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Modulation of transcription 
factor dynamics allows versatile 
information transmission
Alan Givré 1,2, Alejandro Colman‑Lerner 3,4* & Silvina Ponce Dawson 1,2*

Cells detect changes in their environment and generate responses, often involving changes in gene 
expression. In this paper we use information theory and a simple transcription model to analyze 
whether the resulting gene expression serves to identify extracellular stimuli and assess their intensity 
when they are encoded in the amplitude, duration or frequency of pulses of a transcription factor’s 
nuclear concentration (or activation state). We find, for all cases, that about three ranges of input 
strengths can be distinguished and that maximum information transmission occurs for fast and high 
activation threshold promoters. The three input modulation modes differ in the sensitivity to changes 
in the promoters parameters. Frequency modulation is the most sensitive and duration modulation, 
the least. This is key for signal identification: there are promoter parameters that yield a relatively 
high information transmission for duration or amplitude modulation and a much smaller value for 
frequency modulation. The reverse situation cannot be found with a single promoter transcription 
model. Thus, pulses of transcription factors can selectively activate the “frequency‑tuned” promoter 
while prolonged nuclear accumulation would activate promoters of all three modes simultaneously. 
Frequency modulation is therefore highly selective and better suited than the other encoding modes 
for signal identification without requiring other mediators of the transduction process.

Living organisms react to changes in their environment. The signaling systems that are used to “interpret” these 
changes and generate end responses are ubiquitous: they operate in both bacteria and eukaryotes and in processes 
as diverse as bacterial chemotaxis or the maturation of the immunse system, among many others. The malfunc-
tion of the information transmission systems involved in these processes is the cause of various pathologies. For 
this reason, understanding the way that living systems process and transmit information is fundamental from 
both a basic and applied point of view. The generation of responses to external stimuli usually involves changes in 
the intracellular concentration of some intermediaries which often induce changes in the nuclear concentration 
of transcription factors (TF) and, consequently, in gene expression. Commonly, the intensity of the stimulus is 
encoded in the amplitude of this concentration, but in others in the time it remains at a high level (duration) and 
recently it became apparent that in other cases the stimulus causes pulses of nuclear accumulation, the frequency 
of which correlates with stimulus intensity. Examples of these different strategies are abundant in many cell  types1. 
In yeast 10  TFs2 show pulsatile nuclear localization. For example, the TF Crz1 responds to a rise in extracellular 
calcium with stereotyped pulses of nuclear accumulation, the frequency of which positively correlates with the 
extracellular calcium  concentration3. The case of Msn2 is perhaps more surprising, since its behavior depends 
on the stimulus: it responds to glucose limitation with pulses of nuclear accumulation of increasing frequency 
the lower the glucose concentration, to osmotic stress with an initial burst of nuclear localization the duration of 
which depends on the strength of the osmotic shock, and to oxidative stress with a prolonged nuclear localization 
of amplitude (the fraction of nuclear Msn2) proportional to the magnitude of the  stress4–6. In mammalian cells, 
the transcription factor NF-κ B responds to a variety of stimuli with pulses of nuclear accumulation. In this case, 
the strength of the stimulus does not affect the frequency but the amplitude of the nuclear  pulses7. Finally, the 
mammalian tumor suppressor p53 is another TF that responds differently depending on the stimulus. While UV 
exposure elicits a single pulse of increasing amplitude and duration with increasing UV dose, pulse sequences are 
elicited upon double-strand DNA breaks caused by γ-radiation with the number of pulses increasing with the 
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level of  damage8. Are there any advantages associated to a particular type of codification? When is one of these 
modes better suited than the other? These are two motivating questions of the present work.

The examples just described show that different external stimuli can be encoded, transmitted and decoded 
by common signaling  components9–11 and that different end responses can be elicited depending on the dynam-
ics of TFs nuclear concentrations. For example, p53 pulses induce the expression of DNA repair genes while a 
single sustained p53 pulse leads to the expression of senescence  genes12. Something similar happens with the 
TFs, NF-kB13–15. The TF, Msn2, which participates in the regulation of the multi-stress response in  yeast16,17, is a 
good motivating example for the studies of the present paper given the different dynamics it displays depending 
on the  stimulus4 which suggest that Msn2-regulated promoters of genes induced by glucose deprivation (like 
 DCS218 and  HXK119) are activated by frequency modulation, that promoters of genes induced during osmotic 
stress (e.g.,  SIP1820,21 and  ALD322,23) are activated by duration modulation24 and that those of genes induced by 
oxidative stress are activated by amplitude modulation. Following the works of O’Shea’s  group4,24,25 we may say 
that the type of codification identifies the type of stimulus. The question then arises as to how the promoters 
involved in these responses, which are regulated by the same TF, differ from one another so as to be induced 
by one or another type of modulation. This is another motivating question of the present study which, as the 
previous ones, can be addressed within the framework of information  theory26,27. This approach has been used 
to analyze cell signaling and infer properties of the underlying network of interactions, both from a theoretical 
point of  view28,29 or using experimental  data25,30,31. The information-based description involves defining what 
constitutes the input, the output and the channel connecting them. Using information theory it is possible to 
quantify the extent to which the output “distinguishes” the values that the input can take on. Given the distribu-
tion of input values, this is quantified by the mutual information between input and output, which is usually 
measured in bits, with n bits corresponding to distinguishing 2n (sets of) input values. In the case of the cell, the 
ability to distinguish different inputs is key to generate adequate responses to each situation.

