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Variational quantum approximate 
support vector machine 
with inference transfer
Siheon Park 1, Daniel K. Park 2,3 & June‑Koo Kevin Rhee 1,4*

A kernel‑based quantum classifier is the most practical and influential quantum machine learning 
technique for the hyper‑linear classification of complex data. We propose a Variational Quantum 
Approximate Support Vector Machine (VQASVM) algorithm that demonstrates empirical sub‑
quadratic run‑time complexity with quantum operations feasible even in NISQ computers. We 
experimented our algorithm with toy example dataset on cloud‑based NISQ machines as a proof of 
concept. We also numerically investigated its performance on the standard Iris flower and MNIST 
datasets to confirm the practicality and scalability.

Quantum computing opens up new exciting prospects of quantum advantages in machine learning in terms of 
sample and computation  complexity1–5. One of the foundations of these quantum advantages is the ability to 
form and manipulate data efficiently in a large quantum feature space, especially with kernel functions used in 
classification and other classes of machine  learning6–14.

The support vector machine (henceforth SVM)15 is one of the most comprehensive models that help concep-
tualize the basis of supervised machine learning. SVM classifies data by finding the optimal hyperplane associ-
ated with the widest margin between the two classes in a feature space. SVM can also perform highly nonlinear 
classifications using what is known as the kernel  trick16–18. The convexity of SVM guarantees global optimization.

One of the first quantum algorithms exhibiting an exponential speed-up capability is the least-square quan-
tum support vector machine (LS-QSVM)5. However, the quantum advantage of LS-QSVM strongly depends on 
costly quantum subroutines such as density matrix  exponentiation19 and quantum matrix  inversion20,21 as well 
as components such as quantum random access memory (QRAM)2,22. Because the corresponding procedures 
require quantum computers to be fault-tolerant, LS-QSVM is unlikely to be realized in noisy intermediate-
scale quantum (NISQ)  devices23. On the other hand, there are a few quantum kernel-based machine-learning 
algorithms for near-term quantum applications. Well-known examples are quantum kernel estimators (QKE)8, 
variational quantum classifiers (VQC)8, and Hadamard or SWAP test classifiers (HTC, STC)10,11. These algorithms 
are applicable to NISQ, as there are no costly operations needed. However, the training time complexity is even 
worse than in the classical SVM case. For example, the number of measurements required to generate only the 
kernel matrix evaluation of QKE scales with the number of training samples to the power of  four8.

Here, we propose a novel quantum kernel-based classifier that is feasible with NISQ devices and that can 
exhibit a quantum advantage in terms of accuracy and training time complexity as exerted in Ref.8. Specifically, 
we have discovered distinctive designs of quantum circuits that can evaluate the objective and decision functions 
of SVM. The number of measurements for these circuits with a bounded error is independent from the number of 
training samples. The depth of these circuits scales also linearly with the size of the training dataset. Meanwhile, 
the exponentially fewer parameters of parameterized quantum circuits (PQCs)24 encodes the Lagrange multipli-
ers of SVM. Therefore, the training time of our model with a variational quantum algorithm (VQA)25 scales as 
sub-quadratic, which is asymptotically lower than that of the classical SVM  case5,26,27. Our model also shows an 
advantage in classification due to its compatibility with any typical quantum feature map.

Results
Support vector machine (SVM). Data classification infers the most likely class of an unseen data point 
x̂ ∈ CN given a training dataset S =

{(

xi , yi
)}M−1

i=0
 ⊂ X × Y . Here, X ⊂ CN and Y = {0, 1, . . . , L− 1} . 

Although the data is real-valued in practical machine learning tasks, we allow complex-valued data without a 
loss of generality. We focus on binary classification. (i.e., Y = {−1, 1} ), because multi-class classification can be 

OPEN

1KAIST, School of Electrical Engineering, Daejeon 34141, South Korea. 2Department of Applied Statistics, Yonsei 
University, Seoul 03722, South Korea. 3Department of Statistics and Data Science, Yonsei University, Seoul 03722, 
South Korea. 4Qunova Computing, Inc., Daejeon 34051, South Korea. *email: rhee.jk@kaist.edu

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-29495-y&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2023) 13:3288  | https://doi.org/10.1038/s41598-023-29495-y

www.nature.com/scientificreports/

conducted with a multiple binary SVM via a one-versus-all or a one-versus-on  scheme28. We assume that S is 
linearly separable in the higher dimensional Hilbert space H given some feature map φ : X �→ H . Then, there 
should exist two parallel supporting hyperplanes �w,φ(·)� + b = y ∈ Y that divide training data. The goal is to 
find hyperplanes for which the margin between them is maximized. To maximize the margin even further, the 
linearly separable condition can be relaxed so that some of the training data can penetrate into the “soft” margin. 
Because the margin is given as 2/‖w‖ by simple geometry, the mathematical formulation of  SVM13 is given as

where the slack variable ξ is introduced to represent a violation of the data in the linearly separable condition. 
The dual formulation of SVM is expressed  as29

where the positive semi-definite (PSD) kernel is k(x1, x2) = �φ(x1),φ(x2)� for x1,2 ∈ X  . The βi values are non-
negative Karush-Kuhn-Tucker multipliers. This formulation employs an implicit feature map uniquely deter-
mined by the kernel. The global solution β⋆ is obtained in polynomial time due to  convexity29. After optimiza-
tion, the optimum bias is recovered as b⋆ = yq(1− C−1β⋆

q )−
∑M−1

i=0 β⋆
i yik(xq, xi) for any β⋆

q > 0 . Such training 
data xq with non-zero weight βq are known as the support vectors. We estimate the labels of unseen data with 
a binary classifier:

