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Prediction of hydrophilic 
and hydrophobic hydration 
structure of protein by neural 
network optimized using 
experimental data
Kochi Sato 1,2, Mao Oide 1,2,3 & Masayoshi Nakasako 1,2*

The hydration structures of proteins, which are necessary for their folding, stability, and functions, 
were visualized using X-ray and neutron crystallography and transmission electron microscopy. 
However, complete visualization of hydration structures over the entire protein surface remains 
difficult. To compensate for this incompleteness, we developed a three-dimensional convolutional 
neural network to predict the probability distribution of hydration water molecules on the hydrophilic 
and hydrophobic surfaces, and in the cavities of proteins. The neural network was optimized using the 
distribution patterns of protein atoms around the hydration water molecules identified in the high-
resolution X-ray crystal structures. We examined the feasibility of the neural network using water 
sites in the protein crystal structures that were not included in the datasets. The predicted distribution 
covered most of the experimentally identified hydration sites, with local maxima appearing in their 
vicinity. This computational approach will help to highlight the relevance of hydration structures to 
the biological functions and dynamics of proteins.

Proteins fold into unique structures in water and/or lipid bilayers and conduct biochemical and biophysical pro-
cesses in the aqueous environment of living  cells1. Water molecules act as important building blocks for protein 
structures and molecular interactions in protein–protein  complexes2,3, as stabilizers for optimizing chemical 
reactions in  enzymes4, and as regulators of internal motions for performing biological  functions5–7. Therefore, 
structures and interactions at the protein-water interface, the hydration structures of proteins, are subject to 
discussion for understanding the roles and influences of hydration water molecules on folding, stability, and 
functions of proteins at the atomic  level8.

The hydration structures of proteins have been investigated using various biophysical  techniques8–15. In par-
ticular, atomic details of protein hydration, such as the locations and interactions of hydration water molecules, 
are visualized by high-resolution crystal structure analyses at cryogenic  temperatures6,16. Cryogenic transmis-
sion electron microscopy (cryoTEM)17 can be used to study the hydration structures of proteins. In contrast to 
X-ray crystallography, since protein molecules are flash-cooled for cryoTEM analysis, conformational substates 
inherently appearing in solution can be  observed18,19. Therefore, cryoTEM observations may help to elucidate 
the hydration structure changes among the conformational substates. Unfortunately, even at a resolution where 
many hydration water molecules are detectable in electron density maps from X-ray crystallography data, fewer 
molecules are visible in potential maps in cryoTEM  analyses20, and this may result due to the low scattering 
cross-section of oxygen atoms for electrons.

In structural analyses, hydration structures of whole protein surfaces are incompletely characterized because 
of factors such as the positional disorder of hydration water molecules, resolution in structure analyses, and/
or molecular contacts in crystals. Therefore, computational approaches are necessary to completely illustrate 
the hydration structures of the entire protein surface. In our previous study, a set of empirical distributions of 
hydration water molecules surrounding polar protein atoms were obtained through the database analysis for 
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crystal structures of  proteins21 and were used to predict the distribution of hydration water molecules in interior 
cavities and on hydrophilic surfaces of  proteins22,23.

In addition to the knowledge-based approach, molecular dynamics (MD) simulations have shown the poten-
tial to provide structural information on protein hydration at a high spatiotemporal  resolution24–26. The force field 
parameters tuned by referring to the empirical distributions reproduced the hydrogen-bond patterns between 
hydration water molecules and polar protein atoms in MD  simulations27. In the last two decades, protein hydra-
tion has been a subject of statistical mechanical theory for liquids, for instance, the three-dimensional reference 
interaction site model (3D-RISM)28. However, both approaches require large computational times and costs, and 
the development of the 3D-RISM to reproduce hydration structures over protein surfaces is still in  progress8,29.

In this study, as an alternative computational approach, we constructed a neural network (NN) for predicting 
the hydration probability distribution over the surfaces and the interior cavities of proteins. The constructed 
NN was optimized for experimentally identified hydration structures from protein crystallography as recently 
reported NN-based hydration prediction  methods30,31, rather than the method trained by the hydration structures 
predicted by MD and theoretical  calculations32. Here, we describe the NN architecture details and demonstrate 
the performance of predicting hydration structures in the interior, hydrophilic, and hydrophobic surfaces of 
proteins. In addition, we discuss the characteristics of our method through comparison with the other NN-
based methods.

Results
Construction of NN. Datasets for training the NNs were prepared from 2145 crystal structure models of 
proteins including 2,655,363 hydration water molecules (Methods section, SI Appendix, S1, S2 and Fig. S1). The 
dataset provided a set of 5,310,726 voxelized three-dimensional (3D) images of 10.25 × 10.25 × 10.25 Å3 regard-
ing the spatial distributions of carbon, nitrogen, oxygen, and sulfur atoms for both 2,655,363 crystal-water pre-
sent and 2,655,363 crystal-water absent sites (Fig. 1A). Due to the large number of images for the training data, 
the dataset was used without data augmentation by rotation operation for the images.

