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Machine learning for detecting 
DNA attachment on SPR biosensor
Himadri Shekhar Mondal 1,3*, Khandaker Asif Ahmed 4, Nick Birbilis 1,5 & 
Md Zakir Hossain 1,2,3,6*

Optoelectric biosensors measure the conformational changes of biomolecules and their molecular 
interactions, allowing researchers to use them in different biomedical diagnostics and analysis 
activities. Among different biosensors, surface plasmon resonance (SPR)-based biosensors utilize 
label-free and gold-based plasmonic principles with high precision and accuracy, allowing these 
gold-based biosensors as one of the preferred methods. The dataset generated from these biosensors 
are being used in different machine learning (ML) models for disease diagnosis and prognosis, but 
there is a scarcity of models to develop or assess the accuracy of SPR-based biosensors and ensure a 
reliable dataset for downstream model development. Current study proposed innovative ML-based 
DNA detection and classification models from the reflective light angles on different gold surfaces of 
biosensors and associated properties. We have conducted several statistical analyses and different 
visualization techniques to evaluate the SPR-based dataset and applied t-SNE feature extraction and 
min-max normalization to differentiate classifiers of low-variances. We experimented with several ML 
classifiers, namely support vector machine (SVM), decision tree (DT), multi-layer perceptron (MLP), 
k-nearest neighbors (KNN), logistic regression (LR) and random forest (RF) and evaluated our findings 
in terms of different evaluation metrics. Our analysis showed the best accuracy of 0.94 by RF, DT and 
KNN for DNA classification and 0.96 by RF and KNN for DNA detection tasks. Considering area under 
the receiver operating characteristic curve (AUC) (0.97), precision (0.96) and F1-score (0.97), we found 
RF performed best for both tasks. Our research shows the potentiality of ML models in the field of 
biosensor development, which can be expanded to develop novel disease diagnosis and prognosis 
tools in the future.

Optical biosensors are getting popularity in multi-dimensional research, ranging from fundamental biological 
and bio-medical research, to environmental and agricultural monitoring programs1. Surface plasmon resonance 
(SPR)-based optical biosensors are clearly widely used biosensors, due to their affordability and precise binding 
affinity across biomolecules, allowing high-throughput results for downstream analysis2. SPR biosensors are 
widely being used in analyzing bio-molecules (e.g. proteins, antibodies, nucleic acids and enzymes) and their 
molecular interactions3.

The study of bio-molecules, especially, DNA, is directly linked over 400 diseases diagnosis and several diag-
nostic characterisation techniques has been developed based on DNA detection and their binding properties4. 
e.g. diagnose pathogens in bacteremia patients5, leishmaniasis (skin diseases)6, chronic pulmonary aspergillosis7, 
urinary tract infections8 etc. Among different bindings, DNA hybridization is a significant biological procedure, 
where two single-stranded, complementary DNA bind together, by forming a double-helix DNA. Due to the 
ability to detect DNA hybridization in real-time and without any labeling, SPR-based biosensors have been 
deployed in detecting infectious components or associated DNA-mutations, resulting in hepatitis-B complex, 
cancer, and numerous congenital disorders9.

While most of these detection and diagnosis works involve biomedical studies, it becomes hectic to work 
with large datasets, with numerous dependent and independent variables to work on. Integrating machine 
learning (ML) models will not only leverage the disease diagnosis procedure but also be helpful to develop 
precise biosensors, designing personalized medications and predicting disease prognostication for susceptible 
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individuals. ML-models are being widely used for predicting numerous diseases, e.g. COVID-1910, autism spec-
trum disorder11, cancer12, multiple sclerosis13, diabetes14 and mental health15. Vitor and Cleber16 developed an 
ML model to predict COVID-19 patients’ stay at special care facilities, based on physiological features resulting 
in a decision system, which showed potential to be applied in several different diseases, with low processing 
requirements. While most of these studies utilize patients’ physical and physiological data, derived from dif-
ferent biosensors, there are only a few handful studies, focused on developing a highly accurate biosensor. The 
probable reason can be the unavailability of a large and authentic dataset for developing and testing models with 
high confidence.