In a first-hand principle analysis, the complexity of solving Eq. (2) is O(M2(N +M) log(1/δ)) with accuracy 
of δ . A kernel function with complexity of O(N) is queried M(M − 1)/2 times to construct the kernel matrix, 
and quadratic programming takes O(M3 log(1/δ)) to find β⋆ for a non-sparse kernel  matrix5. Although the 
complexity of SVM decreases when employing modern programming  methods26,27, it is still higher than or 
equal to O(M2N) due to kernel matrix generation and quadratic programming. Thus, a quantum algorithm that 
evaluates all terms in Eq. (2) for O(MN) time and achieves a minimum of fewer than O(M) evaluations would 
have lower complexity than classical algorithms. We apply two forms of transformations to Eq. (2) to realize an 
efficient quantum algorithm.

Change of variable and bias regularization. Constrained programming, such as that in the SVM case, 
is often transformed into unconstrained programming by adding penalty terms of constraints to the objective 
function. Although there are well-known methods such as an interior point  method29, we prefer the strategies of 
a ‘change of variables’ and ‘bias regularization’ to maintain the quadratic form of SVM. Although motivated to 
eliminate constraints, the results appear likely to lead to an efficient quantum SVM algorithm.

First,  we change optimization variable β to (α,B) ,  where B :=
∑M−1

i=0 βi  and α := β/B 
to eliminate inequality constraints. The l1-normalized variable α is an M-dimensional prob-
abi l ity  vector  g iven that  0 ≤ αi ≤ 1,∀i ∈ {0, . . . ,M − 1} and 

∑M−1
i=0 αi = 1 .  Let  us  def ine 

Wk(α;S) :=
∑M−1

i,j=0 αiαjyiyjk
(

xi , xj
)

+ C−1
∑M−1

i=0 α2
i  . We substitute the variables into Eq. (2):

where PVM is a set of M-dimensional probability vectors. Because Wk(α;S) ≥ 0 for an arbitrary α due to the 
property of the positive semi-definite kernel, B⋆ = 1/Wk(α;S) is a partial solution that maximizes Eq. (4) on 
B. Substituting B⋆ with Eq. (4), we have

Finally, because maximizing 1/2Wk(α;S) is identical to minimizing Wk(α;S) , we have a simpler formula 
that is equivalent to Eq. (2):

The above Eq. (6) implies that instead of optimizing M numbers of bounded free parameters β or α , we can 
optimize the log(M)-qubit quantum state |ψα� and define αi := |�i|ψα�|2 . Therefore, if there exists an efficient 
quantum algorithm that evaluates the objective function of Eq. (6) given |ψα� , the complexity of SVM would 
be improved. In fact, in the later section, we propose quantum circuits with linearly scaling complexity for that 
purpose.

(1)p⋆ = min
w,b,ξ

1

2
�w�2 + C

2

M−1
∑

i=0

ξ 2i : yi(�w,φ(xi)� + b) ≥ 1− ξi ,

(2)d⋆ = max
β�0

M−1
∑

i=0

βi −
1

2

M−1
∑

i,j=0

βiβjyiyjk(xi , xj)−
1

2C

M−1
∑

i=0

β2
i :

M−1
∑

i=0

βiyi = 0,

(3)ŷ = sgn

{

M−1
∑

i=0

β⋆
i yik(xi , x̂)+ b⋆

}

.

(4)max
α∈PVM

max
B≥0

{

B− 1

2
B2Wk(α;S)

}

:
M−1
∑

i=0

αiyi = 0,

(5)max
α∈PVM

1

2Wk(α;S)
:
M−1
∑

i=0

αiyi = 0.

(6)d̃⋆ = min
α∈PVM

M−1
∑

i,j=0

αiαjyiyjk(xi , xj)+
1

C

M−1
∑

i=0

α2
i :

M−1
∑

i=0

αiyi = 0,
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The equality constraint is relaxed after adding the l2-regularization term of the bias to Eq. (1). Motivated by 
the loss function and regularization perspectives of  SVM30, this technique was  introduced31,32 and  developed33,34 
previously. The primal and dual forms of SVM become

Note that k(·, ·)+ �
−1 is a positive definite. As shown earlier, changing the variables causes Eq. (8) to become 

another equivalent optimization problem:

As the optimal bias is given as b⋆ = �
−1

∑M−1
i=0 α⋆

i yi according to the Karush-Kuhn-Tucker condition, the 
classification formula inherited from Eq. (3) is expressed as

Equations (8) and (9) can be viewed as Eqs. (2) and (6) with a quadratic penalizing term on the equality 
constraint such that they become equivalent in terms of the limit of � → 0 . Thus, Eqs. (7), (8), and (9) are more 
relaxed SVM optimization problems with an additional hyperparameter �.

