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Fragmentation and correlations 
in a rotating Bose–Einstein 
condensate undergoing breakup
Sunayana Dutta 1,2*, Axel U. J. Lode 3 & Ofir E. Alon 1,2

The theoretical investigation of rotating Bose–Einstein condensates has mainly focused on the 
emergence of quantum vortex states and the condensed properties of such systems. In the present 
work, we concentrate on other facets by examining the impact of rotation on the ground state of 
weakly interacting bosons confined in anharmonic potentials computed both at the mean-field level 
and particularly at the many-body level of theory. For the many-body computations, we employ the 
well-established many-body method known as the multiconfigurational time-dependent Hartree 
method for bosons. We present how various degrees of fragmentation can be generated following 
the breakup of the ground state densities in anharmonic traps without ramping up a potential barrier 
for strong rotations. The breakup of the densities is found to be associated with the acquisition of 
angular momentum in the condensate due to the rotation. In addition to fragmentation, the presence 
of many-body correlations is examined by computing the variances of the many-particle position 
and momentum operators. For strong rotations, the many-body variances become smaller than their 
mean-field counterparts, and one even finds a scenario with opposite anisotropies of the mean-
field and many-body variances. Further, it is observed that for higher discrete symmetric systems of 
order k, namely three-fold and four-fold symmetry, breakup to k sub-clouds and emergence of k-fold 
fragmentation take place. All in all, we provide a thorough many-body investigation of how and which 
correlations build up when a trapped Bose–Einstein condensate breaks up under rotation.

The successful experimental realization of a rotating Bose–Einstein condensate (BEC) has paved the way to 
explore various rich physics of correlated quantum systems1–5. Butts and Rokhsar6 first evaluated the wave func-
tion of a rotating BEC using the lowest Landau level approximation with the help of a Gross-Pitaevskii functional. 
The rotating ultracold bosonic gases have led to the investigation of the occurrence of quantized vortices1,3,6, 
vortex nucleation7, emergence of quantum fluctuations8,9, and presence of the fractional quantum Hall effect in 
weakly interacting quantum systems10.

There have been studies where breaking up of fast rotating objects is widely detected in systems extending 
from astronomical objects, e.g., galaxies and supermassive rotating stars11 to the quantum systems in nuclear 
physics12. In atomic physics, the emergence of superfluid flow of a rotating quantum gas has been explored 
experimentally in Ref.13, in an anharmonic potential. Theoretically, the emergence of breakup in a rotating dipo-
lar condensate was investigated in three-dimension in Ref.14 and finally, in a rotating pancake-like asymmetric 
quartic-quadratic potential in Ref.15. A substantial volume of literature exists corresponding to the rotating BEC, 
investigating various rich quantum features by employing Gross-Pitaevskii mean-field approximation16–18. How-
ever, there exists much less studies of rotating BEC in the many-body domain, see19–24, that explore interesting 
many-body quantum features like the fragmentation of the condensate and correlations.

Condensation and fragmentation are widely explored many-body features of BEC derived from the proper-
ties of the one-body reduced density matrix25–30. According to Penrose and Onsager, interacting bosons are said 
to be condensed if they have a single macroscopic eigenvalue of the one-body reduced density matrix31, and 
fragmented if there exist two or more macroscopic eigenvalues32. The fragmentation of condensates has been 
thoroughly studied for non-rotating systems29,30,33–47. However, these many-body features have relatively been 
less extensively investigated in the rotating frame7,48–50.

In the regime of “ultrafast rotation”, when the rotation frequency comes closer to the trapping frequency in 
case of a harmonic trapping potential, the system would tend to escape as the centrifugal force would cancel 
the trapping force. This problem can be resolved either by introducing an anharmonic term into the confining 
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potential or by adding anisotropy in the harmonic potential. Anisotropy makes the confining potential elon-
gated. Ref.51 investigated the appearance of vortex rows of BEC in an anisotropic potential under rotation using 
Gross-Pitaevskii formalism. Motivated by these findings, in this work, we study a system of bosons subject to 
rotation confined in various anharmonic trap geometries with discrete rotational symmetry in two-dimension 
2D, namely an elongated trap, a three-fold symmetric trap and finally four-fold symmetric trap.

There exist several ideas to induce mechanical rotation and coupling of the internal states in the condensate, 
such as, phase imprinting (using an electromagnetic field) as proposed by Williams and Holland in Ref.52 and 
optical spoon stirring method where quantized vortices are observed in a stirred gaseous condensate of atomic 
rubidium1. Here, we study the physics of a 2D weakly interacting ultracold bosons confined in different anhar-
monic potentials both at the mean-field level and particularly at the many-body level of theory. Specifically, 
we investigate how the system transformed from a fully-condensed state into a fragmented state followed by 
breaking up of the condensate density induced by the rotational motion. As variance is a sensitive probe that 
characterizes many-body correlations even for fully condensed systems53,54, hence we also analyze the variances 
of many-particle operators of the fragmented state in the rotating frame. The qualitative difference between the 
mean-field and many-body variances is a useful tool to explain the nature of many-body correlations. The many-
particle position variance characterizes to what extent a wave-packet spreads or narrows down, similarly the 
momentum variance is associated with the size of the wave-packet in momentum space. Hence, we emphasize on 
the emergence of correlations by investigating variances of many-particle operators like the position, momentum 
and angular momentum. Interestingly, the fluctuations present in the system are hardly observed in the angular 
momentum variance. Thus, we only present the position and momentum variances in the main text and give the 
detail discussion of the angular momentum variance in the supplemental material.