For our study, we found a dataset17, used to develop SPR-based biosensors, suitable to develop an ML model 
for DNA detection and classification. The dataset consists of reflective angles of 632.8 nm light at different thick-
nesses of gold and DNA-attachment stages, with their corresponding permittivity and permeability scores. The 
hypothesis we were tested involves, is it possible to detect the presence and absence of DNA (DNA detection) from 
different reflective angles and associated independent variables and extend the model further to distinguish single 
and double-stranded DNA (DNA classification)? Generally, according to the law of light, a line perpendicular is 
drawn between the incident and reflective lights18, and the angles drawn between them are called incident and 
reflective angles. In the case of SPR, incident light is applied on various surfaces at definite angles and intervals 
(for example, 400–890 at interval of 0.050 ) and the resulting reflective angle is captured at real-time to interpret 
the properties of the surface.

To test the hypothesis, we have evaluated numerous ML models, namely, random-forest (RF), support vector 
machine (SVM), k-nearest neighbor (KNN), decision tree (DT), logistic regression (LR) and multilayer per-
ceptron (MLP), and proposed the best-performing model for both tasks. The RF classifier is based on a decent 
number of decision trees constructed by random data selection19. A group of theoretically potent machine 
learning algorithms is grouped under the name SVM. SVM has a number of benefits such as dealing with 
small sample regime, low dimensional data etc., in addition to being the most popular and reliable classifier for 
categorization20. The DT is a supervised technique, where the nodes in a decision tree stand in for attributes, 
the branches for decisions, and the leaves for labels for each instance. Another supervised learning technique 
called KNN, which develops model based on n-dimensional trained data21. MLP is unlike to SVM or naive 
bayes classifier but performs slightly differently. Discrete set observation is done by LR generally, mainly used 
for producing probability value22.

Even though, there are numerous studies on DNA detection23,24 and disease severity predictions as stated 
above, to best of our knowledge this current study, in our knowledge, is the first study which explored SPR-
based dataset to detect and classify DNA—which open a new horizon at the field of biosensor development. The 
major contribution of the current study is to explore reflective angles on different gold surfaces of biosensors 
and utilize these parameters to classify DNA detection and classification tasks. While it is often a laborious and 
costly job to produce reflective angles for different surfaces and deposited biomolecules, current study set-up a 
baseline to develop innovative ML-based models for SPR-based bio-sensors, testing and predicting their perfor-
mances at different parameter regimes. Our model for classifying and detecting DNA will ensure development 
of highly accurate biosensors, and assist in developing accurate classifiers for disease diagnosis and prognosis. 
Furthermore, current study wish to contribute to the tremendously expanding SPR-based dataset and relevant 
techniques, which needs investment from biosensor development communities.

Methodology
Data set and pre‑processing.  The dataset, utilized in the present study is collected from17. The dataset 
was generated through SPR technology which is presented in Fig. 1. In the biosensor surfaces, gold plates of 
varying thickness were used and reflective angles of 632.8 nm light were measured. Different permittivity and 
permeability values were also included within the measurements. The overall dataset was collected at three dif-
ferent stages of DNA binding on Gold plates, 10,000 datapoint for each, namely—bare, immobilized, and hybrid-
ization stages. The bare stage was considered when there was no DNA on the gold surface. The immobilized stage 
was considered when a single-stranded DNA (ssDNA) deposited on the top of the gold layer. The hybridization 
stage was considered when the deposited ssDNA attach with another ssDNA and form a double-stranded DNA 
(dsDNA) molecule. We divided the dataset into two sub-dataset for two different models. For DNA detection 
model, we combined data-point from immobilized and hybridization stages into “DNA presence”, whereas data 
point from the bare stage goes under “DNA absence”. For the classification model, we kept all stages the same 
as the original.

