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Entanglement and quantum 
correlation measures for quantum 
multipartite mixed states
Arthur Vesperini 1,2,3, Ghofrane Bel‑Hadj‑Aissa 1,2,3 & Roberto Franzosi 1,2,3*

Entanglement, and quantum correlation, are precious resources for quantum technologies 
implementation based on quantum information science, such as quantum communication, quantum 
computing, and quantum interferometry. Nevertheless, to our best knowledge, a directly or 
numerically computable measure for the entanglement of multipartite mixed states is still lacking. In 
this work, (i) we derive a measure of the degree of quantum correlation for mixed multipartite states. 
The latter possesses a closed‑form expression valid in the general case unlike, to our best knowledge, 
all other known measures of quantum correlation. (ii) We further propose an entanglement measure, 
derived from this quantum correlation measure using a novel regularization procedure for the 
density matrix. Therefore, a comparison of the proposed measures, of quantum correlation and 
entanglement, allows one to distinguish between quantum correlation detached from entanglement 
and the one induced by entanglement and, hence, to identify separable but non‑classical states. We 
have tested our quantum correlation and entanglement measures, on states well‑known in literature: 
a general Bell diagonal state and the Werner states, which are easily tractable with our regularization 
procedure, and we have verified the accordance between our measures and the expected results for 
these states. Finally, we validate the two measures in two cases of multipartite states. The first is a 
generalization to three qubits of the Werner state, the second is a one‑parameter three qubits mixed 
state interpolating between a bi‑separable state and a genuine multipartite state, passing through a 
fully separable state.

Entanglement has assumed an important role in quantum information theory and in the development of the 
quantum technologies. It is considered as a valuable resource in quantum cryptography, in quantum computa-
tion, in teleportation and in quantum  metrology1. Nevertheless, entanglement remains elusive and the prob-
lem of its quantification in the case of a general system, is still  open2,3. In the last decades, several approaches 
have been developed to quantify the entanglement in the variety of states of the quantum realm. However, the 
rigorous achievements in the explicit quantification of entanglement, are limited to bipartite systems  case4. 
Entropy of entanglement is uniquely accepted as measure of entanglement for pure states of bipartite  systems5, 
while entanglement of  formation6, entanglement  distillation7–9 and relative entropy of  entanglement10 are largely 
acknowledged as faithful measures for bipartite mixed  systems11. An extensive literature is devoted to the study 
of entanglement in multipartite systems. Over time, different approaches have been proposed including, e.g. in 
the case of pure states, the study of the equivalence classes in the set of multipartite entangled  states12,13, whereas, 
the study of entanglement in mixed multipartite states have been addressed, e.g., with a Schmidt  measure14 or 
with a generalisation of  concurrence15,16. In the last years, have been proposed entanglement estimation-oriented 
approaches and derived from a statistical  distance17 concept, as, for instace, the quantum Fisher  information18–21.

In the case of pure states, entanglement and correlation are completely equivalent, therefore an appropriate 
measure of quantum correlation can provide also an entanglement measure. On the contrary, in the case of mixed 
states, one can observe states that manifest correlations detached from  entanglement11,22.

In the present work, (i) we propose a new directly computable measure of quantum correlation for mixed 
states. Moreover, (ii) we propose a numerically computable entanglement measure for mixed states, which is 
derived from the quantum correlation measure through a regularization process. In the following we first derive 
the quantum correlation measure for mixed states and, from the latter, we derive an entanglement measure 
valid for the same class of states. Finally, we report four examples of the application of quantum correlation and 
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entanglement measures. We have considered two well-known classes of states: a general Bell diagonal state and 
the Werner states. In addition, we have applied the quantum correlation and entanglement measures to Werner 
state generalization to three qubits, and to a one-parameter three qubits mixed states interpolating between a 
bi-separable state and a genuine multipartite state, passing through a fully separable state.

