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Increased probability of hot 
and dry weather extremes 
during the growing season 
threatens global crop yields
Matias Heino 1*, Pekka Kinnunen 1, Weston Anderson 2,3, Deepak K. Ray 4, 
Michael J. Puma 5,6, Olli Varis 1, Stefan Siebert 7 & Matti Kummu 1*

Although extreme weather events recur periodically everywhere, the impacts of their simultaneous 
occurrence on crop yields are globally unknown. In this study, we estimate the impacts of combined 
hot and dry extremes as well as cold and wet extremes on maize, rice, soybean, and wheat yields 
using gridded weather data and reported crop yield data at the global scale for 1980–2009. Our results 
show that co-occurring extremely hot and dry events have globally consistent negative effects on the 
yields of all inspected crop types. Extremely cold and wet conditions were observed to reduce crop 
yields globally too, although to a lesser extent and the impacts being more uncertain and inconsistent. 
Critically, we found that over the study period, the probability of co-occurring extreme hot and dry 
events during the growing season increased across all inspected crop types; wheat showing the 
largest, up to a six-fold, increase. Hence, our study highlights the potentially detrimental impacts that 
increasing climate variability can have on global food production.

Understanding the weather signal in crop yield variations is imperative for efforts to adapt agricultural produc-
tion to climate change. Historically, approximately a third of global crop yield variability can be explained by 
 weather1, with major impacts on food systems caused by severe extreme weather  events2. The sensitivity of crop 
yields to weather varies strongly across regions, and some globally important crop production areas such as 
maize in Midwestern United States and rice in Japan tend to show a greater fraction of yield variations explained 
by  weather1,3–5.

Typically, plants have a narrow climatic range corresponding to optimal growing conditions; outside of this 
range, their growth is  decreased6–10 or even  collapsed11. Previous research has shown that excessive  heat2,6,10,12 
and  drought13,14 consistently reduce crop yields, while the impacts of anomalously  wet15,16 and  cold13 weather 
have been more diverse. However, in regional studies, wet weather has been observed to impose major yield 
reductions, comparable to those of  droughts17,18. Worryingly, the frequency of extreme weather occurrences has 
increased in recent  decades19–22, and the trend is projected to continue in the  future23,24. Hence, understanding 
the historical trends in the co-occurrence of extreme weather events, and their related impacts on agriculture 
should be a global priority.

Most of the studies described above have presented the impacts of individually occurring extreme weather 
 events2,7,13. To our knowledge, previous global studies that have investigated the effects of co-occurring extremes 
were limited to single crop types or have utilized national level  data15,25,26. Here, we address this gap by utiliz-
ing sub-nationally reported and gridded global data on crop  yields27 to investigate how combined (in the same 
place at the same time) hot-dry and cold-wet extreme events have impacted wheat, maize, soybean, and rice 
yields at the global scale. Further, to understand whether hazards related to these co-occurring extremes have 
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historically changed, we quantified how their probability during the growing season has developed in recent 
years (1980–2009).

For analysing the dependencies between climate variability and crop yield anomalies, we used growing sea-
son weather indicators calculated from daily time series of  temperature28, soil  moisture29, and  precipitation28 
over 1980–2009 at 0.5º resolution together with annual wheat, maize, soybean, and rice yield data reported for 
approximately 20,000 political units and disaggregated to grid  scale27. Namely, we developed boosted regression 
tree  models30 with the XGBoost  algorithm31 to quantify the relationship between co-occurring hot and dry (cold 
and wet) conditions and crop yield anomalies. Finally, we assessed whether the probability of these events has 
changed in recent history.

Results
Large differences in sensitivity of crop yield to climate variability across crops and regions. To 
estimate the sensitivity of annual crop yield anomalies to climate variations, we developed a machine learning 
based model using the XGBoost algorithms for reported crop yields and growing season weather data at the 
global and climate bin scale (Table 1). We first assessed the performance of the model by calculating how much 
of the interannual variation of crop yield anomalies the model was able to explain and compared those numbers 
to existing studies. For each spatial unit, the train-test split was conducted so that crop yield anomalies were 
always estimated for years that were not used in model training, which means that they out-of-sample predic-
tions (see “Methods”, Fig. S1).

The model was able to explain 25% (95% confidence interval: 14–35%), 50% (38–62%), 21% (9–33%) and 
11% (1–23%) of interannual variations in global wheat, maize, soybean, and rice yield anomalies, respectively 
(Fig. 1). The results are comparable to previous estimates based on both  statistical2 and process-based  modelling4, 
and they remain relatively similar with varying growing season set-up, soil moisture data, and choice of machine 
learning algorithm as well as irrespective whether average climatic conditions were considered (Table S1, Figs 
S7–S11). However, the proportion of explained crop yield anomaly variability is smaller when utilizing solely 
extreme climate indicators or a different crop yield data set for training and evaluating the models (Table S1, 
Figs. S12–S13).