In this paper we analyze the mutual information between stimulus and response when the channel involves 
encoding the stimulus strength in either the amplitude, the frequency or the duration of a TF’s nuclear fraction. 
To this end we use the simple model introduced by Hansen and O’Shea to describe the activity of Msn2, defin-
ing as the input the amplitude, duration or frequency of the TF in the nucleus and, as output, the accumulated 
amount of mRNA produced, which correlates well with protein  expression24. To account for stochastic fluctua-
tions, which are not negligible in biological processes and can limit the information capacity of cell signaling 
 pathways30,32,33, we not only model the transcription step stochastically using a Markov process but also include 
noise in the amplitude of the TF concentration and in its interpulse frequency. Hansen and O’Shea30 applied 
information theory to quantify the gene expression information transduced by Msn2 in yeast using experimental 
data obtained with high-throughput microfluidics. Instead, our approach is theoretical and seeks to determine 
the largest mutual information that can be achieved depending on the stimulus strength encoding. In addition, 
we ask whether there are disjoint regions of optimal parameter values for each encoding type that could allow the 
use of a single TF to elicit different end responses depending on the encoding. We found that, in most cases, the 
maximum possible mutual information is ∼ 1.5 to 1.8 bits, which is slightly larger than the values estimated from 
experiments in wild type yeast cells but similar to those obtained in  mutants25. As discussed later, this value can 
be improved depending on the timing of the end response generation. We also found that the information trans-
mitted, irrespective of the mode of encoding, is overall higher as the threshold of TF concentration needed for 
gene expression is higher or when promoter activation occurs on a faster timescale. Of the three modes, we found 
that frequency encoding is the most sensitive to changes in the kinetic parameters, while duration enconding is 
the least sensitive. This explains the experimental results of Hansen and O’Shea25 and suggests that the cell can 
realize dynamic multiplexing by using a gene that transmits a large amount of information for the least sensitive 
modulation (duration) and a much smaller amount through the highly-sensitive channel (frequency).

Methods
Model, inputs and outputs. We consider the simplified transcription  model24 depicted in Fig. 1. In this 
scheme, TF is the (nuclear) transcription factor which is assumed to undergo a known dynamics (piecewise 
constant in time). As explained later in more detail, the arbitrary concentration units that are used throughout 
the paper are such that 100 corresponds to the maximum possible value of nuclear [TF]. P0(t) and P1(t) rep-
resent the promoter in its inactive or active state, respectively ( P0 + P1 = 1 ). The promoter is activated by TF 
in a cooperative fashion, as reflected in the term, [TF]n/([TF]n + Kn

d ) , where n indicates the cooperativity and 
Kd represents an effective dissociation constant, measured in the same arbitrary units as [TF], of the binding/
unbinding reaction which is assumed to occur on a faster timescale than the rest of the processes and, therefore, 
be in equilibrium. The TF-bound promoter then becomes active with rate, k1 . The arrow from P1 to mRNA 
represents transcription which occurs at rate, k2[TF]n/([TF]n + Kn

d ) , meaning that TF needs to be bound for 
transcription to take place. More details on the model can be found in the Supplementary Note. Given that 
0 ≤ [TF]n/([TF]n + Kn

d ) < 1 , k1 and k2 are, respectively, the maximum rates at which promoter activation and 
transcription occur. The model includes mRNA degradation at rate, d2 , but not the translation into the protein 
which is assumed to decay slowly enough so that the accumulated amount of mRNA produced can be used as 
the output of the process.

In the simulations, transcription is modeled stochastically with a master equation, while the rest of the steps 
are modeled deterministically, using Euler’s method to solve the ODEs. The TF’s nuclear concentration, [TF]
(t), is modeled by a single or a sequence of square pulses. The maximum TF amplitude considered is 100 (in 
dimensionless units) and the maximum pulse duration is 10 min. The total time of the simulations is 100 min. The 
value, P1(t) , derived from the numerical integration of the first two steps and [TF](t) are fed into the transcription 
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Markov Process where the core of the randomness occurs. Finally, the mRNA is integrated in time to obtain the 
output. Given that Po + P1 = 1 , the simulations imply solving the following equations:

where X(t) is the (stochastic) number of mRNA molecules at time, t and N = {0, 1, 2 . . .}.
Three types of TF modulations are studied: duration (identified with the label “0”), amplitude (identified 

with the label “1”) and frequency (identified with the label “2”). In the cases of modulation by duration or 
amplitude, TF(t) is given by a single pulse of amplitude, 100, and variable duration or of variable amplitude 
and duration, 10 min, respectively, that starts at t = 0 . Neglecting the noise that is added to the concentration 
amplitude, [TF] = 100 is the maximum value that this concentration can take on for all cases probed. In the 
case of frequency modulation, TF pulses of 1 min duration and amplitude, 100, that occur all throughout the 
simulation are considered with a Poisson process to determine their timing. In all cases, TF(t) is the norm of 
the sum of the deterministic pulse amplitude at time t and a normally distributed random variable of standard 
deviation, 10. The output is:

with, in most cases, one of three finite values, T = Ta , Tb and Tc . These values are Ta = 10 min, Tb = 50 min 
and Tc = 100 min and Ta = 1 min, Tb = 10 min and Tc = 100 min for frequency and amplitude modulation, 
respectively. For the latter, Tb corresponds to the time at which the TF pulse ends for all amplitudes. For duration 
modulation, we use Ta = tend , Tb = 10 min and Tc = 100 min, with tend the duration of the input TF pulse. Notice 
that the Ta time cut of this case is qualitatively different from the other 8 cuts, since it does not correspond to a 
fixed time, but instead it is defined by an event. This makes the promoters selected to be sensitive to that particu-
lar setting different from the others. For illustrative purposes we also compute, Out(T), and the corresponding 
mutual information, as continuous functions of time, T.