Entanglement distance for mixed states
 Quantum correlation distance. We consider the Hilbert space H = H

0 ⊗H
1 · · ·HM−1 tensor prod-

uct of M two qubits Hilbert spaces. The Hilbert–Schmidt distance D between two general square matrices, A 
and B, is given by

We derive from the latter, the distance between two close density matrices of a quantum state in H, by

The Hilbert–Schmidt distance is not the only possible choice, e.g. the Bures’ distance represents an appropriate 
alternative option. The infinitesimal variation dρ of state ρ is

where

and with [,], we mean the commutator. Here and in the following we use the notation (σ n)
µ = (nµ · σµ) , and 

for µ = 0, . . . ,M − 1 , we denote by σµ
1  , σµ

2  and σµ
3  the three Pauli matrices operating on the µ-th qubit, where 

the index µ labels the spins. We have

where

with {,} we mean the anticommutator. We define the quantum correlation for the state ρ as

Since C(ρ) derives from a distance, we name it quantum correlation distance (QCD). Furthermore, the quantum 
correlation is the inferior value of the trace of g when the unit vectors are varied, therefore its numerical value 
is invariant under local unitary transformations. We have

Finally, by defining the matrices Aµ(ρ) , for µ = 0, . . . ,M − 1 , whose entries are

we obtain the closed-form expression for the QCD of ρ,

where, for µ = 0, . . . ,M − 1 , �µmax(ρ) is the maximum of the eigenvalues of Aµ(ρ) , and Cµ(ρ) = tr(ρ2)− �
µ
max(ρ) 

is the QCD of the subsystem µ . The QCD is a directly computable measure of the degree of correlation of ρ . 
Remarkably, Eq. (10) contains two competing terms. The first term is named Purity, which takes account of the 
degree of statistical mixing of ρ , its upper bound 1 corresponds to a pure state. The second term ranges between 

(1)D(A,B) =
√

1

2
tr[(A − B)†(A − B)].

(2)d2
dm
(ρ, ρ + dρ) =

1

2
tr[(dρ)†(dρ)].

(3)
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M−1
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dŨµρ + ρ
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dŨµ†

= −i
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]
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µ,

(4)dŨµ = −i(σ n)
µdξµ

(5)d2
dm
(ρ, ρ + dρ) =

M−1
∑

µ,ν=0

gµν(ρ,n)dξ
µdξν ,
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1

2

3
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i , σ

ν
j }ρ − 2ρσ

µ
i ρσ

ν
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µ
i n
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(7)C(ρ) = inf
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tr(g(ρ,n)).

(8)
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0 and 1 and derives from the degree of correlation of ρ , with the lower value, 0, corresponding to the higher 
correlation.

The time complexity of the obtained formula for the QCD is that of D × D matrix multiplications, that is 
o(D3) , where D is the dimension of the full Hilbert space. In particular, the QCD possesses a closed formula and 
do not require any optimisation (other than finding the largest eigenvalue of 3× 3 matrices). This is in contrast 
with other measures of quantum correlation which, to our best knowledge, all require time-costly optimisation 
procedures, except for some specific classes of  states11.

The QCD (10) fulfills the following requirements for a bona fide measure of quantum  correlation11: 

1) Cµ(ρ) = 0 if ρ ∈ Cµ , i.e. if ρ is classical in the subsystem µ . Indeed, ∀ρ ∈ Cµ we can write 
ρ =

∑

j pjρ
µC
j ⊗ |j��j|µ , where the {|j�µ} form an orthonormal basis in Hµ , µC is the complement of sub-

system µ and 
∑

j pj = 1 . Then ∃nµ such that ∀j, µ�j|nµ · σµ|j�µ = ±1 , hence �µmax(ρ) = 1 and Cµ(ρ) = 0 . 
It results C(ρ) = 0 if ρ ∈ C , i.e. if ρ is fully classical.

2) C(UρU†) = C(ρ) , i.e. it is invariant under local unitary transformations.
3) In the case of a pure state ρ = |ψ��ψ |,C(|ψ��ψ |) reduces to the measure of entanglement valid for pure 

states that some of us have derived in former  work23. This confirms that for pure states a genuine correlation 
measure provides also an entanglement measure.

Entanglement distance. As stated above, for a mixed state, the existence of quantum correlation is not a 
sufficient condition to guarantee the presence of entanglement. To extract from a given state ρ its entanglement 
essence, we now propose a procedure of regularization of ρ , repurposing our measure of quantum correlations 
to catch the true degree of entanglement owned by ρ.