Variational quantum approximate support vector machine. One way to generate the aforemen-
tioned quantum state |ψα� is to use amplitude encoding: |ψα� =

∑M−1
i=0

√
αi|i� . However, doing so would be 

inefficient because the unitary gate of amplitude encoding has a complex structure that scales as O(poly(M))35. 
Another way to generate |ψα� is to use a parameterized quantum circuit (PQC), known as an ansatz in this case. 
Because there is no prior knowledge in the distribution of α⋆

i  s, the initial state should be | + + · · ·+� = 1√
M

∑M−1
i=0 |i� . 

The ansatz V(θ) can transform the initial state into other states depending on gate parameter vector θ : 
|ψα� = V(θ)| + + · · ·+� . In other words, optimization parameters encoded by θ with the ansatz are represented 
as αi(θ) = |�i|V(θ)| + + · · ·+�|2 . Given the lack of prior information, the most efficient ansatz design can be a 
hardware-efficient ansatz (HEA), which consists of alternating local rotation layers and entanglement  layers36,37. 
The number of qubits and the depth of this ansatz are O(polylog(M)).

We discovered the quantum circuit designs that compute Eqs. (9) and (10) within O(M) time. Convention-
ally, the quantum kernel function is defined as the Hilbert Schmidt inner product: k(·, ·) = |�φ(·)|φ(·)�|24,7,8,10–12. 
First, we divide the objective function in Eq. (9) into the loss and regularizing functions of θ using the above 
ansatz encoding:

Specifically, the objective function is equal to Lφ,� + C−1R . Similarly, the decision function in Eq. (10) 
becomes

Inspired by  STC10,11, the quantum circuits in Fig. 1 efficiently evaluate Lφ,�,R and fφ,� . The quantum gate 
Uφ,S embeds the entire training dataset with the corresponding quantum feature map Uφ(x)|00 . . . 0� = |φ(x)� , 
so that Uφ,S |i� ⊗ |00 . . . 0� ⊗ |0� = |i� ⊗ |φ(xi)� ⊗ |yi� . Therefore, the quantum state after state preparation is 
|�� =

∑M−1
i=0

√
αi|i� ⊗ |φ(xi)� ⊗ |yi� . We apply a SWAP test and a joint σz measurement in the loss and decision 

circuits to evaluate Lφ,� and fφ,�:

Here, σz is a Pauli Z operator and M00...0 is a projection measurement operator of state |0�⊗log(M) . See “Meth-
ods” for specified derivations. The asymptotic complexities of the loss and decision circuits are linear with regard 
to the amount of training data. Uφ,S can be prepared with O(MN)  operations4. See “Methods” for the specific 
realization used in this article. Because V(θ) has O(polylog(M)) depth and the SWAP test requires only O(N) 
operations, the overall run-time complexity of evaluating Lφ,�(θ;S) and fφ,�(x; θ ,S) with bounded error ε 

(7)p⋆ =min
w,b,ξ

1

2
�w�2 + �

2
b2 + C

2

M−1
∑

i=0

ξ 2i : yi(�w,φ(xi)� + b) ≥ 1− ξi ,

(8)d⋆ =max
β�0

M−1
∑

i=0

βi −
1

2

M−1
∑

i,j=0

βiβjyiyj

[

k(xi , xj)+
1

�

]

− 1

2C

M−1
∑

i=0

β2
i .

(9)d̃⋆ = min
α∈PVM

M−1
∑

i,j=0

αiαjyiyj

[

k(xi , xj)+
1

�

]

+ 1

C

M−1
∑

i=0

α2
i .

(10)ŷ = sgn

{

M−1
∑

i=0

α⋆
i yi

[

k(xi , xj)+
1

�

]

}

.

(11)Lφ,�(θ;S) =
M−1
∑

i,j=0

αi(θ)αj(θ)yiyj

[

|�φ(xi)|φ(xj)�|2 +
1

�

]

, R(θ) =
M−1
∑

i=0

αi(θ)
2.

(12)fφ,�(x; θ ,S) =
M−1
∑

i=0

αi(θ)yi

[

|�φ(xi)|φ(x)�|2 +
1

�

]

.