The time-dependent Gross-Pitaevskii mean-field theory55,56 is the most celebrated theoretical model to inves-
tigate the many-particle systems of ultracold bosonic atoms. However, this method is unable to study fragmenta-
tion and correlations owing to its building via the mean-field ansatz. In this paper, we employ a well established 
many-body numerical method named the multiconfigurational time-dependent Hartree method for bosons 
(MCTDHB)57,58 to accurately solve the Schrödinger equation at the many-body level for ultracold atoms subject 
to a rotation. The MCTDHB method is a bosonic version of the MCTDH family of methods59–74 which is able 
to self-consistently describe the physics involving the presence of many-body correlations. The main focus of 
the applications of MCTDHB has been the emergence of fragmentation of the condensate, where the one-body 
reduced density matrix has multiple significant eigenvalues. For numerical simulation of the results presented 
in this work, we use the MCTDH-X software74–77. Finally, the supplemental material reports the benchmarking 
of MCTDHB for an exactly solvable many-body model under rotation and also presents the convergence of the 
many-body results of our present work.

Setup and theoretical tools
We consider a system of weakly interacting bosonic atoms in two spatial dimensions 2D confined in non-
spherically symmetric trapping potentials in the rotating frame. The properties of these trapped bosons can be 
described by the (time-dependent) many-body Schrödinger equation. The Schrödinger equation dealing with 
a many-boson system is usually solved by employing the mean-field Gross-Pitaevskii approximation. However, 
the reduced density matrix involved in the Gross-Pitaevskii approximation has only a single eigenvalue and it 
involves a single basis state and thereby is unable to capture the many-body features such as fragmentation and 
correlations.

In MCTDHB, the (time-dependent) optimized one-body basis is used. Here the basis set and the expansion 
coefficients in the basis are optimized variationally57,58. The MCTDHB is a numerically exact method78 and 
can describe both coherent and fragmented condensates. MCTDHB includes the theory of Gross-Pitaevskii 
approximation as a special case when only a single one-body state is considered.

Hamiltonian.  The general Hamiltonian of N interacting bosons is given as

where the single-particle Hamiltonian

is composed of the kinetic energy and the external potential energy, respectively. Here, the interaction of ultracold 
dilute bosonic gases is considered to be a finite range interaction and modelled by a Gaussian function65,66,79, 

Ŵ(r − r
′) = �0

2πσ 2 e
− (r−r

′)2

2σ2  with σ = 0.25 . This avoids the regularization of the delta contact potential in 2D. 
The interaction strength �0 is scaled with the number of bosons N as � = �0(N − 1) , where � is the interaction 
parameter. One uses the interaction parameter to define the mean-field regime. In our study, we work in the units 
� = m = 1 and all the quantities are dimensionless. We also consider three different trapping potentials V̂(r) 
that we shall discuss in the next section. The first setup is the elongated trap − that leads to breaking up of the 
ground state density into two clouds. After that we move to more complex traps, namely three-fold symmetric 
and four-fold symmetric traps to investigate and establish the generality of the results. Hence, our strategy is to 
first study an elongated trap, and then a three-fold symmetric trap, and finally, a four-fold symmetric trap to see 
what stays between the two to three and the three to four-fold symmetric traps.

(1)Ĥ =

N
∑

j=1

ĥ(rj)+
∑

j<k

Ŵ(rj − rk),

(2)ĥ(r) = T̂(r)+ V̂(r)
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In the rotating frame, the kinetic energy operator is modified and can be written as,

here ωr is the rotation frequency and l̂z = x̂p̂y − ŷp̂x is the angular-momentum operator.
An alternative way to mimic the rotational effect in the condensate is by introducing a synthetic gauge field 

A(r) as

Consider the following general form of the gauge field:

Then, expansion of Eq. (4) leads to,

For the specific case b = −a , Eq. (6) becomes

Combining Eqs. (2), (3) and (7) we have

where the modified confining potential is V̂ ′(r) = V̂(r)+ 1
2a

2
r
2 and a = ωr corresponds to the rotation fre-

quency of the condensate.

Many‑body method.  The MCTDHB method employs time-adaptive orbitals to represent the field opera-
tor as a sum of the M time-dependent single-particle states

The ansatz of the MCTDHB wavefunction is

The summation in Eq. (10) runs over all 
(

N +M − 1
N

)

 possible time-dependent configurations �n = (n1, . . . , nM) 

with fixed particle number N =
∑M

i=1 ni . To derive the MCTDHB equations, the time-dependent variational 
principle80–82 is employed for the ansatz in Eq. (10). Thus, in Lagrangian formulation, the functional action of 
the time-dependent Schrödinger equation with many-body ansatz, Eq. (10) can be written as57,58,

where µjk(t) is the time-dependent Lagrange multipliers and is introduced to ensure that the time-dependent 
orbitals remain orthonormal during propagation. Thus, resulting in two-coupled equations of motion – a set of 
linear equations for the coefficients {C�n}

where the matrix H�n�n′ = ��n; t|Ĥ|�n′; t� is time-dependent and a set of non-linear equations for the orbitals 
{φj(r); j = 1, . . . ,M},

where P̂ = 1−
∑M

j′=1 |φ
′
j��φ

′
j | is the projection operator, ρjk = ��|â†j âk|�� and ρksql = ��|â†kâ

†
s âqâl|�� are the 

matrix elements of the one-body and two-body RDMs. ŵsl =
∫

dr′φ̂∗
s (r

′; t)Ŵ(r − r
′)φ̂l(r; t) is the matrix ele-

ments of the two-body interaction potential, see Refs.57,58 for details and derivation of the equations of motion. 
In the following work, the self-consistent ground state is achieved by relaxing the system via imaginary-time 

(3)T̂(r) =
1

2
(p̂2x + p̂2y)− ωr l̂z ,

(4)T̂(r) =
1

2

[

−i∇r − qA(r)
]2
.

(5)A(r) = (ay, bx, 0).