Based on the three-dimensional convolutional neural network (3D-CNN), which was composed of a convo-
lution block (CB) and a fully connected block (FCB) (Fig. 1B), six NNs with different CB and FCB architectures 
were constructed and optimized using the training dataset (the Methods section and SI Appendix, S3). In the 
previous database  analysis8,21, we found that the arrangements of protein atoms engaged in protein hydration are 
predominantly induced to satisfy the tetrahedral hydrogen-bond geometry of water molecules rather than the 
amino acid sequences of proteins. Therefore, the constructed NNs were trained using the 70% images randomly 
selected from the datasets, and validated using the 30% images. We selected the most efficient NN to reproduce 
the hydration sites by inspecting the validation metrics against the validation and test datasets (SI Appendix, S3 
and Table S1) and the frequency distribution of hydration probability for the test data (SI Appendix, Fig. S2). For 
the test data, we used a crystal structure of glutamate dehydrogenase (GDH), which was refined at a resolution 
of 1.8 Å and included more than 1200 hydration water molecules (SI Appendix, Table S2). The sequence iden-
tity of GDH against the 2145 proteins was smaller than 34%. In the selected NN, the CB was composed of two 
convolution units with 3 × 3 × 3 filter and 32 channels, and the FCB had one layer with 32 nodes (SI Appendix, 
Model 6 in Table S2).

The NN was further assessed with respect to the reproducibility of hydration structures for the 300 crystal 
structures of proteins, which were not included in the in the training and validation datasets (Table 1 and SI 
Appendix, S4). The dataset included 174,796 hydration water molecules, yielding 174,796 crystal-water present 
and 174,796 crystal-water absent images. The average accuracy and loss scores were 0.873 and 0.298, respectively, 
and comparable with those for the validation dataset (SI Appendix, Table S1). In addition, the measured preci-
sion, recall, and F-score values (Table 1) indicated that the selected NN overpredicted neither the presence nor 
absence of crystal-water molecules.

Predicted hydration probability. As representative results of the NN-prediction, Figs. 2A and 2B depict 
the predicted hydration probability distributions for  GDH5,22 and hetero-tetrameric nitrile hydratase (NHase)2,33 
(SI Appendix, Table S2), respectively. The predicted hydration probability distribution, contoured at the 10% 
level, covered the crystal-water sites in the first layer, and the shape of the distribution on the protein surfaces 
almost reproduced the solvent-accessible surfaces calculated using a sphere with a diameter of 3 Å. At the 80% 
contour level, which approximately corresponded to the one standard deviation level from the 100% probability 
in the frequency distribution of the hydration probability in Fig. 2C, the probability distributions were localized 
around the crystal-water sites. For surfaces suitable for hydration but lacking hydration water molecules in the 
crystal structures, the probability distributions indicated potential hydration patterns.

For quantitative evaluation, we first inspected the frequency distributions of the predicted hydration prob-
abilities at the crystal-water sites (Fig. 2C and Table 1). For 67% of crystal-water sites in the 300 crystal structures 
for the validation, the NN yielded the hydration probability greater than 80%. For GDH and NHase, the predicted 
probability distributions were separately assessed for the crystal-water sites in the first-layer class exposed to 
bulk solvent and the inside class occupying the cavities and interfaces (Table 1). The hydration structures of 
both classes are necessary to study the dynamics, stability and intermolecular interactions of the  proteins2–8,22. 
The predicted probability was greater than 80% for approximately 90% of the crystal-water sites in the inside 
class, and the probability for 70–80% of the crystal-water sites in the first-layer class was greater than 80%. The 
frequency distributions for the inside class were narrower than those for the first layer class, probably because 
the local maxima of the predicted probability were frequently closer to the crystal-water sites in the inside class 
than those of the first-layer class as measured by MAD and RMSD (Table 1).
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The predicted probability tended to be higher for hydration sites with a greater number of interactions with 
protein atoms and adjoining hydration water molecules (Fig. 2D). This tendency was clear in the inside class, 
where greater number of interactions are expected than the first-layer class. In addition, at the crystal-water 
sites occupied by unambiguously identified hydration water molecules with the B-factors smaller than 30 Å2, 
the predicted hydration probability tended to be greater than 80% (Fig. 2E). Therefore, based on the frequency 

Figure 1.  Construction of the NN to predict hydration probability around protein molecules. (A) Schematic 
of the preparation procedure for the dataset from crystal structures of proteins accompanying hydration water 
molecules. (B) Schematic of the NN architecture. The loss function is illustrated in the lower right corner.
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distributions shown in Fig. 2C–E, the predicted hydration probability of 80% can be used as a rough threshold 
to assess the NN-predicted probability distribution.

The quantitative evaluation described above implied that the NN was feasible to predict the hydration struc-
tures for the first layer and inside classes. Although the NN was optimized without information on both the 
interaction energies and positional fluctuations of hydration water molecules, the NN probably learned the 
tendency underlying the dataset that more interactions with protein atoms ensure a more stable residence of 
hydration water molecules in hydration sites.

In the following sections, we assessed the performance of the NN by comparing the predicted hydration 
probability distributions with the experimentally observed hydration patterns of the inside class in cavities and 
interfaces and the first-layer class on hydrophilic and hydrophobic surfaces.

Prediction for hydrophilic cavity. Hydrophilic cavities organized in protein interiors and at the inter-
faces of protein complexes are isolated from the bulk solvent and are filled, in most cases, by hydration water 
molecules of the inside  class8,34. The hydration water molecules act as stabilizers for the tertiary and quaternary 
structures of proteins and display thermal factors comparable to those of the protein atoms in  contacts8. As pro-
tein structural models solved at a low resolution frequently lack hydration water molecules in the inside class, 
hydration structures in cavities and interfaces must be generated to investigate the structural stability and avoid 
the artificial collapse of empty cavities during MD simulations under constant pressure.