(13)

Lφ,�(θ;S) = �σ a
z σ

y1
z σ

y2
z �θ +

1

�
�σ y1

z σ
y2
z �θ , fφ,�(x; θ ,S) = �σ a

z σ
y
z �x;θ +

1

�
�σ y

z �x;θ ,R(θ) = �M00...0�θ .
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is O(ε−2
MN) (see the Supplementary Fig. S5 online for numerical verification of the scaling). Similarly, the 

complexity of estimating R(θ) with accuracy ε is O(ε−2polylog(M)) due to two parallel V(θ) s and O(log(M)) 
CNOT gates.

We propose a variational quantum approximate support vector machine (VQASVM) algorithm that solves the 
SVM optimization problem with  VQA25 and transfers the optimized parameters to classify new data effectively. 
Figure 2 summarizes the process of VQASVM. We estimate θ⋆ , which minimizes the objective function; this is 
then used for classifying unseen data:

Following the general scheme of VQA, the gradient descent (GD) algorithm can be applied; classical proces-
sors update the parameters of θi , whereas the quantum processors evaluate the functions for computing gradients. 
Because the objective function of VQASVM can be expressed as the expectation value of a Hamiltonian, i.e.,

where H =
∑M−1

ij=0

[

yiyjk(xi , xj)+ 1
�
yiyj + 1

C δij
]

|i��i| ⊗ |j��j| , the exact gradient can be obtained by the modified 
parameter-shift  rule38,39. GD converges to a local minimum after O(log(1/δ)) iterations with the difference δ29 
given that estimation error of the objective function is smaller than δ . Therefore, the total run-time complexity 
of VQASVM is O(ε−2 log(1/ε)MNpolylog(M)) with error of ε as the number of parameters is O(polylog(M)).

(14)θ⋆ = argmin
θ

Lφ,�(θ;S)+
1

C
R(θ), ŷ = sgn

{

fφ,�
(

x̂; θ⋆,S
)}

.

(15)L(θ;S)+ 1

C
R(θ) = �+|V(θ)† ⊗ V(θ)†HV(θ)⊗ V(θ)|+�,

Figure 1.  Circuit architecture of VQASVM. Loss, decision, and regularization circuits are shown in the order 
of panel (a,b), and (c) all qubits of index registers i and j are initialized to |+� = (|0� + |1�)/

√
2 , and the rest to 

|0� . Ansatz V(θ) is a PQC of m = log(M) qubits that encodes probability vector α . Uφ,S embeds a training data 
set S with a quantum feature map Uφ(x̂) , which embeds classical data x̂ to a quantum state |φ(x̂)� . n denotes the 
number of qubits for the quantum feature map, which is usually N, but can be reduced to log(N) if an amplitude 
encoding feature map is used.

Figure 2.  Variational quantum approximated support vector machine. The white round boxes represent 
classical calculations whereas the yellow round boxes represent quantum operations. The white arrows represent 
the flow of classical data whereas the black arrows represent the embedding of classical data. The grey areas 
indicate the corresponding training phase of each iteration. The regularization circuit in the black dashed box 
can be omitted for a hard-margin case where C → ∞.
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Experiments on IBM quantum processors. We demonstrate the classification of a toy dataset using 
the VQASVM algorithm on NISQ computers as a proof-of-concept. Our example dataset is mapped to a Bloch 
sphere, as shown in Fig. 3a. Due to decoherence, we set the data dimension to N = 2 and number of training 
data instances to M = 4 . First, we randomly choose the greatest circle on the Bloch sphere that passes |0� and 
|1� . Then, we randomly choose two opposite points on the circle to be the center of two classes, A and B. Subse-
quently, four training data instances are generated close to each class center in order to avoid overlaps between 
the test data and each other. This results in a good training dataset with the maximum margin such that soft-
margin consideration is not needed. In addition, thirty test data instances are generated evenly along the great 
circle and are labelled as 1 or − 1 according to the inner products with the class centers. In this case, we can set 
hyperparameter C → ∞ and the process hence requires no regularization circuit evaluation. The test dataset is 
non-trivial to classify given that the test data are located mostly in the margin area; convex hulls of both training 
datasets do not include most of the test data.

We choose a quantum feature map that embeds data (x0, x1) into a Bloch sphere instead of N = 2 qubits: 
Uφ(x0,x1) = Rz(x1)Ry(x0) . Features x0 and x1 are the latitude and the longitude of the Bloch sphere. We use two 
qubits ( q0 and q1 ) RealAmplitude40 PQC as the ansatz: V(θ) = R

q0
y (θ2)⊗ R

q1
y (θ3) CNOTq0→q1 R

q0
y (θ0)⊗ R

q1
y (θ1) . 

In this experiment, we use ibmq_montreal, which is one of the IBM Quantum Falcon processors. “Methods” 
section presents the specific techniques for optimizing quantum circuits against decoherence. The simultaneous 
perturbation stochastic approximation (SPSA) algorithm is selected to optimize V(θ) due to its rapid convergence 
and good robustness to  noise41,42. The measurements of each circuits are repeated R = 8192 times to estimate 
expectation values, which was the maximum possible option for ibmq_montreal. Due to long queue time of a 
cloud-based QPU, we reduce the QPU usage by applying warm-start and early-stopping techniques explained 
in “Methods” section.