(6)T̂(r) =
1

2
(p̂x − ay)2 +

1

2
(p̂y − bx)2 =

1

2
(p̂2x + p̂2y)− (p̂xay + p̂ybx)+

1

2
(a2y2 + b2x2).

(7)T̂(r) =
1

2
(p̂2x + p̂2y)− al̂z +

1

2
a2(y2 + x2).

(8)ĥ(r) = T̂(r)+ V̂ ′(r),

(9)�̂(r, t) =

M
∑

j=1

b̂jφj(r, t).

(10)|�(t)� =
∑

�n

C�n|�n, t�.

(11)S[{C�n(t)}, {φj(r, t)}] =

∫

dt{��|Ĥ − i
∂

∂t
|�� −

M
∑

j,k=1

µjk(t)[�φj|φk� − δjk]},

(12)H�n�n′(t)C�n(t) = i
∂C�n(t)

∂t
,

(13)i|φj� = P̂



ĥ|φj� +

M
�

k,s,q,l=1

{ρ(t)}−1
jk ρksqlŴsl|φq�



,
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propagation and is hence determined by the variational principle. Thus, in the following sections, we omit the 
time-dependency from the various quantities and observables that are involved in the many-body simulations.

Quantities of interest.  In this section, we define the quantities of interest, namely the one-body density, 
the eigenvalues of the one-body reduced density matrix (RDM), the expectation value of the angular momentum 
operator, and finally, the many-particle variances of the position, momentum, and angular momentum opera-
tors.

One‑body reduced density matrix (RDM), one‑body density, and natural occupations.  The one-body RDM of the 
N-boson state |�� is a hermitian matrix and is defined as

in its eigenbasis {φq(r)} . The matrix elements ρkq = ��|b̂†kb̂q|�� represent the one-body RDM using M orbitals 
corresponding to the creation (annihilation) operators b̂†k ( ̂bq ). The diagonal of ρ(1)(r, r′) is referred to as the 
one-body density ρ(r) which is ρ(r) = ρ(1)(r, r′ = r).

The eigenvalues of the one-body RDM are obtained by the diagonalization of Eq. (14) which corresponds to 
a unitary transformation of the orbitals φq(r) to the natural orbitals φ(NO)

j (r) as

Here, the eigenvalues nj are normalized as 
∑M

j=1 nj = 1 and, without loss of generality, they are sorted in mag-
nitude such that n1 ≥ n2 ≥ . . . throughout this work. The eigenvalues nj are termed natural occupations and 
characterize the degree of condensation and fragmentation of the bosons. Thus, the system with one-body RDM 
consisting only a single macroscopically-contributing eigenvalue n1 is said to be condensed31. When the one-body 
RDM has k macroscopically-occupied eigenvalues, the system is referred to as k-fold fragmented34.

Angular momentum.  For a 2D many-particle systems, there is only a single component of the angular momen-
tum operator, i.e.,

Bosonic systems with angular momentum provide rich quantum features beyond mean-field theory, such as, 
phantom vortices83, spatially partitioned vortices53, and fragmentation53,83,84. In the following studies, we inves-
tigate the expectation value of the angular momentum operator per particle 1N ��|L̂Z |�� , for three different 
confining traps to see the effect of the rotation. In our system, we expect an intricate dynamics of the angular 
momentum acquisition under rotation and build up of correlations.

Many‑particle variances.  The variance of a many-particle observable Ô =
∑N

j=1 ô(rj) can be written as85

Here, the expectation value of Ô =
∑N

j=1 ô(rj) is dependent only on the one-body operator, whereas the expec-
tation of Ô2 is a combination of one- and two-body operators Ô2 =

∑N
i=1 ô

2(rj)+
∑

j<k 2ô(rj)ô(rk) . ρjklm are 
the two-particle reduced density matrix elements, ρ(r1, r2, r′1, r

′
2) =

∑

jklm ρjklmφ
∗
j (r)φ

∗
k (r)φl(r)φm(r) . In the 

following work, to analyze the emergence of many-body correlations in the rotating condensate, we study the 
many-particle variances per particle of the position, momentum, and angular momentum operators54.

Many‑body physics of Bose–Einstein condensates breaking up under rotation: 
results and discussion
We investigate the impact of rotation on the ground state of weakly interacting bosonic atoms by dividing the 
analysis into two main parts depending on the confining anharmonic potentials. First, the breakup and fragmen-
tation processes in an elongated trap are investigated and then the breakup and fragmentation in more compli-
cated traps of discrete spatial symmetry are explored. In the following sections, we analyze the effect of rotation 

(14)ρ(1)(r, r′) = ��|�̂†(r′)�̂(r)|�� =
∑

k,q

ρkqφ
∗
k (r

′)φq(r)

(15)
ρ(1)(r, r′)

N
=

∑

j

njφ
(NO),∗
j (r′)φ

(NO)
j (r).

(16)L̂Z =

N
∑

j=1

l̂zj =

N
∑

j=1

1

i

(

x̂j
∂

∂yj
− ŷj

∂

∂xj

)

.

(17)

1

N
�2

Ô
=

1

N

�

��|Ô2|�� − ��|Ô|��2
�

=

=
1

N











�

j

nj

�

dr φ
∗(NO)
j (r)ô2φ

(NO)
j (r)−





�

j

nj

�

dr φ
∗(NO)
j (r)ôφ

(NO)
j (r)





2

+

+
�

jklm

ρjklm

�
�

drφ
∗(NO)
j (r)ôφ

(NO)
l (r)

��
�

drφ
∗(NO)
k (r)ôφ(NO)

m (r)

�






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on various static properties, namely the ground state energy, one-body density, natural occupations, expectation 
value of the angular momentum operator, and finally, the variances of the many-particle position, momentum, 
and angular momentum operators as a function of the rotation frequency ωr . For the numerical computations, 
the MCTDH-X implementation of the MCTDHB theory is employed74–77. In our work, we consider N = 10 
weakly interacting ultracold bosonic atoms interacting via a Gaussian interaction65,66,79 with the interaction 
parameter chosen as � = 0.1 throughout the computations. The grid used to represent the Hamiltonian Equa-
tion (1), see section “Hamiltonian”, extends from [−8, 8) to [−8, 8) and comprises of 128× 128 discrete variable 
representation (exponential) functions to represent each of the orbitals φj(r).