The NN-predicted hydration probability distributions for protein cavities and interfaces were assessed by 
inspecting the coverage of hydration sites and the positional differences between hydration sites and local maxima 
in the distribution. Figure 3A shows the NN-predicted hydration distribution for a small cavity in each subunit 
of GDH. The cavity is organized by the Arg65, Thr91, and Val94 side chains, and is occupied by three hydration 
water molecules. The NN yielded similar hydration probability distributions for cavities among the six subunits, 
and local maxima in the distributions were located in the 0.5–0.7 Å range from the nearest hydration site.

Figure 3B shows the NN prediction for the three cavities in an αβ-heterodimer of NHase. Each of four small 
cavities surrounded by Thr166/α1, Tyr168/α1, and Asp202/β1 was occupied by a single water molecule. The pre-
dicted probability distribution showed four separate peaks that almost overlapped with the four hydration sites. 
The positional differences between local maxima from the sites were in the 0.3–0.9 Å range. In a cavity formed 
by Leu120/α1, Tyr127/α1, and Thr162/α1, the predicted distribution covered five hydration water molecules 
in a zigzag arrangement, and the local maxima were located within 0.4 Å from the sites. The two cavities with 
bent-tubular shapes surrounded Met1/β. Eight water molecules occupied each cavity. The predicted probability 
distribution reproduced the distribution of the hydration sites, with the local maxima located in the 0.2–1.1 Å 
distance range from the nearest sites.

At the interface of two αβ-heterodimers of NHase (Fig. 3C), a cavity of approximately 20 × 12 × 10 Å3, a 
much larger volume than the cavities described above, was filled with 37 hydration water molecules to assist the 
association of the β-subunits2. The NN-predicted probability distribution covered most of the water molecules 
engaged in direct interactions with protein atoms, and the maxima in the probability distribution were located 
in the 0.3–1.7 Å range from the nearest hydration sites.

Columnar arrangements of hydration water molecules are found in the interiors of various  proteins22. A 
representative example is the tandemly arranged water molecules in the water channel of aquaporin (AQP)35,36 

Table 1.  Validation and performance of the selected NN. *Because of the limitation on the number of residues 
in the calculation, the hydration prediction for GDH was not executed.

Precision Recall F-score

Validation of the selected NN using a set of 300 crystal structures

 True 0.9010 0.8368 0.8677

 False 0.8476 0.9081 0.8768

MAD (Å)/RMSD (Å) 0.72/0.98

GDH/NHase

Number of predicted sites

4671/1456

First-layer class Inside class

Prediction results for GDH and NHase

 Number of crystal-water sites 1425/785 195/170

 Ratio of crystal-water sites with probability greater than 80% (%) 81/72 93/89

 MAD (Å) 0.60/0.68 0.52/0.53

 RMSD (Å) 0.82/0.93 0.73/0.73

GDH/NHase Accutar30 GalaxyWater-CNN_4231

Number of predicted sites 2751/1327 –*/1027

First-layer class Inside class First-layer class Inside class

Prediction results for NHase by the two NN-based prediction methods

 MAD (Å) 1.13/0.72 0.39/0.33 –*/0.70 –*/0.31

 RMSD (Å) 1.13/1.10 0.65/0.51 –*/1.10 –*/0.43
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Figure 2.  Characteristics of the predicted hydration probability distributions on protein surfaces. (A) The 
predicted hydration distribution for the crystal structures of GDH composed of six subunits (the accession 
code of PDB: 1euz). (B) The predicted hydration distribution for NHase composed of two α-subunits and two 
β-subunits (the accession code of PDB: 2ahj). The crystal structures of two protein molecules are depicted as 
ribbon models in the left panels (SI Appendix, Table S2). The probability distributions contoured at 10%, and 
80% levels are displayed on the surface-rendered models of the crystal structures. The middle panel is the cross-
sectional view of the 10% probability at the plane of the molecular center. Red spheres of 2 Å diameter indicate 
the locations of crystal-water sites. (C) The frequency distributions of the predicted probabilities at crystal-water 
sites. (D) The correlation between the probability and the number of interactions. (E) The correlation between 
the probability and the thermal factors of water molecules. In panels (C)–(E), plot shown are for the 300 protein 
structures for validation (upper panel), GDH (middle) and NHase (lower). For GDH and NHase, the hydration 
sites in the first-layer and inside classes are shown using white and gray bars, respectively, and the frequencies of 
the two classes were stacked in panels (D) and (E). All molecular images were drawn using  PyMOL60.
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Figure 3.  Prediction for cavities, interface, and channel. (A) Prediction for the three hydration sites in small 
cavities in subunits (A), (B), and (C) of GDH. The location of the cavity in subunit (A) is illustrated in the left 
panel. The green mesh is the probability distribution contoured at 80% probability, and the local peak positions 
are indicated by cyan spheres. The blue nets are the omit-difference Fourier electron density maps of crystal-
water molecules (red spheres) at the highest resolution (see Table SI2) contoured at three standard deviation 
levels from the average. Amino acid residues forming the cavities (or channels) are shown using stick models, 
and the potential hydrogen bonds are indicated by magenta dashed lines. Illustrations in panels (B)–(D) are 
drawn similarly. (B) Predicted hydration distributions for three cavities in NHase. The locations of the cavities 
are shown in the left panel. (C) Predicted hydration probability distribution for water molecules confined in 
the interface between the two β-subunits of NHase (upper panel). The gray arrows indicate the hydration water 
molecules without direct contact with protein atoms. (D) Predicted hydration probability distribution in the 
solvent channel with seven hydration water molecules (1–7) of a subunit of tetrameric AQP (the accession code 
of PDB: 1z98, upper panel). Two of the channel-forming α-helices are illustrated as ribbon models.
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(Fig. 3D). The NN-predicted probability distribution covered most of the water molecules in the extracellular 
vestibule, central region, and cytoplasmic vestibule of the channel. The probability maxima near hydration sites 
1, 4, 5, and 6 were located within 0.7 Å from the identified hydration water molecules.