Figure 3 shows the classification result. Theoretical decision function values were calculated by solving Eq. (9) 
with convex optimization. A noisy simulation is a classical simulation that emulates an actual QPU based on a 
noise parameter set estimated from a noise measurement. Although the scale of the decision values is reduced, 
the impact on the classification accuracy is negligible given that only the signs of decision values matter. This 
logic has been applies to most NISQ-applicable quantum binary classifiers. The accuracy would improve with 
additional error mitigation and offset calibration processes on the quantum device. Other VQASVM demonstra-
tions with different datasets can be found as Supplementary Fig. S2 online.

Numerical simulation. In a practical situation, the measurement on quantum circuits is repeated R times 
to estimate the expectation value within ε = O(1/

√
R) error, which could interfere with the convergence of 

VQA. However, the numerical analysis with the Iris  dataset43 confirmed that VQASVM converges even with 
the noise in objective function estimation exists. The following paragraphs describe the details of the numerical 
simulation, such as data preprocessing and the choice of the quantum kernel and the ansatz.

We assigned the labels + 1 to Iris setosa and − 1 to Iris versicolour and Iris virginica for binary classification. 
The features of the data were scaled so that the range became [−π ,π ] . We sampled M = 64 training data instances 
from the total dataset and treated the rest as the test data. The training kernel matrix constructed with our custom 
quantum feature map in Fig. 4a is learnable; i.e., the singular values of the kernel matrix decay exponentially. 
After testing the PQC designs introduced in Ref.36, we chose the PQC exhibited in Fig. 4b as the ansatz for this 

Figure 3.  Experiments on a ibmq_montreal cloud NISQ processor. (a) The toy training (letters) and test 
(asterisk) data are shown here in a Bloch sphere. The color indicates the true class label of the data; i.e., red 
= class A, and blue = class B. The letters A represent the training data of class A, and letter B represents the 
training datum of class B. (b) classification results performed on ibmq_montreal QPU (diamonds) and a 
simulation with noise (squares) compared to theoretical values(solid line). fφ,� is the decision function value of 
each test datum. The letters A and B represent the training data, located at their longitudinal coordinates on the 
Bloch sphere ( x0 ). Curved dashed lines are the sine-fitting of the ibmq_montreal results. Values inside the round 
brackets in the legend are the classification accuracy rates.
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simulation (see Supplementary Figs. S6–S9 online). The number of PQC parameters is 30, which is less than M. In 
this simulation, the SPSA optimizer was used for training due to its fast convergence and robustness to  noise41,42.

The objective and decision functions were evaluated in two scenarios. The first case samples a finite number 
of measurement results R = 8192 to estimate the expectation values such that the error of the estimation is 
non-zero. The second case directly calculates the expectation values with zero estimation error, which corre-
sponds to sampling infinitely many measurement results; i.e., R = ∞ . We defined the residual loss of training 
as � = Lφ,�(θ

t;S)+ C−1R(θ t)− d̃⋆ at iteration t to compare the convergence. Here, d̃⋆ is the theoretical 
minimum of Eq. (9) as obtained by convex optimization.

Although containing some uncertainty, Fig. 4c shows that SPSA converges to a local minimum despite the 
estimation noise. Both the R = 8192 and R = ∞ cases show the critical convergence rule of SPSA; � ∼ O(|θ |/t) 
for a sufficiently large number of iterations t. More vivid visualization can be found as Supplementary Fig. S10 
online. In addition, the spectrum of the optimized Lagrange multipliers αi s mostly coincides with the theory, 
especially for the significant support vectors. (Fig. 4d) Therefore, we concluded that training VQASVM within a 
finite number of measurements is achievable. The classification accuracy was 95.34% for R = 8192 and 94.19% 
for R = ∞.

The empirical speed-up of VQASVM is possible because the number of optimization parameters is exponen-
tially reduced by the PQC encoding. However, in the limit of large number of qubits (i.e., log(M) ), it is unclear 
that such PQC can be trained with VQA to well-approximate the optimal solution. Therefore, we performed 
numerical analysis to empirically verify that VQASVM with O(polylog(M)) parameters achieves bounded clas-
sification error even for large M. For this simulation, the MNIST  dataset44 was used instead of the Iris dataset 
because there are not enough Iris data points to clarify the asymptotic behavior of VQASVM. In this setting, the 
number of maximum possible MNIST training data instances for VQASVM is M = 213.

A binary image data of ‘0’s and ‘1’s with a 28× 28 image size were selected for binary classification, the 
features of which were then reduced to 10 by means of a principle component analysis (PCA). The well-known 
quantum feature map introduced in Ref.8 was chosen for the simulation: Uφ(x) = Wφ(x)H

⊗nWφ(x)H
⊗n , where 

Wφ(x) = exp i
∑

G⊂[n],|G|=2 gG(x)�i∈Gσ i
z and g{i}(x) = xi , g{i,j}(x) = (π − xi)(π − xj)δi+1,j . The visualization of 

the feature map can be found as Supplementary Fig. S4 online. The ansatz architecture used for this simulation 
was the PQC template shown in Fig. 4b with 19 layers; i.e., the first part of the PQC in Fig. 4b is repeated 19 
times. Thus, the number of optimization parameters is 19× log(M).