Given a state ρ , we consider all of its possible decomposition {pj , ρj} , such that

where 
∑

j pj = 1 and tr[ρj] = 1 . Also, we consider all the possible local partial transformation on qubit µ:

where, for each j, Uµ
j  is an SU(2) local unitary operator acting on qubit µ . We define the entanglement measure 

for state ρ

Since the definition E(ρ) derives from a distance, we named it entanglement distance (ED). Note that, similarly 
to the QCD, one can define Eµ(ρ) as the ED of subsystem µ , simply discarding the complement in the sum on µ 
in (8). The ED (13) fulfills the following requirements for a suitable measure of quantum entanglement: 

i) Eµ(ρ) = 0 if ρ ∈ Sµ , that is if ρ is separable in µ . Indeed, it then admits a decomposition {pj , ρj} , where, 
for each j, ρj = (Iµ + σ

µ
nj )/2⊗ ρ

µC
j  , where. Thus, it is always possible to determine local partial operators 

U
µ
j  , such that, after transformation (12) it results ρµ

U =
∑

j pj|j��j|µ ⊗ ρ
µC
j  and, from property 1), it follows 

our statement. It results E(ρ) = 0 if ρ ∈ S , that is if ρ is fully separable.
ii) Reciprocally, if E(ρ) = 0 , then ρ is separable. First of all, we note that, for each µ = 0, . . . ,M − 1 , 

�
µ
max(ρ) ≤ tr(ρ2) . In fact, for each µ and for each unit vector nµ it is possible to determine a uni-

tary local operator U, so that tr[(ρ(σ n)
µρ(σ n)

µ)] = tr[ρ̃σµ
3 ρ̃σ

µ
3 ] , where ρ̃ = UρU† . Furthermore 

tr[ρ̃σµ
3 ρ̃σ

µ
3 ] =

∑

j ρ̃
2
jj + 2

∑

i �=j ±|ρ̃ij|2 ≤
∑

j ρ̃
2
jj + 2

∑

i �=j |ρ̃ij|2 = tr[ρ̃2] = tr[ρ2] . Moreover, for each 
pair i  = j , ∃µ such that the term |ρ̃ij|2 appears in tr[(ρ̃σµ

3 )
2] with a negative sign. Yet, E(ρ) = 0 implies that 

there exist a decomposition of ρ , let’s say ρ , for which

for each µ . We hence have |ρij|2 = 0 for each i  = j . But this implies that ρ is diagonal and then ρ separable.
For a given density matrix decomposition {pj , ρj} , the minimization on the local unitary partial transforma-
tions, entailed by Eq. (13), can be addressed by studying the local minima of C(ρ({pj , ρj ,Uj})) under variation 
of {Uj} . Nevertheless, it can be proven that such fixed points do correspond only to cases where E(ρ) = 0 , hence 
to separable states. Therefore, the minima of (13) in the case of non-separable states, do not correspond to fixed 
points, but rather to nonlocal (boundary) minima. Remarkably, these fixed points of the minimization procedure 
(13) can, at least in some cases, be realized by a decomposition {pj , ρj} including entangled pure states ρj . In 
particular, for two-qubits states diagonal in the Bell basis (the Bell-diagonal (BD) states,  see24,25) the fixed points 
can always be realized on the eigen-decomposition (hence, where the ρj are Bell states). This of course greatly 
simplify the problem, as the full exploration of the {pj , ρj}-space is avoided. It is worth emphasizing that BD 
states are representative of the larger class of two-qubits states of maximally mixed marginals (that is, for which 

(11)ρ =
∑

j

pjρj ,

(12)ρ
µ
U ({pj , ρj ,U

µ
j }) =

∑

j

pjU
µ
j ρjU

µ†
j ,

(13)E(ρ) = inf
{pj ,ρj}

{

M−1
∑

µ=1

inf
{Uµ

j }
Cµ

(

ρ
µ
U ({pj , ρj ,U

µ
j })

)}

.

(14)sup
nµ

tr[ρ(σ n)
µ)ρ(σ n)

µ)] = tr[ρ2]
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∀µ and ∀j , tr[ρσµ
j ] = 0 ,  see24), hence (13) is tractable in the same manner for this class of states. Leaning on 

numerical evidences, we further conjecture that, for a given state ρ(γγγ ) depending on parameters γγγ = (γ1, γ2, ...) , 
the decomposition realizing the minimum (13) is the same in the whole parametric domain of γγγ , and can hence 
be inferred from the fixed points found in the domains where this state is separable, if such a domain exists. This 
suggests that the minimization over all possible decompositions {pj , ρj} might in fact possess non-trivial general 
solutions, depending on the considered class of states. Here, by “non-trivial solutions” of the minimization pro-
cedure, we mean solutions which do not require to find the decomposition of ρ in terms of pure product-states 
ρj =

⊗

µ(I
µ + (σ nj )

µ)/2 . A subsequent more thorough work on such a classification of the solutions of this 
procedure could thus lead to an entanglement measure of relatively low computational cost, in particular for 
systems symmetric under qudit permutations, and with low rank(ρ).