Computation of mutual information. Discretizing the set of values that the input, I, and the output, O, 
can take on ( {Ii}NI

i=1 and {Oi}
NO
i=1 , respectively), their mutual information can be written as:

where pI ,O is the joint probability distribution of I and O and pI and pO are the corresponding marginal distri-
butions. All the simulations are done assuming a uniform distribution of the input values: over [1, 10] min for 
duration modulation; over [0, 100] for amplitude modulation; over (0, 0.1]/min for frequency modulation. The 
highest frequency considered gives, on average, a time integral of [TF](t), over the simulation time interval (100 
min), that is equal to the equivalent integrals for the cases of amplitude or duration modulation ( 100× 10 min). 
The uniform distribution implies that pI (Ii) = 1/NI ∀i , so that the first term in the r.h.s. of Eq. (3) is equal to 
log2(NI ) . All the simulations are done discretizing the corresponding input in NI = 200 values. Given the input 
parameters that are kept fixed depending on the modulation type (pulse amplitude and/or duration) and a set 
of model parameters ( k1 , k2 , n, Kd , d1 and d2 ), 15,000 simulations are run for each of the 200 input values that 
correspond to the modulation type probed (amplitude, duration or mean inter-pulse frequency). The results of 
these 3 106 simulations are then used to compute the 3 types of output cuts described before (which only differ in 
the time interval over which the number of mRNA molecules is integrated, see Eq. (2)). The mutual information 
between each of the three input types and each of the three output cuts (9 combinations) is computed, for each 
set of kinetic parameter values, using the Jackknife method, which corrects for  undersampling34,35. For some 
studies we also compute MI as a function of time, in which case we call it MI(time). We compute MI(time) for 
each input type integrating X in Eq. (2) between 0 and time.

Sampling of parameter space, optimization and comparisons.. One of the aims of the present 
study is to determine the parameters of the model that maximize MI for each input modulation and output 
time cut. To guarantee a homogeneous sampling of the parameter space, the Latin Hypersquare Sampling (LHS) 
method was  used36, dividing the logarithmic range of values of each parameter ( k1, k2,Kd , n, d1 ) into equiprob-
able, non-overlapping  intervals37. The intervals sampled for each parameter are shown in Table 1. In total, 17,500 
parameter sets were probed.

To obtain the results of the subsection “One transcription factor, two genes” we look for the set of parameters 
that gives the smallest value, MIm , for one type of modulation and output time cut, i ( i = 0, 1, 2 as described 
before) restricting the search over the sets of parameters that give values, MI, that are within 90% of the maxi-
mum, MIM , for another type of modulation ( j  = i ) and the same time cut. We then define the Minmax region 
of parameters for the corresponding pair of input types, ij, as the sets that give values of MI that differ by less 
than 10% from MIM and MIm for the i and j input modulation types, respectively. We also say that the sets of 
parameters in the Minmax fulfill the Minmax condition.

(1)

Ṗ1 =
k1[TF(t)]

n

Kn
d + [TF(t)]n

−

(

k1[TF(t)]
n

Kn
d + [TF(t)]n

+ d1

)

P1, X = N

k2[TF(t)]
n

Kn
d
+[TF(t)]n

P1(t)
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d2X
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Results
To analyze the mutual information (MI) between a stimulus and its induced transcriptional response, and how 
MI depends on whether stimulus strength is encoded in amplitude, frequency or duration of a transcription 
factor activation state, we performed simulations of a simple transcriptional model first presented by Hansen 
et al. to describe gene induction by the TF Msn2 of the budding yeast S. cerevisiae24. As illustrated in Fig. 1, we 
assumed that increasing stimulus strengths could modulate nuclear TF (TF, the input of our model) in three 
possible ways: larger TF concentrations (amplitude modulation), longer periods of maximal TF concentration 
(duration), and higher frequency of TF pulses (frequency). The output (transcription) was obtained integrating 
the number of mRNAs produced over three different time intervals. TFs perform two tasks: binding to DNA and 
when bound, regulating transcription itself. This is captured in the model by two consecutive steps. In the first 
step of the model, binding of the TF to the promoter facilitates its transition from inactive ( P0 ) to active ( P1 ). 
That is, the TF makes the promoter permissible for transcription. This reaction, modeled as a cooperative Hill 
function, aggregates in one step various processes besides binding, such as modifications in the positioning of 
the nucleosomes and recruitment of chromatin modifying enzymes. In the second step of the model, the bound 
TF induces transcription, capturing in it several other molecular steps by which the TF brings to the proximity of 
the promoter the complexes that actually recruit and activate the RNA polymerase II, depending on the promoter, 
either the Mediator or SAGA  complexes38. TF recruitment of this machinery is likely to be cooperative as well, 
and thus it is modeled by a second Hill function (see the Supplementary Note for more details). In the model, 
each set of parameter values of the transcription model corresponds to a different promoter. In this section, we 
show the results obtained when MI was computed for each combination of input modulation and output time 
cut. In some instances, we also show the results of computing MI as a continuous function of the output time 
cut. To interpret the results, we analyze the time course of some key variables of the model. We study as well 
how MI varies with the parameters of the model and whether there are sets for which MI is large for an input 
modulation type and much smaller for another.

Table 1.  Sampled intervals for each of the parameters of the problem.