From the prediction results for the cavities and the interface, we hypothesized that the NN can learn the 
distribution patterns of atoms suitable for hydration in cavities and may be useful for predicting hydration 
structures in hydrophilic cavities in the interiors of both soluble and membrane proteins.

Prediction for hydrophilic surface. Hydration water molecules in the first-layer class, each covering an 
average accessible solvent area (ASA) of approximately 20 Å2, are indispensable for the solvation of  proteins8. 
Here, we describe how the NN-predicted probability distributions are consistent with the experimental hydra-
tion patterns on the complicated surfaces of proteins in the stationary state and those undergoing conforma-
tional changes.

As examples of hydration prediction for surfaces of a protein in a stationary conformation, Fig. 4A compares 
the NN-predicted probability distributions with the locations of hydration water molecules on the three surface 
regions of NHase. On the surface formed by the side chains of Asp53/β1, Arg56/β1, and Gln90/α1, eight water 
molecules in the first-layer class and three without direct interactions with the protein atoms were identified in 
the crystal structure. The probability distribution covered almost all the water molecules in the first-layer class, 
and the local maxima were located within 0.4–1.3 Å from the hydration sites. In contrast, low probability dis-
tributions appeared near two of the three crystal-water molecules without direct contact with the protein atoms 
as indicated by the gray arrows in Fig. 4A.

On the surface around the Gln202/α1 side chain, the NN yielded an arc-shaped probability distribution cov-
ering the seven crystal-water molecules, and the local maxima were located in the distance range of 0.4–1.7 Å 
from the molecules. In addition, the predicted distribution suggests the presence of two additional hydration 
sites covering the peptide bond of Gln202/α1-Val203/α1, which were missing in the crystal structure. Around 
the Glu92/α1 side chain, the predicted probability distribution overlapped with ten hydration water molecules, 
and the local maxima were located in the 0.2–1.3 Å range from the water molecules. Water molecules with ther-
mal factors greater than 30 Å2 tended to be located at the edge of the 80% contoured probability distribution.

Next, we examined whether the NN reproduced the hydration structures of metastable conformations appear-
ing in the internal motions of proteins. Unliganded GDH undergoes spontaneous hinge-bending motions of the 
NAD-binding domain to open/close the active-site cleft situated between the NAD-binding and C-domains5,7 
(Fig. 4B). In a crystal, each subunit is trapped in one of three metastable conformations, i.e., open (subunit A), 
half-open (subunits C, D, and F), and closed (subunits B and E) in the domain motion, and the hydration struc-
ture changes are visualized for the three  conformations22 (Fig. 4B). Changes in the columnar arrangements of 
hydration structures surrounding Arg187, Thr191, and Gly347, which form an edge region of the active-site cleft, 
are key factors in the regulation of NAD-domain motion. The predicted probability distributions almost repro-
duced the columnar arrangement of hydration water molecules in the three metastable conformations, with the 
maxima located in the distance range of 0.1–1.5 Å from the identified hydration water molecules, suggesting that 
the NN could predict the hydration structures of proteins in metastable states in global conformational changes.

Based on these examples, we conclude that the NN is capable for predicting the probability distributions of 
hydration water molecules in the first-layer class on hydrophilic protein surfaces, and that the NN can predict 
hydration structures occurring in concert with the conformational transition of proteins.

Prediction for liganded active-sites. As hydration water molecules mediate molecular interactions 
between proteins and ligand molecules, the prediction of hydration sites is necessary for understanding the 
association mechanisms of ligand  molecules37,38. Here, we show preliminary tests regarding the feasibility of the 
NN to predict hydration sites mediating protein-ligand interactions.

In scytalone dehydratase (SDH) inhibited by a tight-binding inhibitor, carpropamid ((1RS,3SR)-2,2-dichloro-
N-[(R)-1-(4-chlorophenyl)ethyl]-1-ethyl-3-methylcyclopropanecarboxamide)39, two hydration water molecules 
contribute to fix the central part of the inhibitor molecule at the bottom of the active-site pocket. One water 
molecule forms hydrogen bonds with the amide group of the inhibitor molecule and two histidine side chains, 
and another forms hydrogen bonds with the tips of two tyrosine side chains and fixes the carbonyl group of the 
inhibitor molecule. The NN-predicted hydration probability distribution overlapped with the two hydration 
water molecules.

Fv part of immunoglobulin G (IgG), which plays a key role in immunological responses, recognizes antigen/
hapten molecules together with hydration water molecules. As an example, Figure 4D shows the structure of a 
Fv fragment of anti-dansyl IgG in complex with dansyl-lysine40. One hydration water molecule, which hydrated 
a pocket formed by the complementary determining regions (CDRs) H1 and H3, contributes to recognize the 
middle of the hapten. The NN-predicted hydration site overlapped with the hydration water molecule.