Breaking up to two clouds and pathway to two‑fold fragmentation.  Let us discuss the impact of 
rotation on the weakly interacting bosons trapped in an elongated confinement. The elongated trap is an anhar-
monic potential that elongates the condensate in the x-direction and can be written as

For this trap, we consider M = 4 self-consistent orbitals to investigate the ground state properties of the conden-
sate. We recomputed these results with M = 8 self-consistent orbitals to check the convergence of the system, see 
the elaborate discussion in the supplemental material. The rotation frequency range is ωr = [0, 2.0] in this trap.

Figure 1 shows the behaviour of the ground-state energy per particle E/N, in the rotating frame computed 
both at the mean-field and many-body levels. Initially, E/N remains almost constant for slow rotation. Then, E/N 
drops gradually with further increase in ωr as evident from Fig. 1. It is also observed that the energies computed 
both at the mean-field and many-body levels practically coincide each other for all ωr . The inset of Fig. 1 cor-
responds to the energy difference per particle �E/N , between the mean-field and many-body energies defined 
as �E = EMF − EMB . The energy difference remains minimum till about ωr = 1.2 . Subsequently, �E/N exhibits 
some structures for an intermediate range of ωr around ωr ∼ 1.3 . Finally, the energy difference slightly rises 
from of the order of 10−5 to 10−3 for larger rotation frequencies ωr ≥ 1.6 . The presence of these structures at the 
intermediate rotation might suggest that something interesting is happening at the many-body level. Therefore, 
we dig deeper than the energy of the system to see the many-body features.

Now let us discuss the behaviour of the ground-state densities per particle ρ(r)N  of the rotating condensate 
confined in the elongated trap. The densities computed at the many-body level of theory are shown for three 
different rotation frequencies ωr in Fig. 2. In absence of rotation, the density displays a single cloud where all 
bosons accumulate in the center of the trap. This behaviour persists with the inclusion of rotation for slow rota-
tion frequencies, e.g., at ωr = 0.5 . Further increase in rotation induces a breaking of the density into two clouds. 
The breakup of the ground-state density confined in the potential given by Eq. (18) corresponds to the scenario 
where the minimum of the potential is splitted into two parts and shifted with rotation by creating an effective 
double-well potential. It is also observed that the distance between the two densities increases with increase of 
ωr [Fig. 2b, c]. We have also computed the density per particle at the mean-field level and identical features are 
observed in the density profile. Hence, it is observed that the densities computed at the mean-field and many-
body levels in the real space show identical pattern. In the density profile, we show three specific frequencies 
that correspond to slow, fast, and faster rotations.

(18)V(r) =
1

4
(0.8x2 + y2)2.

Figure 1.   Behaviour of the ground state energy per particle E/N as a function of the rotation frequency ωr in 
an elongated trap computed at the mean-field (MF) and many-body (MB) levels (with M=1 and M=4 self-
consistent orbitals, respectively). The inset shows the energy difference between the mean-field and many-body 
energies. All quantities shown are dimensionless.
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To understand whether the splitting of the density into two clouds [as shown in Fig. 2c] for faster rotations 
leads to fragmentation of the condensate, we further discuss the dependence of the natural occupations njN  . In 
the elongated trap, four natural occupations corresponding to the four natural orbitals are employed and found 
to vary with the rotation frequency ωr (see Fig. 3).

The system remains fully condensed, i.e., n1N ∼ 1 , n2N ∼ n3
N ∼ n4

N ≤ 10−5 with the inclusion of rotation till 
about ωr = 1.1 [see Fig. S2a of the supplemental material, which displays the depletion as a function ωr on a log 
scale]. As ωr increases further, the first natural occupation number n1/N , falls of gradually following an increase 
in population of the second natural occupation number n2/N  . The other two natural occupation numbers 
remain almost the same as n3N ∼ n4

N ≤ 10−5 . For faster rotation at ωr = 2 , the state becomes essentially fully 
two-fold fragmented with natural occupations of n1N ≈ n2

N ≈ 50% . This signifies equally populated two leading 
natural orbitals, whereas n3N  and n4N  remain essentially unpopulated. For an intermediate frequency, ωr = 1.3 , we 
observe a scenario where n1 shows a deep followed by a peak in n2 . To understand this feature, we zoom in at 
the intermediate points between the rotation frequencies ωr = 1.2 and ωr = 1.4 as shown in the inset of Fig. 3. 
A smooth transition is found, from coherence via loss of coherence to build up of coherence. This transition 
might suggest the presence of a resonant-like behaviour of the interacting bosons in the elongated 2D trap at 
this specific rotation frequency.

To intermediately summarize, for weakly interacting bosons confined in an elongated trap [Eq. (18)], inclu-
sion of rotation triggers a transition from a fully condensed state to a fully two-fold fragmented state with 
equally populated two leading natural orbitals. Thus, it can be concluded that the rotation can be used as a tool 
to manipulate fragmentation.

Figure 2.   The one-body densities per particle are shown for three different rotation frequencies ωr in the 
elongated trap at the many-body level. M=4 self-consistent orbitals are used. The density computed at the mean-
field (not shown) and many-body levels depict identical features for almost all ωr , see the supplemental material, 
Sec. S6, for further discussion. All quantities shown are dimensionless.

