in the task of this article.

Fusion strategy analysiss.  In the image fusion task, an image fusion strategy based on edge feature graph is 
proposed in this paper. Without using mathematical morphology processing, it is compared with the SF (spatial 
frequency) fusion strategy used by SESF, and the result is shown in Fig. 7.

It can be seen from Fig. 7 that the fusion strategy based on edge feature map proposed in this paper is used 
for image fusion task. In the process of pixel-level clear pixel discrimination, the discrimination accuracy is 
higher. The reason is that the discrimination method based on spatial frequency is mainly based on the gradient 
information of the encoded feature map. For feature maps with noise interference, it often leads to inaccurate 
discrimination. The discrimination method based on edge feature map is preprocessed by Gaussian filtering and 
guided filtering, which reduces the noise information of the original image and increases the gradient informa-
tion of the original image to a certain extent, so this method has achieved good discrimination effect. Overall, 
the fusion strategy proposed in this paper is effective.

Table 4.   Performance comparison of various attention mechanisms. Significant values are in bold.

Reconstruction loss PSA CBAM38 SENet39 GCNet40

Mean 0.1304 0.2371 0.1653 0.1923

STD 0.1519 0.4118 0.2451 0.1152

Figure 7.   Comparison of fusion strategies35,36.
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Conclusion
This paper combines DenseNet network structure and polarization self-attention module to design an image 
reconstruction network based on unsupervised learning, which achieves better information retention. At the 
same time, we focus on increasing the consideration of the design of multi-focus image fusion strategy, and 
propose a fusion strategy based on edge feature map for image fusion task, which achieves better image focus-
ing attribute discrimination effect. In comparison with a variety of algorithms, the proposed algorithm has 
achieved priority fusion performance in both subjective evaluation and objective evaluation. However, it is also 
found that there are still some discrimination errors in the way of using edge feature map information. How to 
further improve the accuracy of focus attribute discrimination of image fusion is our future research direction. 
In addition, due to the blurring of the focus boundary of the original image, the use of decision maps for fusion 
will cause the fused image to have a certain gradient dispersion phenomenon at the decision boundary. How to 
further improve the performance of feature extraction and reduce the occurrence of gradient dispersion remains 
to be further studied.

Data availability
The tralning sets that support the findings of this study are available at https://​cocod​ataset.​org/#​downl​oad. 
The test sets that support the findings of this study are available at https://​dsp.​etfbl.​net/​mif/ and https://​github.​
com/​xingc​henzh​ang/​MFIF/​tree/​main/​input. In addition, all data related to this experiment can be obtained by 
contacting this email(Jianwu Dang: ylc1377759045@163.com).
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