Parameter Range

k1 (1/min) (0.01, 1)

k2 (1/min) (1, 100)

n (1,10)

Kd (a.u.) (10, 100)

d1 (1/min) (0.01, 1)

d2 (1/min) 0.12

Figure 1.  The model. An external stimulus is encoded in the (pulse) duration, (pulse) amplitude or (inter-
pulse) frequency of the nuclear TF concentration, [TF]. The model does not describe this first step of the 
codification process, but starts directly with the nuclear TF time course. Mutual information, MI, between 
input (pulse duration, pulse amplitude or mean inter-pulse frequency, depending on the type of stimulus 
codification or “TF modulation type”; 3 subfigures on the left) and output (the time integral of the number of 
mRNA molecules produced, X) is computed choosing three possible time cuts for its calculation (3 subfigures 
on the right which correspond to an example with a single TF pulse of amplitude, 100, and 10 min duration). In 
between, converting input into output, is the transcription  model24 described in more detail in the main body of 
the paper.



5

Vol.:(0123456789)

Scientific Reports |         (2023) 13:2652  | https://doi.org/10.1038/s41598-023-29539-3

www.nature.com/scientificreports/

Maximum mutual information and model parameters. Here we show the results of the optimization 
run for each combination of input modulation type and output time cut when the parameters, d1 , k1 , k2 , Kd and 
n, are varied and d2 = 0.12/min (see “Methods”). Table 2 displays the parameter sets that maximize MI in each 
case and the range of values over which the optimization was performed. We observe that MIM is 1-2 bits for 
all combinations (with a value ∼ log2(3) , i.e., three distinguishable input values), with the exception of the Ta 
output time cut and duration modulated inputs that gives 2.6. It must be pointed out that in this case the output 
is integrated only while TF(t) is different from 0 (while the pulse is on), which is qualitatively different from the 
rest. For the other cases, the system can behave slightly better than a binary (noisy) switch (1 bit). The parameters 
that maximize MI have various features in common for almost all combinations of input modulation and output 
time cut. If we set aside the output cut, Ta , for duration modulation, we observe that k2 ≫ k1, d1, d2 , implying 
that the timescale of transcription must be as fast as possible to guarantee a good information transmission. 
Second, n ≥ 3 in most cases and the dissociation constant of the TF binding/unbinding reaction is Kd � 50 , 
of the same order of magnitude but smaller than the maximum TF concentration (100). The lower bound, 50, 
is also 5 times larger than the noise amplitude that is considered in the model (10). MI attains its maximum 
for k1 ≫ d1 , a condition that guarantees that, at steady state, P1 ≈ [TF]n/([TF]n + Kn

d ) . Thus, provided that 
k1 ≫ d1 , the ability to distinguish different amplitudes that range between 0 and 100 will depend on how the 
function [TF]n/([TF]n + Kn

d ) maps the [0, 100] interval.
To analyze in more detail the effect of each parameter on MI we performed a sensitivity analysis varying each 

parameter while keeping the others fixed at the values that gave MIM . We show the results in Fig. 2. This figure 
confirms the initial conclusions that we drew from Table 2. Namely, for all but one case (the duration modulation 
type for the output time cut, Ta ), MIM is attained when d1 is low and k1 and k2 are high, compared with the fixed 
timescale of the model, d2 = 0.12/min. If we look at the parameters related to the TF-promoter relationship, we 
observe that Kd tends to be medium-high and the Hill Coefficient, n, tends to be high for the maximum MI to 
occur. On the other hand, we observe that the range over which the parameters can be varied without changing 
MI much is different ddepending on the parameter and the input modulation. In particular, we observe that 
amplitude modulation transmission is the most sensitive to separate changes in Kd and n, that frequency modu-
lation is most sensitive to changes in d1 while MI barely changes upon variations in d1 for duration modulation. 
In most cases, once the model parameters exceed a threshold, MI stays approximately constant and we observe, 
on average, the most extended plateaus for duration modulation.

Model dynamics and MI maximizing parameters. In order to understand why the maximum infor-
mation transmission is obtained, in most cases, for parameters that satisfy k2 ≫ k1, d1, d2 ; n ≥ 3 and Kd � 50 , 
we look at how the time course of some key variables of the model (TF, P1 , mRNA and Out(time)) changes 
depending on whether the parameters are such that they give a relatively large or low value of MI for some com-
bination of input type and output time cut.

We show in Fig. 3a–c, the results obtained with simulations in which a single TF pulse of 10 min duration 
was considered. When the parameters satisfy k2 ≫ k1, d1, d2 , n ≥ 3 and Kd � 50 we observe that the three input 
strengths translate into three distinguishable outputs (Fig. 3a). In the other examples, either promoter activation 
dynamics is too slow and it never gets activated (Fig. 3b, where k1 ≪ d1 ) or the promoter is activated maximally 
for all inputs (Fig. 3c, where the threshold determined by Kd and n is too low and the timescale is not slow). 
In the last case, the three input strengths translate into almost indistinguishable outputs. We show in Fig. 3d, 
with symbols, the time course of MI computed for amplitude modulation and the Tc output time cut using the 
kinetic parameters of the example in a. We observe that MI reaches a maximum approximately at t = 10 min, 
i.e., when the TF pulses end, and then decays towards a slightly lower value at a rate � ∼ 0.09/min of the order 

Table 2.  Sets of parameters that maximize mutual information, MI, for each combination of input modulation 
and output integration time and the corresponding value, MIM , obtained in each case. The table shows the 
range over which each parameter value was varied when looking for this maximum. The parameter, d2 , was 
always fixed at d2 = 0.12/min. Note that the arbitrary concentration units are such that 100 is the (active) 
nuclear TF concentration that was used to compute MI in the case of duration or frequency modulation and 
the maximum such concentration in the case of amplitude modulation.