Applications
Bell diagonal states. As a first and seminal example of application of this procedure, we consider general 
BD states. They can be expressed as:

where the |ψα� are the four Bell states: |ψ±� = 1√
2
(|00� ± |11�) and |φ±� = 1√

2
(|01� ± |10�) . Furthermore, we 

have ∀i, |ci| ≤ 1 , and the ci are such that the vector (c1, c2, c3) , fully characterizing the state, belongs to the tetra-
hedron T of vertices (−1, 1, 1), (1,−1, 1), (1, 1,−1), (−1,−1,−1) . The separable BD states belong to the octa-
hedron O of vertices (±1, 0, 0), (0,±1, 0), (0, 0,±1) , corresponding to the condition ∀α, pα ≤ 2 , and the classical 
BD states are located on the Cartesian axis (c1, 0, 0), (0, c2, 0), (0, 0, c3)24,25.

Direct calculation yields the following result for the QCD of general BD states

where the maximum is taken on all permutations P{i, j, k, l} of the indices {1, 2, 3, 4} . Figure 1 shows the QCD of 
BD states on a face of T . We were not able to find a simple analytic solution of the minimization procedure for 
the most general case of BD states. However, numerical minimization (for these calculations, we have applied 
a gradient steepest-descent method) provided us with empirical evidence that the procedure (22) also leads for 
these states to the squared concurrence, as shown in Fig. 2, which represent a face of the tetrahedral domain 
of BD states. It it interesting to note that the ED, as the concurrence and unlike the QCD, is constant on planes 
parallel to the boundary faces of the separability region: the ED of any given state indeed equates the QCD of 
the closest point located on a hinge of T , hence the closest mixture of only two Bell states.

(15)

ρBD({pα}) =
4

∑

α=1

pα|ψα��ψα |

=
1

4

(

I+
∑

i

ciσ
0
i σ

1
i

)

,

(16)C(ρBD({pα}) = 2

4
∑

α=1

p2α − 4 max
P{i,j,k,l}

{

pipj + pkpl

}

,

Figure 1.  Quantum correlations C[ρBD](c1, c2 = c1, c3)/2 for a face of the BD state tetrahedron T , 
corresponding to a mixture of three Bell states. The red dotted line defines the smaller triangle where the state 
is separable, according to the PPT  criterion26,27. The vertices of the large triangle correspond to pure Bell states. 
Those of the red dotted triangle, of vanishing QCD, correspond to equal-weight mixtures of two Bell states, 
which are evidently the three only classical states in the represented domain.
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Werner states. Let us now consider the two-qubit Werner states (WS)28, which stems as a special case of 
BD state, for which a simple analytical solution for the proposed procedure is available. WS are used as a testbed 
since they illustrate many features of mixed-states  entanglement7. Using Eq. (15), they can simply be expressed 
as

Via direct calculations, one gets for the QCD of the WS

WS yields a relatively simple solution to the minimization procedure (22). Indeed, as it can be easily verified, 
if we set

with µ = 0, 1 arbitrarily chosen, the fixed points are found for θ = arccos ( 3
2p − 2) . This last expression has a 

solution if and only if p ≥ 1/2 , which is the parametric region of separability for ρW (p) (as can be verified by 
application of the positive partial trace criterion,  see27). Hence, E(ρW ) = 0 for p ≥ 1/2 . For p < 1/2 numerical 
minimization yields E(ρW ) = 4p2 − 4p+ 1 . This corresponds to θ = 0 uniformly on this whole domain, which 
is also the value previously determined at p = 1/2 : hence, the minimum after this point cease to be a fixed point, 
but keeps the last position in terms of the parameters governing the rotations. One can understand this as the 
fixed point reaching the boundary of the parametric domain as the geometry of the state is changing continu-
ously, becoming a simple point on a slope, located at this boundary. All together, for Werner states, the result of 
our entanglement measure exactly equates twice the square of the  concurrence6, that is

Figure 3 shows C(ρW (p))/2 versus p, there it is clear that the only state with no quantum correlation, i.e. classical 
state according to the conventional  terminology11, is the one corresponding to the value p = 3/4 , whereas the 
maximally quantum-correlated state is that of p = 0 . On the other hand, the state is entangled only in the region 
p < 1/2 , and separable otherwise, a well-known fact that can be easily checked by application of the positive 
partial transpose (PPT)  criterion26,27. Alternatively, one can find, in the separable region, the expression of ρW 
convex combination of (non-orthogonal) product states, using a more involved calculation resorting to the so-
called Bloch representation.