We found large differences in the susceptibility of crop yield to weather with models trained separately for 
each climate bin (Fig. 1). The climate bins used here divide the crop-specific growing areas into 25 climatologi-
cally analogous regions with approximately equal sample size, based on temperature and precipitation (Fig. S2, 
see “Methods”). Often, weather explained less of the crop yield anomaly variability in climate bins located close 
to the equator, compared to those in higher latitudes (Fig. 1). This could potentially be due to, for example, 
generally highly suitable conditions for plant  growth32, and lower data quality (e.g. because of smaller resources 
for weather monitoring and collection of agricultural statistics)1. Also differences in baseline yield variability 
(Fig. S5) due to, e.g.,  irrigation33 can affect the amount of crop yield variability explained by weather (Fig S3).

Our results (Fig. 1B) estimate that approximately 25% of global interannual wheat yield anomaly variability 
can be explained by weather which is comparable against results obtained from the average gridded global crop 
 model4. However, the relationship was weaker compared to recent statistical global (46%)2 and regional (43%)34 
estimates, potentially because we include a larger proportion of global wheat production in this study. Based on 
the climate bin specific models, wheat yields were most sensitive to weather variations in climate bins located in 
western parts of North America, eastern China, and Europe as well as southern South America, Australia, and 
Africa. (Fig. 1A,B). Interestingly, the susceptibility of wheat yield to weather was smaller in climate bins with 
higher irrigation use (e.g., in northern India and Pakistan) (Fig. S3A).

Out of the crop types studied, global maize yield showed largest susceptibility to climate variations, with 
38–62% of crop yield anomaly variability explained by the models (Fig. 1), which aligns with previous results 
based on both statistical and process-based  modelling1,2,4. For maize, the largest explanatory power was found in 

Table 1.  The variables of the main analyses (Figs. 1, 2, and 3) and their sources. The variables were calculated 
for each crop, year, and grid cell. For hot, and dry (cold, and wet) days, we calculated the days above (below) 
90th (10th) percentiles for temperature and soil moisture deficit across all years. All indicators were calculated 
for the growing season except one precipitation indicator, which was calculated for the whole year proceeding 
harvest. See “Methods” for a more elaborate description about the data processing as well as Table S1 for a 
comprehensive list of the modelling set-ups conducted in this study.

Variable Source

Hot days AgMerra28

Dry days ERA529

Wet days ERA5

Cold days AgMerra

Average temperature AgMerra

Average soil moisture ERA5

Total precipitation AgMerra

Total precipitation (whole year) AgMerra

Crop yield anomaly Ray et al. (2019)27
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Figure 1.  Explanatory power of the XGBoost regression model in estimating crop yield anomalies with 
growing season weather data at global and climate bin level. Results are shown for studied crops: wheat (A,B), 
maize (C,D), soybean (E,F), and rice (G,H). See map and division of the climate bins, defined based on quintiles 
of climatological temperature (t) and precipitation (p), for each crop in Fig. S2. The XGBoost model was trained 
globally as well as for each climate bin separately (see “Methods”). The results presented in the climate bin 
matrices and maps show the amount of crop yield variability explained with the models trained for each climate 
bin separately, whereas the global results are presented in the upper right corner of each map. The crop yield 
anomalies were estimated for each grid cell separately and always for years, which were not used in training 
the model (i.e. the estimates are out-of-sample predictions). Uncertainty in the global results was evaluated 
by training the model 100 times, while randomly sampling the years in each training and validation set. The 
proportion of crop yield variation explained by the models was calculated as the squared Pearson’s correlation 
coefficient (sign preserved) between reported and estimated crop yield anomalies aggregated (with a harvested 
area-weighted average) to global and climate bin level. For the global results, the values in the brackets indicate 
95% confidence interval of the proportion of crop yield anomaly variability explained by the models. The maps 
presented in the figure were created with Matplotlib and Cartopy Python  modules38–40.
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relatively cool and dry climate bins located, for example, in North America and China (Fig. 1D), both of which 
are globally important areas for maize production. Generally, those climate bins, where climate variability has 
the strongest relationship with maize yield anomalies tend to also have larger production (Fig. S4B).

For soybean, our analyses show similar extent of yield anomaly variability explained by weather compared 
to previous global estimates (2, 4). When training models across climate bins, strongest explanatory power was 
observed in relatively warm and dry regions, which include for example parts of North, and South America, 
China, and India (Fig. 1E,F). These are all areas, where climate variations have also previously been reported to 
explain the variability of soybean yield anomalies to a relatively large extent (~ 26% to ~ 46%)1.

Out of the crops studied here, rice yields showed the lowest susceptibility to climate variability (Fig. 1G,H). 
This has also been observed by other studies, which report rice yield anomalies to be less sensitive to climate 
variability at the global scale compared to other crop  types4 and have shown that climate variations cannot explain 
rice yield variability in approximately 48% of global rice harvested  areas1. The difficulty with explaining global 
rice yield variability with weather might be due to larger proportions of rice being irrigated compared to other 
crop types (Fig. S3)35, grown in warm regions that are water abundant (i.e. the tropics)32, and extensive practice 
of multiple  cropping36 as well as a huge amount of existing  varieties37.