Input Output k1 [1/min] k2[1/min] n [a.u.] Kd [a.u.] d1 [1/min] MIM [bits]

Modulation  Cut (0.01,1) (1,100) (1,10) (10,100) (0.01,1)

Duration Ta 0.32 91 1 10 0.056 2.61

Duration Tb 0.6 84 7.3 79 0.017 1.61

Duration Tc 0.13 63 8.3 94 0.016 1.52

Amplitude Ta 0.62 92 9.5 49 0.024 1.65

Amplitude Tb 0.93 31 3.3 96 0.13 1.91

Amplitude Tc 0.72 45 4.2 81 0.84 1.66

Frequency Ta 0.77 26 9.9 100 0.031 0.82

Frequency Tb 0.08 45 6.5 55 0.012 1.52

Frequency Tc 0.13 35 7.3 54 0.017 1.87
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of the mRNA degradation rate, d2 = 0.12/min, as illustrated by the fitting curve depicted with a solid line in the 
figure. We obtain a similar non-monotonic temporal behavior of MI for duration modulation while for frequency 
modulation MI increases monotonically, i.e. the more time allowed to the system to process the input, the more 
information can be extracted (data not shown).

Pairs of parameters and mutual information. So far, we have analyzed how MI varies when a single 
parameter is varied. In this section, we analyze if the parameters are interdependent in determining MIM . To 
this end, we varied the values of all possible pairs of parameters maintaning the others fixed at the values that 
gave MIM and calculated MI (Fig. 4). From the analysis of the results, we determined how the pairs had to be 
varied to keep MI constant. We found that, for all input and output types, d1 tended to be positively correlated 
with k1 and k2 . That is, changing d1 in a given direction modifies MI in a way that is compensated by modifying 
k1 or k2 in the same direction. We then found that k1 and k2 were negatively correlated with one another, i.e., if k1 
is increased, k2 has to be increased to keep MI fixed, and viceversa. Similarly, the parameters related to the TF-
promoter relationship, Kd and n, are negatively correlated in most cases, with the exception of the Ta output time 
cut for duration modulation, for which n and Kd need to be low for MI to attain its maximum value.

One transcription factor, two genes. One of the aims of the present work is to determine whether 
there can be two promoters, modulated by the same TF, each one being able to discriminate stimulus strengths 
encoded in a different property of the nuclear TF concentration and not being able to discriminate the strengths 
encoded in the property at which the other one is good. For example, one promoter that discriminates TF ampli-
tudes but is “blind” to frequency changes while the reverse situation is valid for a second promoter. To explore 
this possibility, we searched for the sets of kinetic parameters that gave MI within 90% of the maximum, MIM , 
for a certain input modulation type and, at the same time, gave a relatively small value for another input type 
(and the same output time cut), i.e., the sets that fulfill the Minmax condition (see “Methods”).

Figure 5 shows the projection of the six Minmax regions, for the Tc time cut, on each of the five parameter 
space axes of the transcription model. Although such a projection should be analyzed with care, Fig. 5 illustrates 
how much each parameter can be varied while satisfying the Minmax condition. We can observe that the sen-
sitivity of MI to parameter variations is different depending on the parameter and the pair of input modulation 
types. For example, k1 and d1 can be varied by over an order of magnitude and, yet, MI differs by less than 10% 

Figure 2.  Behavior of mutual information, MI, around its maximum value, MIM , when one kinetic parameter 
is varied. We show MI as a function of the corresponding parameter for each type of input modulation and 
output time cut (a–c,d–f,g–i correspond, respectively, to the Ta , Tb and Tc output time cuts; a–d–g,b–e–h,c–f–i 
correspond, respectively, to duration, amplitude and frequency input modulation type). Except for the 
modulation by duration and the Ta time cut, the rest of the behaviors are very similar across modulations and 
time cuts. In particular, the highest information is obtained if d1 is low, k1 , k2 and n are high and Kd is in a 
middle-high range, but not too high. For the Ta time cut and duration modulation type Kd and n need to be low 
to maximize MI.
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from MIM for duration modulation and from the conditional minimum, MIm , for amplitude modulation, and 
viceversa. The parameter, d1 , on the other hand, can barely be varied to keep MI within 90% of MIM for ampli-
tude or duration modulation and differ by less than 10% from MIm for frequency modulation. Overall, we see 
that keeping MI as small as possible for frequency modulation in each i2 Minmax region requires to fine tune 
the time-related parameter values ( k1 , k2 and d1 ) and, in the case of the 12 region, the dissociation constant, Kd , 
as well. As we show in what follows, this fine tuning allows the finding of promoters (characterized by sets of 
parameter values) that are “blind” to frequency modulated inputs but are good at transmitting information in 
other modulation types, while the reverse seems to be impossible.

We now analyze the difference in information transmission that is achieved when choosing some of the 
model parameters determined with the Minmax conditioning. This is illustrated in Fig. 6a where we show the MI 
values obtained for the i and j input modes using a parameter set in the ij Minmax region, for all six ij pairs. The 
parameters are those that minimize MI for one input modulation type while still being within 90% of the other’s 
maximum (plotted with circles in Fig. 5). We observe that MI, for duration modulation, has approximately the 
same value ( ∼ 1.3 to 1.4) for all combinations, including those for which MI by duration is minimized. Given 
that each set of parameters corresponds to a different promoter, this implies that durations are always equally 
discriminated regardless of the promoter. In contrast, frequency modulation is the most sensitive mode with MI 
variations of almost one bit depending on the parameters that characterize the promoter ( MI ∼ 0.8 for the sets 
depicted in red or blue and MI ∼ 1.7 for those depicted in orange or cyan). The situation for amplitude modula-
tion is intermediate with variations of ∼ 0.5 bits ( MI ∼ 1.1 for the parameters depicted in brown or cyan while 
MI ∼ 1.5 for those in green or blue). These results indicate that it should be possible to find promoters that, 
being regulated by one TF, are good at decoding duration or amplitude encoded inputs and, at the same time, be 
“blind” to frequency modulated ones, but that the separation of behaviors would not be as clear in the opposite 
situation, especially in the case of the combination frequency-duration. We now analyze how the discriminating 
ability is reflected in the amount of mRNA that is produced using some examples (Fig. 6).