The numerical simulation shows that although residual training loss � linearly increases with the number of 
PQC qubits, the rate is extremely low, i.e., � ∼ 0.00024× log(M) . Moreover, we could not observe any critical 
difference in classification accuracy against the reference, i.e., theoretical accuracy obtained by convex optimiza-
tion. Therefore, at least for M ≤ 213 , we conclude that run-time complexity of O(Mpolylog(M)) with bounded 

Figure 4.  Numerical analysis on the iris dataset ( � = C = 104 ). (a) Custom quantum feature map for the iris 
dataset. (b) PQC design for V(θ) with 5× log(M) = 30 gate parameters. ((c) The shaded circles and triangles 
depict the training convergence outcomes of the residual losses. At the final iteration, ( t = 213 ) the residual 
loss � for R = 8192 repeated measurements (red dot-dashed line) is almost equal to the case of R = ∞ (blue 
dashed line), where the error when estimating the expectation value is 0. The red shaded area represents the 95% 
credible intervals of the last 16 residual losses for the R = 8192 case. (d) The spectrum of optimized weights, 
αi s, of xi for the theoretical and R = 8192 cases are compared. The dashed black line indicates the level of the 
uniform weight αi = 1/M = 1/64 . ‘Reference’ in the legend refers to the theoretical values of the αi s obtained 
by convex optimization.
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classification accuracy is empirically achievable for VQASVM due to O(polylog(M)) number of parameters (see 
Supplementary Fig. S11 online for a visual summarization of the result).

Discussion
In this work, we propose a novel quantum-classical hybrid supervised machine learning algorithm that achieves 
run-time complexity of O(Mpolylog(M)) , whereas the complexity of the modern classical algorithm is O(M2) . 
The main idea of our VQASVM algorithm is to encode optimization parameters that represent the normalized 
weight for each training data instance in a quantum state using exponentially fewer parameters. We numerically 
confirmed the convergence and feasibility of VQASVM even in the presence of expectation value estimation 
error using SPSA. We also observed the sub-quadratic asymptotic run-time complexity of VQASVM numeri-
cally. Finally, VQASVM was tested on cloud-based NISQ processors with a toy example dataset to highlight its 
practical application potential.

Based on the numerical results, we presume that our variational algorithm can bypass the issues evoked by 
the  expressibility36 and trainability relationship of PQCs; i.e., the highly expressive PQC is not likely to be trained 
with VQA due to the vanishing gradient  variance45, a phenomenon known as the barren  plateau46. This problem 
has become a critical barrier for most VQAs utilizing a PQC to generate solution states. However, given that 
the SVM is learnable (i.e., the singular values of the kernel matrix decay  exponentially5), only a few Lagrange 
multipliers corresponding to the significant support vectors are critically large; αi ≫ 1/M29,30. For example, 
Fig. 4d illustrates the statement. Thus, the PQCs encoding optimal multipliers should not necessarily be highly 
expressive. We speculate that there exists an ansatz generating these sparse probability distributions. Moreover, 
the optimal solution would have exponential degeneracy because only measurement probability matters instead 
of the amplitude of the state itself. Therefore, we could not observe a critical decrease in classification accuracy for 
these reasons even though the barren plateau exists, i.e., � = O(log(M)) . More analytic discussion on the train-
ability of VQASVM and the ansatz generating sparse probability distribution should be investigated in the future.

The VQASVM method manifests distinctive features compared to LS-QSVM, which solves the linear algebraic 
optimization problem of least-square  SVM47 with the quantum algorithm for linear systems of equations (HHL)20. 
Given that the fault-tolerant universal quantum computers and efficient quantum data loading with  QRAM2,22 
are possible, the run-time complexity of LS-QSVM is exponentially low: O(κ3eff ε

−3 log(MN)) with error ε and 
effective condition number κeff  . However, near-term implementation of LS-QSVM is infeasible due to lengthy 
quantum subroutines, which VQASVM has managed to avoid. Also, training LS-QSVM has to be repeated for 
each query of unseen data because the solution state collapses after the measurements at the end; transferring 
the solution state to classify multiple test data violates the no-cloning theorem. VQASVM can overcome these 
drawbacks. VQASVM is composed of much shorter operations; VQASVM circuits are much shallower than HHL 
circuits with the same moderate system size when decomposed in the same universal gate set. The classification 
phase of VQASVM can be separated from the training phase and performed simultaneously; training results are 
classically saved and transferred to a decision circuit in other quantum processing units (QPUs).