Prediction for hydrophobic cavity and surface. Hydration water molecules in hydrophobic cavities 
and on hydrophobic surfaces are predominantly in isotropic van der Waals contact with non-polar atoms, and 
the arrangement of hydration water molecules is influenced by the locations of hydration water molecules form-
ing hydrogen bonds with polar protein  atoms6,8. In addition, hydration water molecules with positional disorder 
on hydrophobic surfaces are difficult to identify by X-ray crystallography. Therefore, in contrast to hydration 
patterns on hydrophilic surfaces, regular arrangements of hydration water molecules are rarely identified on 
hydrophobic  surfaces41, except for pentagonal  arrangements8,42. To date, it has been very difficult to predict the 
hydrophobic hydration of proteins using knowledge-based approaches because of the lack of regular arrange-
ments of hydration water molecules around hydrophobic surfaces. However, because the dataset included the 



8

Vol:.(1234567890)

Scientific Reports |         (2023) 13:2183  | https://doi.org/10.1038/s41598-023-29442-x

www.nature.com/scientificreports/

Figure 4.  Predicted probability distributions for clusters of hydration water molecules in the first-layer 
class. (A) Prediction for three clusters of hydration water molecules of NHase. (B) Prediction of columnar 
arrangement of hydration water molecules in the open, half-open, and closed states in the NAD-domain motion 
to open/close the active site cleft in GDH subunits. The locations of Arg187 and Thr191 are shown in the left 
panel. (C) Whole structure of SDH subunit in complex with its inhibitor, carpropamid (CRP) (the accession 
code of PDB: 2std) (left panel) and a magnified view of the inhibitor moiety in the active site pocket (right 
panel). (D) Whole structure of the anti-dansyl Fv fragment (the accession code of PDB: 1wz1) (left panel) and 
magnified view of the binding-site. In panels (C) and (D), blue nets are omit-difference Fourier maps of ligand 
molecules and hydration water molecules mediating protein–ligand interactions contoured as Fig. 2A. (E) 
Probability distribution in a hydrophobic pocket located at the center of IL-1β (the accession code of PDB: 9ilb). 
(F) Prediction of a cluster of three pentagonal arrangements on a hydrophobic surface of trimeric Phe162Ala-
mutated SDH (the accession code of PDB: 1idp).
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distribution patterns of hydration water molecules near non-polar groups, the NN may be applicable for the pre-
diction of hydration probability on hydrophobic surfaces and cavities. Here, we show representative examples of 
NN prediction for a hydrophobic cavity in interleukin-1β (IL-1β)43 and the hydrophobic surface of unliganded 
Phe162Ala-mutated scytalone dehydratase (SDH)44.

In the core of IL-1β, a cavity of approximately 7 × 8 × 8 Å3 is formed by 12 hydrophobic  residues45 (Fig. 4C). 
A nuclear magnetic resonance study pointed out the presence of hydration water molecules in a disordered 
arrangement in the  core45. The NN predicted a hydration distribution with a significant probability larger than 
80%, in which two or three hydration water molecules could occupy and overlap the electron density maps of 
disordered hydration water molecules in X-ray  crystallography46.

A pentagonal arrangement of hydration water molecules, which is a typical hydration pattern in clathrate 
structures to hydrate gas  molecules47, are present on protein  surfaces6,8,42. Figure 4D shows an NN-predicted 
probability distribution on the hydrophobic surface of Phe162Ala-mutated SDH (SI Appendix, Table S2), where 
three pentamers composed of ten hydration water molecules hydrated three phenylalanine side-chains. The 
probability distribution covered six hydration sites at the 80% level and all sites at the 70% level. The local peaks 
of the probability distribution were located in the distance range of 0.4–1.1 Å from hydration water molecules 
1, 2, 3, 5, 6, 7, 9, and 10. In particular, the probability maximum appeared within 0.9 Å from hydration water 
molecule 7, which contacted three phenylalanine side chains alone. The predicted distribution lacked three-fold 
rotational symmetry, probably because of the incomplete symmetry among the subunits and the sensitivity of 
the NN-predicted distribution to small differences in atom positions.

Discussion
Here, we compare the performance of our NN with that of two other NN-based hydration prediction methods, 
GalaxyWater-CNN_4230 and  Accutar31, with respect to the distributions of predicted hydration sites (Fig. 5 and 
SI Appendix, Fig. S3), MAD and RMSD (Table 1 and SI Appendix, Table S3). As an example, Fig. 5A compares the 
distributions of crystal-water sites of NHase and the predicted sites in the first-layer class by the three NN-based 
methods. Our NN predicted hydration sites uniformly cover the NHase surface, while sites predicted by the other 
methods were frequently absent from the surface bulges and crowded mainly on grooves. As a result, the surface 
coverage of the predicted hydration sites by our NN was 75%, and those by the Acctar and GalaxyWater-CNN_42 
were 58% and 58%, respectively. This tendency was also observed in protein structures used in the validation 
test of GalaxyWater-CNN30. Hydration sites predicted by our NN covered 73–75%, and those by the other two 
were in the range of 40–50% (SI Appendix, Table S3 and Fig. S3).

Figure 5B compares the three methods regarding the reproducibility of the crystal-water sites of the first-layer 
class. The three methods almost reproduced several crystal-water sites indicated by arrows. On the other hand, 
at crystal-water sites indicated by dotted and dashed circles, one or two methods failed to predict, although the 
sites were free from crystal contacts. The three methods were also compared with respect to the prediction of 
hydrophobic regions. In the hydrophobic core of IL-1β (Fig. 5C), the hydration sites expected from experimental 
 data45,46 were predicted by our NN only. In contrast, on the hydrophobic surface of the Phe162Ala-mutated SDH, 
all the three methods predicted hydration sites near the crystal-water sites in the clathrate arrangement (Fig. 5D).