Figure 1.   A schematic diagram of DNA attachment on gold surface of SPR-biosensor.
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We have done a few ablation studies to analyze the dataset for model development. We explored the distri-
bution of gold thickness using a tree map and analyzed the variances of gold thickness with average reflective 
angles, in terms of the different dataset. The ablation study was helpful to detect the low variance within each 
data point and hyper-parameter optimisation of the models. Finally, a min-max normalization technique was 
applied for data normalization before applying feature selection approach.

Feature selection.  Several feature extraction techniques25 can be used, e.g. statistical dependency (SD), 
minimal-redundancy-maximum-relevance (MRMR), random subset feature selection (RSFS), sequential 
forward selection (SFS), SFFS (Sequential Floating Forward Selection) etc.26. The non-linear dimensionality 
reduction approach known as t-SNE is frequently used to visualize large datasets. Natural language processing 
(NLP)27,28, speech processing29,30 are a few of the key uses of t-SNE. In t-SNE feature extraction, Kullback–Leiber 
(KL) divergence is used to assess divergence within classifiers, followed by gradient descent to minimize the KL 
divergence. In current study, t-SNE was implemented for clustering the data according to their different stages 
or conditions.

Evaluation of different ML models.  After feature selection, we applied several ML models individually 
for each DNA detection and classification model. A flowchart of the work is presented in Fig. 2. This ML model 
development is divided into two stages named data processing and ML model evaluation. At first, raw data was 
pre-processed separately for two different models. DNA detection model address 2-class classification problem, 
focusing on presence or absence of DNA on gold surface; while DNA classification model predicts different types 
of DNA on gold plate surface. After pre-processing with min-max normalisation and t-SNE based feature selec-
tion approach, several ML models were applied for both tasks. All parameters and hyper-parameters of different 
models were kept in default settings. Based on the evaluation matrices, the best fitted model was identified for 
downstream hyper-parameter optimization steps.

Evaluation matrices.  Model’s performance is usually measured using classifier’s performance indicators. 
Accuracy is the key findings, measuring the performance of a model which is the exact to total prediction. Preci-
sion and recall are also important parameters. Precision indicates actual positive outcome while recall indicates 
part of accurate prediction among the positive outcomes.

Current research used accuracy, F1-score, AUC and precision scores to compare performances for different 
models. The area under the curve (AUC), which depends on sensitivity, is provided by the receiver operating 
characteristic (ROC) curve, which also provides a broad overview of the model. An improved classifier indicates 
by higher AUC value. We have conducted 10-fold cross-validation and calculated standard error which calculates 
standard deviation from average scores for a specific evaluation matrix. To visualise, a confusion matrix was 
constructed to show the outcomes of a classifier. As a result, the possibility of true-negative (TN), true-positive 
(TP), false-negative (FN), and false-positive (FP) outcomes can be extracted. For both DNA detection and clas-
sification model, confusion matrix was also constructed to visualise the performances.

Hyperparameter optimization.  RF showed best performing model among all models. So, tuning of RF 
model was performed. As RF is a meta estimator, it utilizes averaging to increase predicted accuracy and reduce 
overfitting after fitting numerous decision tree classifiers to distinct dataset subsamples. Sklearn library’s RF 
model comprises 19 hyper-parameters. The most important hyper-parameters are n-estimators, max depth, max 

Figure 2.   A flowchart of present study.
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features and max samples. We have conducted experiments with different combinations of hyper-parameters, 
and found max-depth has significant effect on model performances and we optimised it for the best perfor-
mance.