We continue the discussion on the advantage of our method compared to other quantum kernel-based algo-
rithms, such as a variational quantum classifier (VQC) and quantum kernel estimator (QKE), which are expected 
to be realized in the near-term NISQ  devices8. VQC estimates the label of data x as ŷ = sgn{f̄ (x; θ)+ b} , where 
f̄ (x; θ) is the empirical average of a binary function f(z) such that z is the N-bit computational basis measurement 
result of quantum circuit W(θ)|φ(x)� . The parameters θ and b are trained with variational methods that minimize 
the empirical risk: Remp(θ , b) =

∑

(x,y)∈S Pr
[

y �= sgn{f̄ (x; θ)+ b}
]

/|S| . This requires O(MN × |θ |) quantum 
circuit measurements per  iteration4. Subsequently, the complexity of VQC would match VQASVM from the 
heuristic point of view. However, VQC does not take advantage of the strong duality; the optimal state that 
W(θ⋆)† should generate has no characteristic, whereas the optimal distribution of α⋆

i  that ansatz of VQASVM 
should generate is very sparse, i.e., most αi s are close to zero. Therefore, optimizing VQC in terms of the suffi-
ciently large number of qubits would be vulnerable to issues such as local minima and barren plateaus. On the 
other hand, QKE estimates the kernel matrix elements K̂ij from the empirical probability of measuring a N-bit 
zero sequence on quantum circuit Uφ(xi)

†Uφ(xi)|0� , given the kernel matrix Kij = |�φ(xi)|φ(xj)�|2 . The estimated 
kernel matrix is feed into the classical kernel-based algorithms, such as SVM. That is why we used QKE as the 
reference for the numerical analysis. The kernel matrix can be estimated in O(ε−2

M
4) measurements with the 

bounded error of ||K − K̂ || ≤ ε . Thus, QKE has much higher complexity than both VQASVM and classical 
 SVM8. In addition, unlike QKE, the generalized error converges to zero as M → ∞ due to the exponentially 
fewer parameters of VQASVM, strengthening the reliability of the  training48. The numerical linearity relation 
with the decision function error Ef  and � supports the claim (see Supplementary Fig. S11 online).

VQASVM can be enhanced further with kernel optimization. Like other quantum-kernel-based meth-
ods, the choice of the quantum feature map is crucial for VQASVM. Unlike previous methods (e.g., 
quantum kernel  alignment49), VQASVM can optimize a quantum feature map online during the train-
ing process. Given that Uφ(·) is tuned with other parameters ϕ , optimal parameters should be the sad-
dle point: (θ⋆,ϕ⋆) = argminθ maxϕ Lφ[ϕ],�(θ)+ C−1R(θ) . In addition, tailored quantum kernels (e.g., 
k(·, ·) = |�φ(·)|φ(·)�|2r ) can be adapted with the simple  modification10 on the quantum circuits for VQASVM 
to improve classification accuracy. However, because the quantum advantage in classification accuracy derived 
from the power of quantum kernels is not the scope of this paper, we leave the remaining discussion for the 
future. Another method to improve VQASVM is boosting. Since VQASVM is not a convex problem, the perfor-
mance may depend on the initial point and not be immune to the overfitting problem, like other kernel-based 
algorithms. A boosting method can be applied to improve classification accuracy by cascading low-performance 



8

Vol:.(1234567890)

Scientific Reports |         (2023) 13:3288  | https://doi.org/10.1038/s41598-023-29495-y

www.nature.com/scientificreports/

VQASVMs. Because each VQASVM model only requires O(log(M)+ N) space, ensemble methods such as 
boosting are suitable for VQASVM.

Methods
Proof of Eq. (13). First, we note that a SWAP test operation (Ha · cSWAPa→b,c ·Ha) in Fig. 1 measures the 
Hilbert–Schmidt inner product between two pure states by estimating �σ a

z � = |�φ|ψ�|2 , where a is the control 
qubit and |φ� and |ψα� are states on target qubits b and c, respectively. Quantum registers i and j in Fig. 1 are traced 
out because measurements are performed on only a and y qubits. The reduced density matrix on x and y quantum 
registers before the controlled-SWAP operation is ρx,y =

∑M−1
i=0 αi|φ(xi)��φ(xi)| ⊗ |yi��yi| , which is the statisti-

cal sum of quantum states |φ(xi)� ⊗ |yi� with probability αi . Let us first consider the decision circuit (Fig. 1b). 
Given that the states |φ(xi)�x ⊗ |yi�y and |φ(x̂)�x̂ are prepared, �Aa→x,x̂σ

y
z � = �Aa→x,x̂��σ

y
z � = yi�Aa→x,x̂� due 

to separability. Here, Aa→x,x̂ can be (Ha · cSWAPa→x,x̂ ·Ha)
†σ a

z (Ha · cSWAPa→x,x̂ · Ha) or 1
�
σ 0
a  . Similarly, for 

the loss circuit (Fig. 1a), we have states |φ(xi)�x0 ⊗ |yi�y0 and |φ(xj)�x1 ⊗ |yj�y1 with probability αiαj such that 
�Aa→x0,x1σ

y0
z σ

y1
z � = �Aa→x0,x1 ��σ

y0
z σ

y1
z � = yiyj�Aa→x0,x1 � . Therefore, from the definition of our quantum ker-

nel, each term in Eq. (13) matches the loss and decision functions in Eqs. (11) and (12). More direct proof is 
provided in Ref.10,11 and in the Supplementary Information section B (online).