Regarding the MAD and RMSD for the crystal-water sites in the first-layer class of GDH and NHase, our NN 
yielded the best scores (Table 1). In the two other methods, many sites were distant from the crystal-water sites, 
while some predicted sites almost overlapped with the crystal-water sites as seen in Fig. 5B–D. For the inside 
class, the three methods reproduced almost all the crystal water sites (Fig. 5E). Particularly, the two other meth-
ods frequently predicted hydration sites almost overlapping with the crystal-water sites and yielded the MAD 
and RMSD scores better than those of our NN (Table 1), probably because the two methods were trained by the 
datasets explicitly including the stereochemical information on hydration sites. We also compared the scores 
for nine small protein molecules used in the validation test of GalaxyWater-CNN30 (SI Appendix, Table S3). The 
two scores of our NN were better than those of the other two methods.

Therefore, our NN method showed somewhat better performance than the other two NN-based methods 
with respect to the distributions of hydration sites over protein surfaces and in the two scores for assessing 
positional differences between predicted and observed sites except for the inside class. Since the performance of 
an NN-based method likely depends on the NN architecture, the type and the size of the training datasets, the 
comparison suggested that better results may be obtained by NNs trained by both the distribution of protein 
atoms around the crystal-water sites and the information on stereochemistry and interaction energies at the sites.

The constructed NN displayed the average accuracy and loss scores of 0.873 and 0.298, respectively, and 
showed the performance as demonstrated in Figs. 3, 4 and 5, Table 1, SI Appendix Fig. S3 and Table S3. Based 
on the correlation between the accuracy/loss scores and the predicted results, although the performance of NN-
based prediction method depends on the size of the database, the architecture of NN and so on, the accuracy and 
loss scores may be a good measure necessary to achieve, at least, the performance like our NN and to develop 
NN-based methods with better performance than our present NN.

Besides the NN-based hydration prediction methods, we compared the performance of our NN with those 
of knowledge-based and MD-based prediction methods. The hydration distributions predicted by our NN com-
pletely covered the probability distribution calculated using the empirically determined hydration distributions 
around polar  atoms21,22, and overlapped with the solvent  densities25,26 deduced from a MD simulation with an 
appropriate force field and water  model6,8,27.

The NN was optimized using the dataset composed of ‘water-present’ and ‘water-absent’ atom groups. Water-
present groups specified by crystal-water sites and contributed to increasing the hydration probabilities around 
atom groups in similar arrangements to water-present groups. However, the probabilities will decrease around 
atom groups in a similar arrangement to water-absent groups.
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Figure 5.  Comparison of the predicted hydration sites among our NN and the two other NN-based methods. 
(A) Distributions of the crystal-water sites in the first-layer class (red spheres) and the predicted hydration sites 
from our NN (cyan surface in the left panel),  Accutar30 (yellow surface in the middle panel) and GalaxyWater-
CNN_4231 (blue surface in the right panel) on the surface of NHase. (B) Magnified view of the distributions of 
crystal-water sites in the first-layer class and the predicted hydration sites on NHase. In the following panels, 
the spheres indicating the hydration sites as colored in panel (A). The arrows indicate the crystal-water sites 
predicted by the three NN-based methods. Dotted and dashed circles indicate crystal-water sites predicted by 
our NN and Accutar and by our NN only, respectively. (C) Distributions of predicted hydration sites in the 
hydrophobic core of IL1-β as illustrated in Fig. 4C. The dashed line indicates the hydrophobic-hydration area. 
(D) Distribution of crystal-water and predicted sites on the hydrophobic surface of Phe162Ala-mutated SDH as 
illustrated in Fig. 4D. (E) Crystal-water of the inside class and predicted hydration sites in the interior of NHase.
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In the dataset, two types of water-absent groups were present. One included a set of atom groups that were 
never hydrated. The other was a set of atom groups probably hydrated but lacking their hydration water molecules 
in crystal structures owing to the positional disorder. Therefore, atom groups in the latter type were incorrectly 
classified into the water-absent group, and the incorrect assignment may bias the reduction in hydration prob-
ability around atom groups arranged similar to the latter type.

Although the results shown in Figs. 2, 3 and 4 suggested that the influence of the bias described above was 
minor, a more rigorous assignment of water-absent groups is required. One method is the two-step optimiza-
tion of the NN. The dataset for the first optimization is the same as that described in the Methods section. In 
this preliminary optimization, although the parameters in the CB will be optimized to adequately predict the 
hydration distributions, those in the FCB have room for further refinement. In the second optimization stage, 
the parameters in the FCB are refined using the training dataset, which is prepared from crystal structure models 
solved at a resolution beyond 1 Å by focusing on hydration water molecules with B-factors smaller than 30 Å2. 
Moreover, in the second stage, the FCB is newly constructed as a regression model for water-present probabilities 
based on the B-factors of water molecules, so that the penalty would be adequately suppressed for the potential 
location of the hydration water molecules.