Figure 3.   Pathway from condensation to fragmentation in the rotating elongated trap. Two-fold fragmentation 
is observed with increase in rotation. The two leading natural occupations n1/N and n2/N , are shown as a 
function of the rotation frequency ωr . M = 4 self-consistent orbitals are used. The third and fourth natural 
occupations satisfy n3/N , n4/N ≤ 10−5 , see the supplemental material. All quantities shown are dimensionless.
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Next, let us discuss the behaviour of the expectation value of the angular momentum per particle �ψ |L̂Z |ψ�
N  , 

computed at the mean-field and many-body levels as a function of the rotation frequency ωr . It is observed from 
Fig. 4 that the mean-field and many-body angular momenta exactly coincide each other at all ωr except for the 
intermediate rotation frequency around ωr = 1.3 [see the inset of Fig. 4], the resonance regime. The following 
features can be concluded from the behaviour of angular momentum in the resonance regime, 

(1)	 The resonance behaviour is evident both in the mean-field and many-body momenta.
(2)	 The mean-field resonance regime has a narrow peak, however the many-body resonance has a wider width.
(3)	 The mean-field resonance starts slightly earlier than the many-body resonance.
(4)	 At the resonance frequency, the condensate absorbs significant angular momentum.

These resonance features are discussed elaborately in the supplemental material, see Sec. S6. The angular momen-
tum remains minimum till about ωr = 1.1 . For ωr = 1.2 (the rotation frequency that corresponds to the breakup 
of the density), the rotation generates a state where significant angular momentum enters the system with 
�L̂Z�/N > 1 . The angular momentum of the condensate gradually increases with further increase of the rotation.

As we know, the variance is a sensitive probe of correlations that allows one to study the quantum fluctuations 
present in a system53,54. Thus, it would be interesting to investigate the variance of many-particle operators which 
signifies many-body correlations for the fragmented condensate in the rotating frame. Therefore, we further 
analyze the impact of rotation on the behaviour of the many-particle variances of position and momentum 
operators which are sensitive to rotation.

Fig. 5a, b display the behaviour of the many-particle position variance per particle 1N�2
X̂,Ŷ

 along the x and 
y-directions respectively, as a function of the rotation frequency ωr in the elongated trap. The mean-field and 
many-body position variances along the x- direction 1N�2

X̂
 , coincide till about ωr = 0.9 , indicating the essential 

absence of correlations in the system [Fig. 5a]. Further, the mean-field position variance monotonically increases 
with ωr which signifies spreading of the density as observed in Fig. 2. Also, the many-body position variance 
slowly increases till ωr = 1.2 . But, now, we observe a deep at ωr = 1.3 that corresponds to the resonance regime 
as appeared in the natural occupations and the angular mometum figures, see insets of Figs. 3 and 4. We will 
discuss more about this regime later in this section. After increasing and reaching a maximum at rotation fre-
quency of about ωr ∼ 1.4 , 1N�2

X̂
 starts to decrease which incorporates the emergence of a small amount of 

depletion of the condensate [see Fig. 5a]. For a faster rotation, at ωr = 2 , the position variance 1N�2
X̂

 decreases 
significantly which goes hand in hand with the emergence of fragmentation of the condensate. Similar behaviour 
of the position variance along the x-direction is observed in a two-dimensional double well in86, albeit without 
the resonant-like behaviour described above. The position variance per particle along the y-direction 1N�2

Ŷ
 is 

almost frozen and varies slowly as shown in Fig. 5b. This might suggest that excitations along the tighter y-direc-
tions are practically not involved, at least as far as the position variance is considered. The 1N�2

Ŷ
 computed at the 

mean-field level matches that at the many-body level almost for all the rotation frequencies except of small dif-
ference for the intermediate ωr . As above, convergence of the results is detailed in the supplemental material.

Further, we can describe the anisotropy of the variance by considering two facts,

Figure 4.   Expectation value of angular momentum operator �L̂Z�/N , computed at the mean-field (MF) and 
many-body (MB) levels [with M = 1 and M = 4 self-consistent orbitals, respectively] as a function of the 
rotation frequency ωr for the elongated trap. Actual data are points. The continuous curves are only to guide the 
eye. All quantities shown are dimensionless.
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(1) by comparing two quantities, one along the x- direction and the other along the y- direction, whether 
they are similar or different.

(2) by comparing these quantities at the mean-field and many-body levels which demonstrates whether the 
anisotropy of the many-particle variances are alike or opposite. Hence, in the elongated trap and for small rota-
tions, it is observed that

Thus, the anisotropy of the many-particle position variance computed at the mean-field and many-body levels 
are alike at slow rotation. However, for fast rotation we find

Hence, it indicates that the many-particle position variances display opposite anisotropy when computed at the 
mean-field and many-body levels.