Figure 3.  Time course of [TF], P1 , X and Out(time) for 3 sets of parameter values (a–c) and 3 different 
amplitudes of TF(t) (colors) and the time course of MI for amplitude modulation, the Tc time cut and using the 
kinetic parameters of the example in a (d). (a–c) In all the simulations, a single TF pulse of 10 min duration was 
considered. The amplitudes were 0 (red), 10 (green) and 100 (blue) with a superimposed Gaussian distributed 
noise amplitude of standard deviation, 10. The parameters used in the simulations of the first column were 
k1 = 1/min, k2 = 100/min, d1 = 0.01/min, Kd = 70 , n = 10 for which the mutual information, computed 
for the amplitude modulation input type and the output time cut, Tc , is MI = 1.56 (i.e. 94% of MIM ). Those of 
the second column were k1 = 0.01/min, k2 = 1/min, d1 = 1/min, Kd = 10 , n = 1 for which MI = 0.03 , and 
those of the third: k1 = 1/min, k2 = 100/min, d1 = 0.01/min, Kd = 10 , n = 1 for which MI = 0.02 . (d) MI as 
a function of time computed for amplitude modulated inputs and the Tc time cut using the kinetic parameters of 
the example in a (symbols) and a curve of the form A exp(−�(t − 10 min))+MIa that fits the eventual decay 
to its asymptotic value ∼ MIa = 1.57 bits with � = 0.09/min (solid line).
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We show in Fig. 6c, the mRNA that is accumulated as a function of time for various examples that were 
obtained using the parameter sets of Fig. 6a. We probed the dynamics of the model using these sets of parameters 
(each one of which can be associated with a different promoter that responds to the same TF) and sets of inputs, 
TF(t)-D, A, F, characterized, respectively, by decreasing duration, amplitude and frequency of the TF pulse or 
pulses, as shown in Fig. 6b, related to the transmission modes that had been maximized and conditionally mini-
mized to determine the parameter sets.

Consistent with the previous discussion (Fig. 6a), it is the frequency encoding (Inputs F) the one that produces 
the largest differences depending on the parameter set. Not only the amount of mRNA produced for Inputs F is 
much larger for the two sets in which transmission by frequency modulation was maximized (20 and 21 Minmax 
regions) than in those in which it was conditionally minimized (02 and 12), but also the three TF time courses 
within Inputs F are more easily distinguishable in the former than in the last two cases. In the case of duration 
encoding (Inputs D), the amounts of accumulated mRNA are slightly larger for the set that belongs to the 01 
Minmax region than for the one that belongs to the 10 one and slightly larger for the latter in comparison with 
the ones in the 02 or the 20 Minmax regions. The ability to distinguish the 3 durations does not seem to vary 
much with the parameter set. In the case of amplitude encoding (Inputs A), the amount of accumulated mRNA is 
largest for the set which was determined by conditionally minimizing the information transmission for amplitude 
modulation. For this type of inputs, the failure to transmit enough information for the parameter set in the 01 
Minmax region compared with the set in the 10 one (see brown vs green cross in Fig. 6a) seems to be related to 
producing similar amounts of mRNA regardless of the TF amplitude in the former (see brown vs green curves 
for Inputs A). Something similar occurs when the behavior obtained for Inputs A and the sets in the 12 and the 
21 Minmax regions are compared (blue and cyan curves of Inputs A, respectively).

Discussion and conclusions
In this paper we have studied the information transmission capabilities of transcription when extracellular stimuli 
are encoded in the amplitude, duration or pulse frequency of the TF’s nuclear concentration. We used the simple 
model of Fig. 1-introduced by Hansen and O’Shea24 to describe the activity of Msn2 in yeast- in which each 
promoter that is regulated by the same TF corresponds to a different set of parameter values of the transcription 
step. We computed the mutual information (MI) between the amplitude, the pulse frequency or the duration 
of the TF’s nuclear concentration (the input) and the accumulated amount of mRNA produced (the output) to 
determine both the maximum MI for each encoding and the range of parameter values (i.e., the type of promot-
ers) that gives the maximum in each case. Our studies showed that, for any combination of physiologically feasible 
parameter values and any modulation input type, the maximum MI is between one and two bits (Table 2), with 

Figure 4.  Mutual information, MI, as a function of two parameters while the others are left fixed at the values 
that maximize MI for the particular input and output types analyzed in each case (a–c,d–f,g–i correspond, 
respectively, to the Ta , Tb and Tc output time cuts; a–d–g,b–e–h,c–f–i correspond, respectively, to duration, 
amplitude and frequency input modulation type). Common behaviors are observed throughout most 
modulations and time cuts.