In the ideal prediction of hydration structures based on crystal structures, the predicted hydration sites 
coincide with crystal-water sites. The NN was optimized using the dataset for the distribution patterns of protein 
atoms, but not for the stereochemical geometry of hydrogen bonds, because the dataset may implicitly contain the 
stereochemical characteristics of atomic contacts. For the inside class, most of the local maxima in the predicted 
hydration probability distributions were located within 0.7 Å from the experimental observations, probably 
owing to several interactions in the cavities (Table 1 and Fig. 3). Regarding the first layer class, local maxima in 
the predicted distribution were at times greater than 1.3 Å, i.e., half of the typical hydrogen-bond distance, from 
the crystal-water sites (Table 1 and Fig. 4). Because the local maxima in the predicted probability distributions 
did not always suggest appropriate hydration sites, the protocol has room for improvement to minimize the 
positional differences in hydration sites between the prediction and experiment. The following two strategies 
may improve the prediction of potential hydration sites.

One is the combinational use of the NN-predicted hydration probability distribution and the directionality of 
hydrogen bonds reported by the database  analysis21 and MD  simulation27. In addition, the frequency distributions 
of hydration water molecules are available for the rotatable O–H groups in the serine and threonine side  chains27. 
The second is the introduction of an input channel regarding the distribution patterns of hydrogen atoms in 
amino acid residues. Owing to progress in synchrotron X-ray  crystallography48 and neutron  crystallography49, 
a number of hydrogen atoms have been identified in proteins. In addition, the positions of the hydrogen atoms 
are virtually generated by protocols using crystallographic  refinement50 and MD simulations (https:// manual. 
groma cs. org/ docum entat ion/ curre nt/ onlin ehelp/ gmx- pdb2g mx. html).

As the constructed NN predicts the hydration over hydrophobic surfaces of transmembrane regions, it is 
necessary to exclude the prediction, for instance, by multiplying the knowledge-based prediction on the hydra-
tion structures of hydrophilic  surfaces8,22. In addition, two preliminary tests in Fig. 4C,D suggested the capability 
of the NN to predict hydration sites in protein-ligand interface. However, the further training is necessary for 
protein complexed with various types of ligand molecules for understanding the association mechanisms and 
designing inhibitor  molecules37,38.

Methods
Preparation of datasets. The datasets for training the NNs were prepared from crystal structure models 
of proteins available from the Protein Data  Bank51. To collect a number of hydration patterns on various sur-
face types, we selected proteins with molecular weights greater than 100 k. Furthermore, for an unambiguous 
collection of hydration patterns, we selected 2145 crystal structures (SI Appendix, S1), which were solved at a 
resolution of 1.6‒1.8 Å using diffraction data collected at cryogenic temperature, and displayed crystallographic 
R-factors and Rfree-factors smaller than 0.20 and 0.25, respectively. By using the PISCES site (http:// dunbr ack. 
fccc. edu/ pisces/ PISCES. php)52, the 2145 protein structures were separated into 1,066 groups under the sequence 
similarity threshold of 30%. This implied that two protein molecules had a sequence similarity on an average.

As reported previously, each local hydration structure predominantly depends on the interactions between 
a hydration water molecule and protein atom groups and satisfies the tetrahedral hydrogen-bond geometry of 
water  molecule8,21. Therefore, the NN was optimized with respect to the local hydration structures. To collect the 
distribution patterns of protein atoms surrounding hydration water molecules, we used a trimming box com-
posed of 0.25 × 0.25 × 0.25 Å3 voxels. The size of the trimming box was set to 41 × 41 × 41 voxels, corresponding 
to 10.25 × 10.25 × 10.25 Å3 (Fig. 1A) based on the frequency distributions for water-water and water-protein atom 
distances (SI Appendix, S2 and Fig. S1). For each protein structure model, surfaces and cavities with a non-zero 
 ASA53 were randomly scanned using the trimming box.

When a hydration water molecule is present in the trimming box, the center of the box is placed at the water 
molecule. The distribution of the protein atoms was designated as the ‘water-present’ pattern. In addition, the 
distribution of protein atoms without hydration water molecules was collected as a ‘water-absent’ pattern to 
equalize the number ratio between the water-present and water-absent patterns in the subsequent training of 
NNs. Each distribution pattern was voxelized separately with respect to the atomic species, i.e., the carbon, nitro-
gen, oxygen, and sulfur atoms (Fig. 1A). Finally, a dataset composed of 5,310,762 patterns (hydration sites) was 
obtained from 2145 protein structures. Of these patterns, 70% were randomly selected as the training dataset and 
30% were used as the validation dataset. This selection was independent from protein structures and sequences 
because of the characteristic of the local hydration structures as described in the Results section.

https://manual.gromacs.org/documentation/current/onlinehelp/gmx-pdb2gmx.html
https://manual.gromacs.org/documentation/current/onlinehelp/gmx-pdb2gmx.html
http://dunbrack.fccc.edu/pisces/PISCES.php
http://dunbrack.fccc.edu/pisces/PISCES.php
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In addition, for the extra validation of the selected NN, we prepared a set of 300 crystal structures of proteins 
with the molecular weights of 50–100 k. The structures were taken from a cluster of protein structures displaying 
less than 30% sequence  identity51. The resolution of each crystal structures was in the range of 1.0‒1.8 Å. The 
test dataset yielded 174,796 patterns of hydration sties.

To efficiently calculate the hydration probabilities, coarse datasets were prepared independently from the 
datasets described above, using a trimming box composed of 21 × 21 × 21 voxels of 0.50 × 0.50 × 0.50 Å3. The 
NNs optimized using the coarse datasets predicted the preliminary hydration distributions to roughly indicate 
the potential hydration sites.

Architecture of constructed neural network. We constructed NNs based on the three-dimensional 
convolutional neural  network54. Each NN was composed of a CB and an FCB, classifying the data provided by 
the CB. (Fig. 1B).