Now, we investigate the behaviour of the many-particle momentum variance per particle 1N�2
P̂X ,P̂Y

 along the 
x- and y-directions as a function of rotation frequency ωr in the elongated trap [Fig. 5c, d]. It is observed that 
unlike the position variance, the mean-field and many-body momentum variances along the x-direction are 
almost similar, see Fig. 5c. The momentum variances computed at the mean-field and many-body levels gradually 
increase from ωr = 1.2 onwards. This corroborates the narrowing of the density lobes along the x-direction in 
real space. The momentum variance in the y-direction displays a completely different picture, see Fig. 5d. The 
mean-field and many-body variances match each other till ωr = 1.1 . However, for a faster rotation, the 
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Figure 5.   Dependence of the the many-particle position and momentum variances on the rotation in the 
elongated trap. Shown are (a) 1

N
�2

X̂
 , (b) 1

N
�2

Ŷ
 , (c) 1

N
�2

P̂X
 , and (d) 1

N
�2

P̂Y
 as a function of ωr at the many-body 

level (MB) [ M = 4 self-consistent orbitals] and at the mean-field level (MF) [ M = 1 self-consistent orbital]. All 
quantities shown are dimensionless.
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momentum variance computed at the mean-field deviates from that computed at the many-body level in the 
y-direction. 1N�2

P̂Y
 displays similar behaviour as the 1N�2

X̂
 as clear from Fig. 5a. Thus, excitations along the 

y-direction plays a role in the momentum space as a result of rotation.
Inverse to the position variance, in the case of the momentum variance for slow rotation we find

Hence, the anistropy of the momentum variances are alike when computed at the many-body and mean-field 
levels of theory for slow rotation. For a faster rotation however, we find

This signifies the presence of opposite anisotropy of the momentum variance. This feature was not found before 
for static double well86. Hence, this indicates one of the distinct features of the rotation, which makes both the 
many-particle position and momentum variances show opposite anisotropies with respect to the mean-field 
and many-body levels in the elongated trap. The rotation localized the position variance in the long direction 
and the momentum variance in the narrow direction and this is purely a many-body effect. Further, in the reso-
nance regime as dicussed above (around ωr = 1.3 ), we observe the following distinct features in the quantum 
correlations, 

(1)	 The resonance behaviour is evident both in the mean-field and many-body fluctuations.
(2)	 The mean-field resonance regime has a narrow peak, however the many-body resonance has a wider width.
(3)	 The mean-field resonance starts slightly earlier than the many-body resonance.
(4)	 The mean-field and many-body resonances are in the opposite direction for the X position [Fig. 5a] and 

Py momentum variances [Fig. 5d] which are sensitive to depletion in the condensate. However, for the Y 
position [Fig. 5b] and Px momentum variances [Fig. 5c], the mean-field and many-body resonances are 
oriented in the same direction.

We explain these resonance features more elaborately in the supplemental material, see Sec. S6 for further 
discussion.

Let us briefly summarize the results so far. The ground state of a Bose–Einstein condensate in a two-dimen-
sional elongated trap is analyzed in presence of rotation. Here, the ground state density splits into two clouds for 
fast rotation. It is fascinating to observe the effect of rotation on the condensate as it leads to a transition from 
condensed state to a fully two-fold fragmented state in a single well without ramping up a barrier. Thus, rota-
tion can be used as a probe to manipulate various degrees of fragmentation which we will further discuss in the 
next section where higher-order fragmentations are explored. Further, we observe the presence of an opposite 
anisotropy both in the position and momentum variances by comparing the mean-field and many-body results 
for fast rotations.

Breaking up to several clouds and pathway to higher‑order fragmentation.  So far in the elon-
gated trap, we observe breaking up of the ground state density into two clouds, followed by the emergence of 
two-fold fragmentation and presence of opposite anisotropy both in the position and momentum variances for 
faster rotations. Now, it would be fascinating to explore some more complex potentials with k-fold rotational 
symmetry, explicitly three-fold and four-fold symmetric potentials, to analyze the impact of rotation on generic 
properties. Would the density break into more than two clouds? Is higher-order fragmentation possible? How 
would the angular momentum enter into the condensate? Finally, when correlations set in, who wins, the many-
body or the mean-field variance? Both for the position and momentum variances?

Bosons in a three‑fold symmetric trap under rotation.  In this section, we analyze the impact of rotation on 
weakly interacting bosons confined in a three-fold symmetric trap of the form

In this trap, we consider M = 3 self-consistent orbitals to compute the ground state properties of the system. 
We also computed the following results with M = 6 self-consistent orbitals for convergence and checked the 
consistency of our results (see the supplemental material). The rotation frequency range is ωr = [0, 2.5] for the 
following analysis.

We computed the ground-state energy E/N, and found it to display similar pattern as that for the elongated 
trap. That is for slow rotation, E/N remains almost constant and then E/N drops gradually with increase in ωr . 
In addition, we found that the mean-field and many-body energies are practically identical for all ωr . The results 
are shown in the supplemental material, see Fig. S1b.
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Figure 6 displays the ground-state densities per particle of a rotating condensate for three different rotation 
frequencies ωr , confined in the three-fold symmetric trap [Eq. (19)] computed at the many-body level. In the 
absence of rotation, the one-body density depicts a single cloud where all the bosons accumulate in the center of 
the trap. However, faster rotations lead to breakup of the density profile into three clouds. We have also computed 
the ground state density at the mean-field level and it shows essentially identical features as the many-body level 
density in real space.

To further understand the breaking of the ground-state density, we discuss the behaviour of the natural 
occupations njN  as a function of the rotation frequency ωr as shown in Fig. 7. It is evident from Fig. 7 that the 
system remains fully condensed, i.e., n1N ∼ 1, n2N ∼ n3

N ∼ 10−6 with the inclusion of rotation till about ωr = 1.1 . 
From about ωr = 1.2 onwards, the condensate starts to deplete with gradual decrease in the population of the 
first natural orbital followed by corresponding increase in the populations of the second and third natural orbit-
als, n2N ∼ n3

N ∼ 10−4 [see Fig. S2b in the supplemental material]. For a faster rotation, say ωr = 2 , the system 
transits to a fragmented state with decrease in the population of the first natural orbital followed by macroscopic 
population of the second and third natural orbitals. Further increase in the rotation to ωr = 2.5 leads to a three-
fold fragmented state having the natural occupations n1N ∼ 60% and n2N ∼ n3

N ∼ 20% of the first, second, and 
third natural orbitals, respectively. It is observed that a perfectly three-fold fragmented state can be achievable 
at faster rotation in the strong interaction limit for the three-fold symmetric trap. Therefore, in case of a weakly 
interacting bosons confined in the three-fold symmetric trap given by Eq. (19), switching on rotation leads to a 
transition from a fully condensed state to three-fold fragmentation.