(17)ρW (p) = ρBD
(p

3
,
p

3
,
p

3
, (1− p)

)

.

(18)C(ρW (p)) = 2(1−
4

3
p)2.

(19)
U|ψ+�(θ) = Uµ

z (θ)U
µ
x (π),

U|ψ−�(θ) = Uµ
z (π − θ)Uµ

x (π), and

U|φ+� = U|φ−� = I,

(20)E(ρW (p)) = 2�(1/2− p)(1− 2p)2,

Figure 2.  Entanglement distance E[ρBD](c1, c2 = c1, c3)/2 for a face of the BD state tetrahedron T , 
corresponding to a mixture of three Bell states. The red dotted line defines the smaller triangle where the state is 
separable, according to the PPT  criterion26,27 and a number of alternative derivations available in the literature 
(see e.g.24). Values below the threshold of 10−3 have been represented in black to emphasize that they correspond 
to a numerical zero, given the level of precision allowed by such time-costly minimization. The vertices of the 
large triangle correspond to pure Bell states, and those of the smaller black triangle to equal-weight mixtures of 
two Bell states.
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Generalized Werner states. Let us now consider as a multipartite example the following one-parameter 
density matrix

where |GHZ+� = (|000� + |111�)/
√
2 , I8 is the identity operator of the three-qubits Hilbert space and 0 ≤ p ≤ 1 . 

This is a generalization of the Werner states to three qubits, termed generalized Werner  states29–31. The states 
ρW3(p) are known to be fully separable for 0 ≤ p ≤ 1/529,30,32 and genuinely multipartite entangled states in the 
region 3/7 < p ≤ 133. In the region 1/5 < p ≤ 3/7 the states ρW3(p) are bi-separable yet inseparable under any 
fixed  bipartition33. Via direct calculations, one gets

Numerical minimization provided the values for the ED shown in Fig. 4. There, we report in dotted line the QCD 
per qubit and continuous line the ED per qubit for the states ρW3(p) . Figure 4 clearly shows that ED(ρW3(p)) > 0 
only for p > 3/7 , that is when the states are generally entangled. As for the region 1/5 < p ≤ 3/7 where ED 
should not be zero according to (ii), we got numerical zero which we assume corresponds to very weak, but finite 
values. We interpreted this as a consequence of the fact that, in this region, the states ρW3(p) are not separable 
under any fixed bipartition, thus assuming the decomposition of the form 

∑

j ρ
1
j ⊗ ρ23

j + ρ2
j ⊗ ρ13

j + ρ3
j ⊗ ρ12

j  . 
Hence the regularization procedure reaches easily small values for the ED.

(21)ρW3(p) = p|GHZ+��GHZ+| +
(1− p)

8
I8,

(22)C(ρW3(p)) = 3p2.

Figure 3.  C[ρW ](p)/2 and E[ρW ](p)/2 versus p for state (17). It is clear that the state ρW (p = 0) is, as expected, 
the maximally-entangled, and that the states ρW (p > 1/2) are fully-separable, as can be verified using the PPT 
 criterion26,27. This plot emphasizes that separable states can contain quantum correlation (i.e. not be classical). 
Note that, here E[ρW ](p)/2 = C2

2 [ρW ](p) , that is, the ED equates twice the squared concurrence for 2-qubits 
Werner states.