9

Vol.:(0123456789)

Scientific Reports |         (2023) 13:2652  | https://doi.org/10.1038/s41598-023-29539-3

www.nature.com/scientificreports/

the only exception of the Ta output time cut and duration modulation, which is qualitatively different from the 
rest and for which it could be ∼ 2.6 bits. The maximum values obtained for the other cases were slightly larger 
than those encountered in experiments on Msn2-regulated gene expression in wild type (WT) yeast  cells25 which 
showed that it operated as a noisy switch (transmitting ∼ 1.1 to 1.3 bits) for two genes, HXK1 and of SIP18, when 
they were modulated, respectively, by frequency and amplitude. When the authors mutated the promoters with 
the aim of improving information transmission, MI for amplitude modulation increased to ∼ 1.5  bits25, very 
similar to the maximum values that we found with our parameter exploration. Looking at the time dependence 
of MI for the parameters that gave a relatively good information transmission we observed that, for duration 
and amplitude modulation, MI(t) reached a maximum and then decayed to a slightly smaller asymptotic value. 
For these modulation types, the timing of the maximum and the timescale of the subsequent decay of MI are 
related to the moment at which mRNA production ends and to the mRNA degradation rate, d2 , respectively. 
This is illustrated in Fig. 3d that corresponds to a case in which all pulses end at t = 10 min and d2 = 0.12/min, 
and where it can be observed that the decay to the asymptotic value can be approximated by an expression of 
the form A exp(−�(t − 10 min))+ 1.57 bits with with � = 0.09/min. The non-monotonic behavior of MI with 
time is probably the reason that underlies the much larger MI value obtained for duration modulation and the 
Ta output time cut which corresponds to the end of mRNA production in all cases and, thus, does not include 
the subsequent mRNA degradation steps (included in all other output time cuts). It is also consistent with the 
observation that MI increases steadily with time for frequency modulation, given that, in this case, the TF pulses 
occurred thoughout the simulation time. Perhaps, cells could take advantage of the non-monotonic time course 
of MI via a pre-equilibrium sensing  mechanism39, something that we have not explored in the present paper.

The model we have used is characterized by four parameters directly associated to timescales ( k1 , k2 , d1 and 
d2 , which we kept fixed at d2 = 0.12/min) and by another two ( Kd and n) related to the TF-promoter relation-
ship. We found (Table 2) that those that maximized MI for all combinations of input modulations and output 
time cuts corresponded to a fast transcription timescale ( k2 ≫ k1, d1, d2 with k1 ≫ d1 in most cases). This is so 
because a high transcription rate (at constant mRNA degradation rate, d2 ) creates ample and input-sensitive 
mRNA fluctuations (Fig. 3). This result agrees with those of Hansen and O’Shea24 in that a fast timescale generates 
better responses. Regarding the TF-promoter relationship, again we found a distinguishing result for the Ta time 
cut and duration modulation input. In particular, we found that a larger dynamic range (lower Kd and n) was 
favored in this case compared to the others. Restricting the comparison to the MI maximizing parameters for the 
Tc output time cut, we obtained the sharpest TF-promoter relationship ( n ∼ 7 to 8) for duration and frequency 
modulated inputs and values of Kd that were several times larger than the noise amplitude, 10, and varied between 
50% (for frequency modulation) and 94% (for duration modulation) of the maximum TF concentration, 100. 
We suspect these relatively large Kd values (i.e., low binding affinity) are important to prevent the occurrence of 
noise-driven transcription events (a limit case of which is illustrated in Fig. 3c). Relatively low affinity is thus a 

Figure 5.  Projection on each parameter axis of the Minmax regions obtained for each pair of modulation 
input types and the Tc output time cut. The pairs of digits in the horizontal axes identify the modes for which 
the information transmission has been maximized (first digit) and subsequently minimized (second digit) to 
determine the Minmax regions, with 0: duration, 1: amplitude and 2: frequency. The symbols correspond to the 
values that minimize MI for the second digit modulation given that MI stays within 90% of MIM for the first 
digit modulation.
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condition to guarantee a clear distinction between “ON” and “OFF” states and it is in agreement with the fact 
that functional low affinity binding sites are common in eukaryotes perhaps to better distinguish between similar 
 TFs40. We discuss later why frequency modulation requires a somewhat higher binding affinity than the other 
two modes. The n values that maximize MI are also relatively high and might seem unrealistic if only TF-DNA 
binding is considered. In our simplified model, however, both the first and second step synthesize an aggregate 
of elementary reactions/processes. A series of cooperative reactions, each having a modest n > 1 may combine 
to elicit a sufficiently high combined n. There are multiple examples of this sharpening effect in concatenated 
covalent modification cycles, such as protein kinase  cascades41,42. As discussed later, the parameter values that 
yield the absolute maximum, MIM should be considered with care in that some of them may be varied without 
producing much change in MI (Figs. 2, 4). For example, when n is varied between 3 and 10, MI varies by less than 
10% for all input modulation types and the Tc time cut (Fig. 2g–i). In any case, our studies on the MI maximizing 
parameters should be helpful when designing synthetic promoters. Some of the properties required to maximize 
MI (Table 2) agree with, whereas others seem to differ from, the experimental results of Hansen and O’Shea24. 
Namely, these authors classified Msn2-activated promoters as high (H) or low (L) threshold (requiring high or 
low Msn2 concentration for induction, respectively, which corresponds to high or low Kd ) and as fast (F) or 
slow (S) (induced quickly or requiring a longer time with Msn2 bound to induce transcription, respectively). 
Their experiments showed that high treshold traits were accompanied by slow timescales (HS promoters) and 
that these genes were those modulated by duration (i.e., osmotic stress). They found, in turn, that low treshold 
traits were coupled to fast timescales (LF promoters) and that these genes were those modulated by frequency 
(i.e., induced during glucose starvation). While (for the Tc output time cut) we found, in agreement with these 
results, the maximum MI at a larger Kd (i.e. a larger threshold) for the duration modulation than for the frequency 
one, for the transcription timescale (determined by the ratio, k1k2k1+d1

 ) we found, differently from the experimental 
observations, a value twice as large for duration modulation compared to frequency modulation.