Let us move to the behaviour of average angular-momentum per particle �L̂Z�/N , as a function of the rota-
tion frequency ωr for the three-fold symmetric trap computed both at the mean-field and many-body levels. It 
is observed from Fig. 8 that the mean-field and many-body angular momenta exactly match each other for all 

Figure 6.   The one-body densities per particle are shown for three different rotation frequencies ωr in the 
three-fold symmetric trap at the many-body level. M=3 self-consistent orbitals are used. The density computed 
at the mean-field (not shown) and many-body levels depict identical features for all ωr . All quantities shown are 
dimensionless.

Figure 7.   Pathway from condensation to fragmentation in the rotating three-fold symmetric trap. Three-
fold fragmentation is observed with increase in rotation. The three leading natural occupations n1/N , n2/N 
and n3/N , are shown as a function of the rotation frequency ωr . M = 3 self-consistent orbitals are used. All 
quantities shown are dimensionless.
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ωr . The angular momentum remains minimum till the rotation frequency of about ωr = 1.1 . For about ωr = 1.2 , 
the rotation produces a state where significant value of angular momentum generates with �L̂Z�/N > 1 at which 
the breakup of the density is observed. The angular momentum gradually increases with further increase in the 
rotation of the condensate. Even for strong rotation, the angular momentum computed at the mean-field and 
many-body levels coincide each other. Therefore, we can conclude that, at least for the ground state, the angular 
momentum and its variance [see Fig. S6b in the supplemental material] are not good indicators for many-body 
effects. Nonetheless, we stress that the acquisition of angular momentum in the condensate follows the breakup 
of the density, the emergence of depletion, and the eventual fragmentation in the three-fold symmetric trap.

Now we move to the discussion of the impact of rotation on the behaviour of the many-particle variances 
of the position and momentum operators along the x- and y-directions, to further characterize the many-body 
properties of the rotating condensate undergoing breakup.

Figure 9a displays the behaviour of the many-particle position variance per particle 1N�2
X̂,Ŷ

 as a function of 
the rotation frequency ωr in the three-fold symmetric trap computed at the mean-field and many-body levels. 
It is observed that the mean-field and many-body 1N�2

X̂,Ŷ
 coincide till about ωr = 1.1 . For faster rotations, from 

about ωr = 1.2 onwards the mean-field and many-body position variances deviate. The mean-field 1N�2
X̂,Ŷ

 
increase monotonously depicting the spreading and finally the breakup of the density. However, the many-body 

Figure 8.   Expectation value of angular momentum operator �L̂Z�/N , computed at the mean-field (MF) and 
many-body (MB) levels [with M = 1 and M = 3 self-consistent orbitals, respectively] as a function of the 
rotation frequency ωr for the three-fold symmetric trap. All quantities shown are dimensionless.

Figure 9.   Dependence of the the many-particle position and momentum variances on the rotation in the 
three-fold symmetric trap. Shown are (a) 1

N
�2

X̂
 and 1

N
�2

Ŷ
 and (b) 1

N
�2

P̂X
 and 1

N
�2

P̂Y
 as a function of ωr at the 

many-body level (MB) [ M = 3 self-consistent orbitals] and at the mean-field level (MF) [ M = 1 self-consistent 
orbital]. All quantities shown are dimensionless.
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1
N�2

X̂,Ŷ
 first increase and then, after reaching a maximal value starts decreasing with further increase in ωr , 

because of the depletion and eventual fragmentation. One of the important features of the position variance is 
that the variance along the x- and y-direction exactly coincide each other for both the mean-field and many-body 
regimes, thereby indicating the fact that the three-fold rotational symmetry of the condensate is preserved even 
for fast rotations. Clearly, there is no anisotropy of the variance for all ωr in this trap.

Finally, Fig. 9b shows the behaviour of the momentum variance per particle 1N�2
P̂X ,P̂Y

 , computed at the mean-
field and many-body levels as a function of ωr . The momentum variances remain small even with increase in 
rotation till about ωr = 1.1 . From about ωr = 1.2 onwards, the momentum variances computed both at the 
mean-field and many-body levels slowly start to increase. Here, the mean-field momentum variance only 
increases monotonously. The many-body momentum variance increases, decreases, and again increases but 
remain much smaller than the mean-field momentum variance, indicates the presence of depletion and frag-
mentation. Similar to the position variance, the momentum variance along the x- and y-directions exactly 
coincide each other both at the mean-field and many-body levels, due to the rotational symmetry.

Bosons in a four‑fold symmetric trap under rotation.  Now we move to a more complicated system, a four-fold 
symmetric trap, to show the stability of the ground-state properties found above for the three-fold symmetric 
trap. The potential of the four-fold symmetric trap is given by

Here, we consider M = 4 self-consistent orbitals to obtain the ground-state properties of bosons under rotation in 
this trap. We also compute the results with M = 8 self-consistent orbitals to verify the numerical convergence, see 
the supplemental material. The range of rotation frequencies is taken to be ωr = [0, 2.0] for the following study.

We computed the ground state energy E/N, and found it to display similar pattern as that for the elongated 
and three-fold symmetric traps. That is for slow rotation, E/N remains almost constant and then E/N drops 
gradually with increase in ωr . In addition, we found that the mean-field and many-body energies are practically 
identical for all ωr . The results are shown in the supplemental material, see Fig. S1c.