Results
Data distribution and feature extraction.  The overall SPR dataset was subjected to exploratory sta-
tistical analysis. As permittivity, permeability and gold thickness play significant roles in SPR sensing, these 
parameters were taken into consideration and characterizations were done for evaluating SPR performance. The 
gold thickness of SPR biosensors plays an important role in reflective index measurements. In order to closely 
inspect the data, we have constructed a treemap in Fig. 3, where the values inside boxes and brackets represent 
the thickness of the gold layer and the number of counts of reflective angles appeared at that specific thickness 
respectively. For example, 31 (606) indicates, at 31 mm thickness of gold, 606 reflective angles had been reported. 
We found gold thickness distribute from 10 to 70 nm, and within the range of 31 to 59 nm, the reflective angle 
counts are over 500. The top two counts of 717 and 669, were found in biosensors with gold thicknesses of 34 and 
52 nm respectively. On the other hand, the least count of 228 was observed in 69 and 70 nm gold.

Further, we explored the gold thickness distribution at different DNA-deposition stages. From Fig. 4, we 
observed similar bell-shaped gaussian distributions of gold thickness across different deposition stages. The 
histogram shows reflective angle counts were higher at 20-60 mm thickness of gold surface, which highest and 
lowest peaks were over 400 and just below 100 mm. The number of counts of reflective angles at different stages 
and thicknesses are presented in Y-axis. There is a small reflective index variance among bare, immobilization, 
and hybridization stages.

To address the problem of low-variance, we strategically sub-divided our data for two different models, namely 
DNA detection and classification models and observed the average reflective angle differences for both dataset. 
From Figs. 3 and 4, it is evident that, there are numerous counts of reflective angles at specific gold thicknesses. 
In terms of exploring angle values, we systematically reduced the angle data by taking the average of reflective 
angles at specific gold thickness and stage. The Fig. 5 indicates low-variances in average reflective angles at dif-
ferent gold thicknesses. The variance become lesser for DNA detection model, compared to DNA classification 
model. For better performance, we further utilised t-SNE net based feature extraction method to extract features. 
Feature extraction was done for extracting and reducing the dimension, and the clusters for different models 
are presented in Fig. 6. It can be seen that, after applying t-SNE, it is possible to differentiate the data-points for 
both detection and classification models, but still some data overlaps, which can interfere model’s performance.

Performances of different models.  We have utilised six-different supervised ML models and found 
RF and KNN achieved the best accuracy scores for both detection and classification models. For every model 
classes, the performances for DNA classification models were higher than that of DNA classification models. The 
highest accuracy 0.94 for DNA classification model was observed consistently across RF, DT and KNN models, 
while LR provides only 0.81 accuracy. the highest accuracy of 0.96 for DNA detection model was observed in 

Figure 3.   A treemap of gold thickness and the corresponding number of counts of reflective angles.
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both RF and KNN, while slightly low accuracy of 0.95 observed in DT and SVM, followed by 0.93 for MLP and 
0.84 in LR. It is evident that, with 10-fold cross-validation, we have found a very low standard deviation (below 
0.0001) for each model.

In terms of F1-score and precision scores (see Table 1), DNA detection models outperformed compared to 
detection models. In the case of precision score RF, DT and KNN showed 0.96 for detecting DNA on the SPR 
surface whereas lower score of predicting surface DNA of 0.86 was resulted by LR. The highest precision score of 

Figure 4.   A histogram of counts of reflective indices at different gold thicknesses and DNA deposition stages. 0, 
1, and 2 represent bare, immobilization, and hybridization stages.

Figure 5.   Gold thickness variances at different average angles for DNA detection (left) and classification (right) 
tasks.

Figure 6.   tSNE-based data distribution for DNA detection (left) and classification (right) tasks.
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0.95 achieved by RF, KNN and DT for hybridization. For immobilization same classifiers achieved 0.92. For F1 
score, DNA detection on SPR surface shows 0.97 for RF and KNN, while LR got 0.89, performing lowest score. 
For immobilization 0.93 score was resulted by RF while LR achieved only 0.77, resulting lowest. For hybridiza-
tion RF performs best as 0.95 while LR was the lowest with 0.82.

According to the result of AUC, RF performed best as 0.97 overtaking DT and KNN, both of them are staying 
at 0.96, worst performance was by LR with 0.87. If we have a look at precision score, we also can say RF performs 
best among all the models as well as all the stages, which is reflected from Fig. 7. From the performance indica-
tors, RF performs best among all the models.