We can explain the differences between the optimal values derived from our study and those calculated with 
experimental data obtained from WT cells by Hansen and O’Shea25 in terms of the different sensitivity that MI 
displays to parameter variations for the various input modulations. In general, once the model parameters surpass 
a threshold, MI stays approximately constant (Fig. 2). On the other hand, in most cases the threshold for one 
parameter depends on the other parameter values, e.g., the k2 threshold decreases for increasing k1 (Fig. 4). Thus, 
the “optimal” parameters are not that meaningful per se, in the sense that they could be varied (especially, in 

Figure 6.  Mutual information and dynamical behaviors obtained using the set in each Minmax region that 
minmizes MI for the “second” modulation type. (a) MI computed using the selected set of parameters in each 
Minmax region for the input modulation modes that are maximized and conditionally minimized to determine 
the region (circles: duration, crosses: amplitude, triangles: frequency) and the Tc output time cut. The labels on 
the horizontal axis identify the Minmax regions with the digits order as in Fig. 5. Each parameter set is identified 
by a different color. The parameter values in each set are displayed with symbols in Fig. 5b,c. Accumulated 
mRNA (Out(time)) as a function of time (c) obtained from simulations of the model using the TF time 
courses displayed in (b) (curves in c are plotted with increasing thickness with stimulus strength) and the same 
parameter sets (identified by the same color) as in (a).
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pairs) without much change in MI. Our study showed that the range over which the parameters could be varied 
without changing MI much was different for the different parameters and input modulation types. For example, 
for the Tc time cut we obtained that amplitude modulation transmission was most sensitive to changes in Kd 
and n, that MI for frequency modulation varied by over half a bit if d1 or k1 did not stay within the same order of 
magnitude as the values that gave maximum transmission for this mode and that duration modulation was the 
least sensitive to simultaneous variations in d1 and k1 (Figs. 2, 4). This different sensitivity was clearly reflected in 
the results of the search of parameters that could give good transmission for one input modulation and a relatively 
low one for another (Figs. 5, 6a). Namely, we determined that frequency modulation was so sensitive to parameter 
changes that promoters could be found which yielded a relatively large information transmission for duration or 
amplitude modulation and a much lower one for frequency modulated inputs: one which gave MI ∼ 1.4 bits for 
duration modulation and MI ∼ 0.8 bits for frequency modulation (Fig. 6a, red symbols) and another which gave 
MI ∼ 1.5 bits for amplitude modulation and MI ∼ 0.8 bits for frequency modulation (Fig. 6a, blue symbols). 
We observe in Fig. 5 that the parameters that characterize these examples differ from those that yield higher MI 
values for frequency modulation, among other things, in the values of the transition rate from the inactive to the 
active conformation, k1 , and of the dissociation constant, Kd : while Kd ∼ 60 and k1 ∼ 0.02/min for the cases 
that yield MI ∼ 0.8 bits (red and blue triangles in Fig. 6a), it is k1 > 0.1/min and Kd ∼ 30 to 40, in the cases for 
which MI ∼ 1.7 bits (orange and cyan triangles in Fig. 6a). Higher binding affinities and faster transition rates 
contribute to transcription initiation during the relatively short pulse duration of frequency modulated inputs. 
This agrees with the observation that p53 binding affinity to proapoptotic genes is lower than that to proarrest 
 genes43 and that p53 pulses lead cells to recover from DNA damage while a sustained p53 elevation frequently lead 
to  senescence12. Thus, to some extent we conclude that frequency encoding is selective not only because it requires 
a relatively fine tuning of the promoter parameters but also because it works well with higher binding affinities.

Having a promoter such that MI ∼ 1.5 bits for amplitude modulation and MI ∼ 0.8 bits for frequency modu-
lation (blue symbols in Fig. 6a) is similar to the situation encountered by Hansen and O’Shea25 using a mutated 
version of the promoter, SIP18, that is induced upon prolonged nuclear accumulation of Msn2 (see their Fig. 2). 
Expanding our search beyond the limits of the already defined Minmax regions, we found a set of parameters (i.e., 
a promoter) which gave MI ∼ 1.1 bits for duration, MI ∼ 1.2 bits for amplitude and MI ∼ 0.7 bits for frequency 
modulation. The last two values are closer to those obtained for SIP18 in WT cells. We think that the information 
transmission for frequency modulation could have been reduced even further had we used a more sophisticated 
(and realistic) model than the very simple one of Fig. 1. Hansen and O’Shea25 asked why the cell should not “fine-
tune the expression level of stress genes to the stress intensity”. Our studies seem to indicate that, at least in the 
case of SIP18, the parameters might have been tuned to make it as blind as possible for frequency modulation 
without losing the capability of distinguishing ON from OFF without error in the case of prolonged nuclear 
accumulation of Msn2. The lower sensitivity to parameter variations of duration and amplitude modulated inputs 
might have prevented this total blindness to be attained for the HXK1 promoter which is physiologically induced 
by Msn2 pulses. In any case, according to our studies, even under optimal promoter parameters the information 
transmission could only be slightly better than 1bit, i.e., each single promoter cannot act as a rheostat. External 
stimuli encoded in the amplitude or duration of a transcription factor’s nuclear fraction, which can eventually 
activate more than one promoter (provided that the detection thresholds are surpassed), could increase their 
information transmission capabilities with a combinatorial strategy. These results are applicable to other signal-
ing pathways. In particular, similar processes might underlie dynamic multiplexing in gene expression within 
the p53 regulatory pathway in  humans12, something that could be investigated introducing mutations that could 
change the activation threshold or characteristic timescales of the promoters involved.

Data availability
The codes and the datasets generated and analyzed during the current study are available in the Mendeley Data 
repository, https:// data. mende ley. com/, DOI: https:// doi. org/ 10. 17632/ 8hsdd bfgp5.1.
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