Figure 10 shows the behaviour of the ground-state densities per particle of a rotating BEC confined in 
the four-fold symmetric trap for three different rotation frequencies ωr at the many-body level. Similar to the 
elongated and three-fold symmetric traps, for slow rotation the density displays a single cloud. With increasing 
rotation, a deep in the density emerges [Fig. 10b] and finally, faster rotations lead to splitting of the density into 
four sub-clouds as evident from Fig. 10c.

For a deeper understanding of the many-boson density profile, the behaviour of the natural occupations njN  
as a function of the rotation frequency ωr is analyzed in Fig. 11.

It is found that the system preserves the fully condensed state, with n1N ∼ 1, n2N ∼ n3
N ∼ n4

N ≤ 10−6 , till a 
rotation frequency of about ωr = 1.0 . Further increase in ωr leads to slow depletion of the condensate. For a 
faster rotation, ωr = 2.0 , four-fold fragmentation of the condensate with finite population of all the four natural 
orbitals is observed.

Let us discuss the behaviour of the average angular momentum per particle as a function of ωr , see Fig. 12. The 
angular momentum remains minimal for ωr = 1 . From about ωr = 1.1 , the rotation produces a state where sig-
nificant value of angular momentum generates with �L̂Z�/N > 1 at which the breakup of the density is observed. 
The angular momentum gradually increases with further increase in the rotation. Even for strong rotation, the 
angular momenta computed at the mean-field and many-body levels coincide each other. Finally, it can be 
concluded for the four-fold trap as well that, at least for the ground state, the angular momentum and its vari-
ance [see Fig. S6c in the supplemental material] do not precisely signifies many-body effects. However, we can 
conclude that accumulation of angular momentum in the condensate, the breakup of the density, emergence of 

(20)V(r) =
1

4
(x4 + y4).

Figure 10.   The one-body densities per particle are shown for three different rotation frequencies ωr in the 
four-fold symmetric trap at the many-body level. M=4 self-consistent orbitals are used. The density computed 
at the mean-field (not shown) and many-body levels display identical features at all ωr . All quantities shown are 
dimensionless.
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depletion, and eventual fragmentation in the four-fold symmetric trap are in sync similar to the elongated and 
three-fold symmetric traps.

Figure 13 displays the behaviour of the position and momentum variances computed at the mean-field and 
many-body levels as a function of rotation frequency ωr for four-fold symmetric trap along the x- and y-direc-
tions. The mean-field and many-body position variances 1N�2

X̂,Ŷ
 coincide till about ωr = 1 . For faster rotations, 

from about ωr = 1.1 onward, the mean-field position variance deviates from the many-body position variance 
and the former is always larger than the latter. Further, the position variances along the x- and y-directions exactly 
coincide with each other both at the mean-field and many-body levels similar to the three-fold symmetric trap, 
see Fig. 9a. Side by side, the behaviour of the momentum variance 1N�2

P̂X ,P̂Y
 displays similar feature as that of the 

position variance, both at the mean-field and many-body levels. In particular, mean-field is larger than many-
body from about ωr = 1.5.

Finally, we can conclude that the depletion, angular momentum, and the position and momentum variances 
follow hand in hand both in the three-fold and four-fold symmetric traps. The rotating interacting bosons acquire 
unique many-body properties while undergoing breakup in space.

Figure 11.   Rotation leads to four-fold fragmentation in the four-fold symmetric trap. M = 4 self-consistent 
orbitals are used. The variation of four natural occupations n1/N , n2/N , n3/N and n4/N are shown as a function 
of rotation frequency ωr . All quantities computed are dimensionless.

Figure 12.   Expectation value of angular momentum operator �L̂Z�/N , computed at the mean-field (MF) and 
many-body (MB) levels [with M = 1 and M = 4 self-consistent orbitals, respectively] as a function of the 
rotation frequency ωr for the four-fold symmetric trap. All quantities shown are dimensionless.
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Concluding remarks
In the present work, we have studied the impact of rotation on the ground state of weakly interacting bosonic 
atoms confined in two-dimensional anharmonic potentials, first in, an elongated trap and, subsequently, in 
three-fold and four-fold symmetric traps. Here, the multiconfigurational time-dependent Hartree method for 
bosons, which is particularly suitable to describe many-body properties, is employed to investigate the ground-
state energy, density, the depletion and fragmentation, angular momentum, and finally, many-particle variances 
as a function of the rotation frequency to characterize the correlations present in the system.

In the elongated trap, it is observed that the ground-state density breaks up into two clouds with rotation. The 
splitting of the density is followed by the emergence of the two-fold fragmentation. Interestingly, the ground state 
exhibits opposite anistoropy both for the many-particle position and momentum variances when computed at 
the many-body and mean-field levels. The rotation squeezes the position variance in the elongated direction and 
the momentum variance in the narrow direction, thereby producing unique correlations. Finally, a synchronized 
pattern among the density breakup, eventual fragmentation, acquisition of angular momentum in the condensate, 
and many-particle variances is observed. When the angular momentum sets in the breakup of density and the 
many-particle position and momentum variances start to increase.

For the three-fold and four-fold symmetric traps, the ground-state density eventually splits into three and 
four clouds, respectively, with the inclusion of the rotation. Side-by-side, the rotation leads to transition from 
condensed to three-fold and four-fold fragmented condensates, respectively, at the many-body level of theory. 
We find that the depletion, the accumulation of angular momentum, and finally, the increase in the variances of 
position and momentum follow hand in hand.

The rotating frame in our work can be viewed as a specific case of synthetic gauge fields. In future, continua-
tion of this investigation includes the extension of the study in various synthetic gauge fields. It would be interest-
ing to explore the ground-state breakup, eventual condensation or fragmentation, and finally, various correlations 
of the condensate in presence of synthetic gauge fields. It would be fascinating to discover many-body features 
beyond the capacity of a “simple” rotation.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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