Normalized Confusion matrix (Fig. 8) for RF was generated to observe the true and false positives more 
closely for both classification and detection models. To evaluate the performance of best performing RF model, 
normalized confusion matrix is plotted for presenting effectiveness of the model. Normalization was done row-
wise. Through this tabular summary of the number, it shows the correct and incorrect predictions made by RF 
classifier. Here, for DNA detection model, 98.52% true positive score was achieved for DNA presence, whereas 
DNA absence showed 92.02% score. It is also evident that, there was a 7.98% false positive score for DNA absence, 
while for DNA presence, the RF model achieved only 1.48% indicating RF performed well for DNA presence 
classification, compared to DNA absence.

Table 1.   Performance comparison of DNA detection and DNA classification.

DNA detection model DNA classification model

Absence Presence Bare Immobilization Hybridization

DT

  Precision 0.93 0.96 0.95 0.92 0.95

  F1-Score 0.93 0.96 0.95 0.92 0.94

SVM

  Precision 0.98 0.92 0.93 0.87 0.88

  F1-Score 0.90 0.95 0.91 0.88 0.88

KNN

  Precision 0.97 0.96 0.95 0.92 0.95

  F1-Score 0.94 0.97 0.95 0.92 0.95

MLP

  Precision 0.95 0.93 0.92 0.91 0.90

  F1-Score 0.90 0.95 0.92 0.91 0.92

LR

  Precision 0.80 0.86 0.81 0.84 0.80

  F1-Score 0.75 0.89 0.84 0.77 0.82

RF

  Precision 0.96 0.96 0.96 0.92 0.95

  F1-Score 0.94 0.97 0.95 0.93 0.95

Figure 7.   Accuracy (left) and AUC scores (right) of different classifiers and models.



7

Vol.:(0123456789)

Scientific Reports |         (2023) 13:3742  | https://doi.org/10.1038/s41598-023-29395-1

www.nature.com/scientificreports/

On the other hand, for DNA classification models, normalised scores of 95.35%, 93.36% and 95.30% were 
achieved for detecting bare, immobilization and hybridization stages. The detecting performance of bare and 
hybridization was much higher compared to the immobilization stage.

Hyper parameter optimization.  For better development of RF model, we have optimized the hyper-
parameters for the RF model. After experimenting with different parameters, we found that, the RF model 
accuracy for current dataset is dependent on max depth parameter of the classifier. Our experiments shows, 
the accuracy sharply increases with max depth and after 15, the accuracy remains stable. The tuning result is 
presented in Fig. 9.

Discussion
Current study explores different ML models for DNA classification and detection tasks. With the best of our 
knowledge this is the first study of its kind, which explored the applicability of ML models on SPR-based dataset 
for DNA classification and detection problems. While the lack of a similar model hinders us to compare our 
model performance, the current study set up a baseline to incorporate and consider sophisticated ML-models 
in the field of biosensor development.

Our statistical analysis found low variance within reflective angle classifiers, which made our task difficult 
to fit in a suitable model. Data pre-processing and t-SNE based feature extraction methods improved the clas-
sifiers’ classification capabilities. Often ML models, build upon low-variances dataset, suffer from low features, 
which subsequently results in high-biasness and overfitting problems in model performance31. Different data-
processing and normalisation techniques can be helpful to address these issues, which allow for building robust 
and replicable models. Current research overcomes this low variance problem by clustering the dataset based 
on DNA attachment and DNA types, which not only increase the variances but also allows the scope to use the 
SPR data for different classification problems. For feature engineering, we tried different extraction methods, 
and t-SNE based feature extraction method is best suited for the current problem. Such t-SNE feature extraction 
worked well for other problems as well32.