In the CB, the given distribution patterns of protein atoms were processed by convolution units (CU), each 
comprising two convolution layers (CL) followed by a pooling layer (PL) to down-sample the CL output and a 
dropout layer to avoid over-learning55. A rectified linear  function56 was applied to the output of each layer as an 
activation function throughout the NN.

The first CL had four channels to independently process the distribution patterns of the four atomic species 
(carbon, nitrogen, oxygen, and sulfur atoms). A three-dimensional convolution filter (3D-CF) was applied to 
each distribution pattern of atoms to extract representative quantities as follows:

where xi+p,j+q,k+r , fpqr , and uijk are the input data, convolution filter with a size of F × F × F , and output data, 
respectively. In the pooling layer, we used the max-pooling57 with a pooling size of P × P × P . The data input to 
the layer was subsequently downsampled.

The results from the FCB composed of several nodes were evaluated using the loss function of binary cross-
entropy. For the output y ∈ [1, 0] for the positive class (d = 1) or negative class (d = 0), the loss function is cal-
culated as:

where w represents all the parameters of the model (Fig. 1B). Through training, the 3D-CFs in the CLs were 
optimized to minimize the loss function.

We constructed six NNs composed of different numbers of CBs, channels in CLs, nodes, and layers in FCB (SI 
Appendix, S3 and Table S1), as well as the size of the 3D-CF. The NNs were optimized using the adaptive moment 
 estimation58. When the NN optimized using the fine dataset was directly applied to proteins with molecular 
weights exceeding 100 k, large computation times were required to obtain the hydration probability distribu-
tions. To reduce the computation time, we created two NNs with the same architecture: one NN was optimized 
using the coarse dataset (designated NN-coarse), and the other using a fine dataset (NN-fine). We selected the 
NN that efficiently yielded the hydration probability (see the Results section).

Among the NNs, we selected a set of NN-coarse and NN-fine by inspecting the accuracy and loss scores for 
the validation and test datasets (SI Appendix, S3 and Table S1), as well as by assessing the frequency distribution 
of hydration probability at the sites of hydration water molecules found in the crystal structures (SI Appendix, 
Fig. S2). For evaluating the selected NN, we used the following validation measure defined as

where TP and FP are true positive and false positive. TN and FN are the true negative and false negative, respec-
tively. The accuracy metric reports the rate of correctness to the total test data. The precision is the positive 
predictive value, which indicates the rate of correctness to the predicted positives. The recall is the true positive 
rate, which indicates the rate of correctness to the positive label data. The F-measure is the harmonic mean of 
precision and recall. The values of the three measures in the hydration prediction for the set of 300 protein 
structures are listed in Table 1.

Hydration probability. In the first step, to calculate the hydration probability over the surface of a tar-
geted protein, surfaces and cavities with non-zero ASA were scanned using a box composed of 21 × 21 × 21 
voxels of 0.50 × 0.50 × 0.50 Å3. Next, the coarse-NN yielded hydration probability distributions at a resolution of 
0.50 × 0.50 × 0.50 Å3 voxels by inspecting the distribution pattern of protein atoms around the center voxel. This 
procedure was iteratively performed for all voxels that were located within 4 Å from protein atoms with non-zero 
ASA values and helped to identify candidates for surfaces to be hydrated.

In the second step, the fine-NN was applied to each candidate suggested in the first step, and yielded the 
hydration probability at a resolution of 0.25 × 0.25 × 0.25 Å3 voxels using the same calculations as in the first step. 
The final hydration probability output was obtained in the MRC  format59. When the probabilities were greater 

uijk =

F
∑

p=1

F
∑

q=1

F
∑

r=1

xi+p,j+q,k+r fpqr ,

L(w) = −
{

d log y + (1− d) log
(

1− y
)}

,
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TP+TN

TP+FP+TN+FN
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recall = TP
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than an appropriate threshold, the local maxima were selected from the probability distributions as predicted 
hydration sites.

Prediction scores. We evaluated the manner in which the local maxima of the probability distribution 
approximated the nearest hydration sites using the mean absolute positional deviation (MAD) and root-mean-
square deviation (RMSD) scores, defined as follows:

where rci  and rpi  are the positions of an experimentally identified hydration site and the local maximum of prob-
ability distribution near the site, respectively. N is the number of hydration sites targeted in the evaluation.

Coverage of protein surface area by predicted hydration sites. To compare the performance of 
NN-based prediction methods, we used surface coverage, the area ratio of predicted sites to a whole protein 
surface. The protein surface area covered by a predicted site was set to 20 Å2, which was estimated for a single 
hydration water molecule in the first-layer class by a systematic analysis of experimental  data6,8. The surface area 
was calculated by  PyMOL60.

Coding and computation. The NNs were developed using the Python language with some routines 
obtained from TensorFlow (Google Brain, USA). All computations were performed on a high-speed computer 
server composed of two Intel Xeon Gold 6226R (16 cores, 16 threads) (HPCT W216gs-DL, HPC Tech, Japan) 
equipped with a GPU card (NVIDIA Quadro RTX 8000 of CUDA version 10, NVIDIA, USA). The computa-
tional times of the selected NN-fine on the server are listed in Table SI4 for proteins with different molecular 
weights. Therefore, in comparison with other NN-based  methods30–32 and 3D-RISM28,29, the computational cost 
of our NN based on the simple CNN architecture is low enough to predict hydration structures over multi-
domain protein structures, such as GDH comprising 2514 residues, even using the computer server.

Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.
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