Figure 4.  C[ρW3
](p)/3 (dotted line) and E[ρW3

](p)/3 (continuous line) versus p for state (21). It is clear 
that the state ρW3

(p = 1) is, as expected, the maximally entangled, and that the states ρW3
(p > 3/7) are not 

separable. The latter are genuinely three-partite entangled states.
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Three qubit states interpolating between bi‑separable and genuine entangled states. Let 
consider a further multipartite example, that is the one-parameter density matrix

where

|ψ2� = |0�(|00� + |11�)/
√
2 and 0 ≤ p ≤ 1 . For p = 0 , ρ3(p = 0) is a pure bi-separable state, for p = 1/2 , 

ρ3(p = 1/2) is a maximally mixed state of three qubits and for p = 1 , ρ3(p = 1) is a pure maximally entangled 
state. Via direct calculations, one gets

Using numerical minimization, we have obtained the results for the ED shown in Fig. 5. In this figure, we report 
in dotted line the QCD per qubit and in continuous line the ED per qubit, for the states ρ3(p) . Figure 5 shows 
that E(ρ3(p)) > 0 for 0 ≤ p � 0.18 and for 0.81 � p ≤ 1 . Furthermore, the maximum value for ED per qubit in 
the region 0 ≤ p � 0.18 is located at p = 0 and has the value 2/3. 2/3 is the maximum value for ED per qubit, in 
the case of bi-separable three qubits states. This confirms that the states of this region are stably bi-separable and 
that the state |ψ2��ψ2| has the maximum local degree of entanglement. The maximum value for ED per qubit in 
the region 0.81 � p ≤ 1 is located at p = 1 and has value 1. Therefore, the states of this region are not separable 
and, at least close to p = 1 , are certainly genuinely entangled. For 0.18 < p < 0.81 the entanglement is numeri-
cally null, thus suggesting the states of this region are separable or bi-separable yet inseparable under any fixed 
bipartition, hence not genuinely three-partite entangled states. Remarkably, the QCD is null only for the state 
corresponding to p = 1/2 , which is the maximally mixed one.

Summary
The increasing interest in quantum information experimental applications, and the consequent demand for the 
development of skills in quantum state manipulation, has made pressing the development of effective measures 
of correlation and entanglement, valid for the general case of mixed multipartite states. Also, such measures are 
expected to be easily computable. For multipartite systems, a broad range of measures has covered pure states 
and mixed states, among which a Schmidt measure and a generalization of concurrence have been proposed. 
Nevertheless, the application of these measures to general multipartite mixed states still shows some issues. The 
main aim of the present work is to propose alternative measures for correlation and entanglement based on a 
geometric framework. Remarkably, the latter fact, makes the validity of our measures dimension independent.

Our goal in this work has been to derive (i) a directly computable and genuine quantum correlation measure 
and (ii) a numerically computable entanglement measure, from the geometric properties of the projective Hilbert 
space describing a quantum multipartite system. For mixed states, the quantum correlation is not a faithful meas-
ure of entanglement. In our derivation, to extract from a given state ρ its entanglement essence, we have defined a 
regularization procedure for the density matrix that allows our measure of quantum correlation to catch the true 
degree of entanglement owned by ρ . The calculation of the entanglement involves a minimization procedure that, 

(23)ρ3(p) = w+|GHZ+��GHZ+| + w2|ψ2��ψ2| + w
(1− p)

8
I8,

(24)
w+ = p[1− 4p(1− p)],
w2 = (1− p)[1− 4p(1− p)],
w = 4p(1− p),

(25)C(ρ3(p)) =
(1− 2p)4

2

[

5− 10p+ 11p2 − (1− p)
√

1− 2p(1− p)
]

.

Figure 5.  C[ρ3](p)/3 (dotted line) and E[ρ3](p)/3 (continuous line) versus p for state (23). It is clear that the 
state ρ3(p = 1) is, as expected, the maximally entangled one, and that the states ρ3(p > 0.81) or ρ3(p < 0.18) are 
not separable.
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in the general case requires numeric simulations. In the latter sense, the entanglement corresponds to the inferior 
value of the correlation of a density matrix ρ when local decompositions and local unitary transformations are 
operated on it. We have proved that the entanglement and quantum-correlation measures derived do satisfy 
the requirements for suitable measures of these quantities. To test our quantum correlation and entanglement 
measures, we have applied them to two classes of mixed two-qubit states of which are well-known the entangle-
ment properties, the Bell diagonal states and the Werner states, and we have verified the accordance between our 
measures and the expected results. Furthermore, we have applied the quantum correlation and entanglement 
measures to Werner state generalization to three qubits, and to a one-parameter family of three qubits mixed 
states. These latter interpolate between a bi-separable state and a genuine multipartite state, passing through 
a fully separable state. Also in these cases of multipartite states, then we have verified a satisfactory agreement 
between the behaviours deduced by our measures and the ones expected or already known in the literature.

Data availability
The datasets used and/or analysed duringthe current study available from the corresponding author on reason-
able request.
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