Realization of quantum circuits. In this article, Uφ,S is realized using uniformly controlled one-qubit 
gates, which require at most M − 1 CNOT gates, M one-qubit gates, and a single diagonal (log(M)+ 1)-qubit 
 gate35,50. We compiled the quantum feature map with a basis gate set composed of Pauli rotations and CNOT. 
Uφ,S can be efficiently implemented by replacing all Pauli rotations with uniformly controlled Pauli rotations. 
The training data label embedding of Uφ,S can also be easily implemented using a uniformly controlled Pauli 
X rotation (i.e., setting the rotation angle to π if the label is positive and 0 otherwise). Although this procedure 
allows one to incorporate existing quantum feature maps, the complexity can increase to O(MN2) if the quan-
tum feature map contains all-to-all connecting parameterized two-qubit gates. Nonetheless, such a value of Uφ,S 
has linear complexity proportional to the number of training data instances.

Application to IBM quantum processors. Because IBM quantum processors are based on supercon-
ducting qubits, all-to-all connections are not possible. Additional SWAP operations among qubits for distant 
interactions would shorten the effective decoherence time and increase the noise. We carefully selected the 
physical qubits of ibmq_montreal in order to reduce the number of SWAP operations. For M = 4 and single 
qubit embedding, m = 2 and n = 1 . Thus, multi-qubit interaction is required for the following connections: 
(a, x0, x1) , ([i0, i1], x0) , ([j0, j1], x1) , ([i0, i1], y0) , and ([j0, j1], y1) . We initially selected nine qubits connected in a 
linear topology such that the overall estimated single and two-qubit gate errors are lowest among all other pos-
sible options. The noise parameters and topology of ibmq_montreal are provided by IBM Quantum. For instance, 
the physical qubits indexed as 1, 2, 3, 4, 5, 8, 11, 14, and 16 in ibmq_montreal were selected in this article (see 
Supplementary Fig. S1 online) We then assign a virtual qubit in the order of y0, i0, i1, x0, a, x1, j0, j1, y1 so that the 
aforementioned required connections can be made between qubits next to each other. In conclusion, mapping 
from virtual qubits to physical qubits proceeds as {a �→ 5, i0 �→ 2, i1 �→ 1, xi �→ 3, yi �→ 4, j0 �→ 11,

j1  → 14, xj  → 8, yj  → 16} in this experiment. We report that with this arrangement, the circuit depths of loss 
and decision circuits are correspondingly 60 and 59 for a balanced dataset and 64 and 63 for the an unbalanced 
dataset in the basis gate set of ibmq_montreal: 

{

Rz ,
√
X,X,CNOT

}

.

Additional techniques on SPSA. The conventional SPSA algorithm has been adjusted for 
faster and better convergence. First, the blocking technique was introduced. Assuming that the vari-
ance σ 2 of objective function Lφ,� + C−1R is uniform on parameter θ , the next iteration t + 1 is rejected if 
[

Lφ,� + C−1R
]

(θ t+1) ≥
[

Lφ,� + C−1R
]

(θ t)+ 2σ . SPSA would converge more rapidly with blocking by pre-
venting its objective function from becoming too large with some probability (see Supplementary Fig. S10). 
Second, Early-stopping is applied. Iterations are terminated if certain conditions are satisfied. Specifically, we 
stop SPSA optimization if the average of last 16 recorded training loss values is greater than or equal to the last 
32 recorded values. Early stopping reduces the training time drastically, especially when running on a QPU. 
Last, we averaged the last 16 recorded parameters to yield the result θ⋆ = 1

16

∑15
i=0 θ

t−i . Combinations of these 
techniques were selected for better optimization. We adopted all these techniques for the experiments and simu-
lations as the default condition.

Warm‑start optimization. We report cases in which the optimization of IBM Q Quantum Processors 
yields vanishing kernel amplitudes due to the constantly varying error map problem. The total run time should 
be minimized to avoid this problem. Because accessing a QPU takes a relatively long queue time, we apply a 
‘warm-start’ technique, which reduces number of QPU uses. First, we initialize and proceed a few iterations (32) 
with a noisy simulation on a CPU and then evaluate the functions on a QPU for the remaining iterations. Note 
that an SPSA optimizer requires heavy initialization computation, such as when the initial variance is calculated. 
With this warm-start method, we are able to obtain better results on some trials.

Data availability
The numerical data generated in this work are available from the corresponding author upon reasonable request. 
https:// github. com/ Siheon- Park/ QUIC- Proje cts.

https://github.com/Siheon-Park/QUIC-Projects
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