We have divided the dataset, in terms of DNA presence and absence, and further extended it for the DNA 
type classification model. Overall, we found our detection model performs better than the classification model 
in terms of accuracy, precision and F1-scores. This result was expected from Figs. 5 and 6. DNA detection clas-
sifiers varied widely and showed wider t-SNE distribution, compared to DNA classification classifiers. In the 
case of DNA classification model, average angles for immobilization and hybridization stages showed almost 
similar patterns across the different gold thickness, as a result, precision and F1-scores for immobilization and 
hybridization stages scored lower compared to the bare classifier, which hampers overall accuracy of the models.

Further, we have evaluated different ML models, and found RF’s superior performance compared to DT, 
SVM, KNN, MLP and LR. RF has been widely utilised in numerous dataset and showed well performances in 
terms of diabetes patient detection33, heart disease detection34,35, liver disease detection36 and Parkinson’s disease 
detection37. A combination of LR and RF models gave the highest score for the prognosis of type-II diabetes. 
Models’ performance highly depends on several factors, e.g.- dataset, dataset preprocessing, feature extraction 
methods etc. and there is no generalized model to be fitted for every dataset. For example, MLP showed superior 
performance compared to SVM, LR, DT models for insomnia prediction38, While GP-based classifier with radial 
basis kernel (RBF) performed better than several ML models, including neural network, for diabetes prediction39. 
For current dataset, we incrementally tested numerous ML models and found RF and LR are the best and worst 
performers respectively. The probable reason can be due to the complex tree-based architecture of RF model, 
rather than the simple linear model of LR, which leverages RF to work on sophisticated classifiers and a plethora 
of hyper-parameters. RF uses multiple decision trees to capture non-linear relationships in high-dimensional and 
imbalanced data, which allows this model to maintain good accuracies40. We also couldn’t rule out the perfor-
mances of other models, especially DT and KNN, which showed consistent performances across different models. 

Figure 8.   Normalized confusion matrix of RF classifier, DNA detection (Left) and DNA classification (right).
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For different bio-medical and biosensor-based datasets, DT showed over 0.94 classification accuracies41,42. So, 
further study and hyper-parameter optimization are required for both DT and KNN models. Further, after 
testing different models, we experimented with different hyper-parameters of RF model. We found max-depth 
parameter is crucial for overall performance, and subsequently adjusted it to get the best output. Hyper-parameter 
optimisation is often an obvious choice for ML-models to test and customise for different dataset43.

Overall, all of the models, except LR, got accuracies above 0.89, with true positives and negatives above 0.92. 
It reflects the SPR data used in the current study is sufficiently large enough to train the models and our feature 
extraction method works well to differentiate each class. The high accuracy also gives an indication that average 
reflective angle data can be applicable for both DNA classification and detection problems for future predictive 
modelling. The reflective angles depend on numerous internal and external factors, e.g. gold thickness, permit-
tivity and permeability, which needed to be considered for future modelling.

There are a few limitations of the current study. While t-SNE based feature extraction methods worked well for 
DNA detection model, our future task urge using other feature extraction methods to get higher scores for DNA 
classification models as well. Moreover, the size of the current dataset restricted us using only shallow, classical 
ML models, whereas convolution neural network-based models are an obvious choice for future model develop-
ment. Also, hyperparameter tuning of the tested models, such as DT, KNN and MLP might give more promising 
outcomes. Finally, due to lack of SPR-based dataset, we cannot test our model for its wider applicability. So, testing 
similar model architectures and feature selection models will be utilized on future SPR-based biosensor studies.

Conclusion
In order to rank classifiers and feature subsets, we explored SPR-based dataset, using various statistical, machine 
learning, and visualisation techniques. Based on the available resources, we proposed two innovative models, 
namely DNA detection and classification models with a view to utilising reflective angles and associated features 
for high-throughput biosensor development. Our step-by-step experiments of ablation studies, t-SNE net based 
feature extraction, evaluation of different ML classifiers and proposed RF-based model showed applicability and 
potentiality of ML models in the field of optical biosensors. Although few limitations still exists, current study 
set up a baseline for future ML studies in the field of therapeutics and biomedical diagnostics.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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