Co-occurring heat and drought have the largest yield-reducing impacts. The trained XGBoost 
models then allowed us to study the relationship between extreme weather conditions and crop yield anomalies 
globally. Here, the prevalence of extreme conditions was calculated as the number of days during the growing 
season in the hottest, driest, coldest, and wettest 10% category, respectively (see “Methods”). Based on partial 
dependencies calculated from the globally trained models (see “Methods”), we observed largest yield reductions 
when both heat and drought prevail during the growing season for all studied crop types (Fig. 2). Although glob-
ally not as influential for the model output (Fig. S6), cold and wet conditions were also often observed to reduce 
crop yields at global scale (Fig. 2).

Out of the crops studied, wheat showed the strongest sensitivity to co-occurring climate extremes at the global 
level (Fig. 2A,B,C). For co-occurring hot-dry conditions (i.e., when the number of hot days, and dry days during 
the growing season both deviate 1.5σ from the long-term average), we estimated globally an average − 3.9% (95% 
confidence interval: − 3.3% to − 4.5%) reduction in crop yield. Here, the confidence intervals of the global results 
were estimated by evaluating the impacts 100 times while sampling the years in each training and validation set 
(see “Methods” for details). In many climate bins, however, much larger reductions were observed (Fig. 3A,B). 
For cold-wet events, the global average reductions were slightly lower (− 1.3% to − 2.7%), and comparable to 
individually occurring heat (− 1.3% to − 2.2%) and drought (− 0.7 to − 1.4%). Also, individually occurring wet 
conditions reduced yields (− 0.1% to − 1.0%), which aligns with a previous study that reports lower wheat yields 
during wet conditions in humid  regions41. Based on the models trained for each climate bin, wheat yield reduc-
tions for co-occurring heat and drought were larger in relatively cool regions, located in, for example, Russia and 
China (Fig. 3A,B), which also showed relatively strong relationship between crop yield anomalies and weather 
generally (Fig. 1B).

Maize yields were found to be globally − 3.0% (− 2.6% to − 3.4%) lower when hot and dry conditions co-occur 
(Fig. 2D,E,F). The yield reductions were larger for hot (− 1.3% to − 1.9%) conditions, compared to dry (− 0.4% to 
− 1.0%) or to cold-wet (0.0 to − 0.7%) conditions. The difference between the impacts of hot and dry events might 
be due to maize being a C4 plant, and hence more tolerant to drought compared to C3  plants42. Hot-dry condi-
tions reduced maize yields in almost all climate bin specific models, with largest reductions observed geographi-
cally for example in East Asia and eastern Europe (Fig. 3C,D), which aligns with a previous  understanding25. 
Interestingly, cold-wet conditions increased maize yield during cold-wet conditions in many, especially relatively 
warm, climate bins (Fig. 3C,D).

Also, for soybean yield, co-occurring heat and drought had the largest impacts (a reduction of − 2.3% to 
− 3.2%; Fig. 2G,H,I), while cold-wet events had a lesser negative effect (− 0.3% to − 1.1%) comparable to indi-
vidually occurring heat (− 0.3% to − 1.0%) and drought (− 1.2% to − 1.8%). Spatially, hot-dry events reduced 
soybean yields for example in North and South America as well as eastern Asia (Fig. 3E,F)—all highly important 
regions for global soybean production. Noteworthy, for North America, also previous research has reported yield 
reductions during compound hot-dry  events43.

Although the general patterns were similar compared to the other crop types studied, rice showed the small-
est sensitivity to the climate extremes studied here. On average, we estimated co-occurring heat and drought to 
reduce rice yield by − 0.7% (− 0.4% to − 1.0%), while cold-wet conditions were not observed to have any impact 
(Fig. 2J–L). Compared to the other crop types, rice showed more uncertainty when the responses were estimated 
across models trained for each climate bin also for hot-dry conditions (Fig. 3G,H). The mixed-signal pattern 
observed for different climate bins is probably due to the generally weak relationship between climate variations 
and rice yield anomaly variability (Fig. 1).

The results for hot-dry impacts remained consistent when the analyses were conducted with different growing 
season set-up, soil moisture data and machine learning algorithm as well as with including only extreme indica-
tors as model predictors, and irrespective whether the data for extreme conditions were temporally de-trended 
or not (Figs. S7–S12). However, when a different crop yield  dataset44 was utilized for training the model, some 
differences exist (Fig. S13). These differences are potentially due to different resolution of the crop yield statistics 
utilized to derive the respective data sets. The reference data are based on crop yield statistics collected at the 
country  level44, while the crop yield data utilized here are collected from approximately 20,000 political  units27. 
Although, it should be noted that also with these data, co-occurring hot-dry conditions were generally shown 
to reduce yields.
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Increasing frequency of heat and drought events during the growing season. We showed above 
that co-occurring drought and heat during the growing season is linked to reduced crop yields across the studied 

Figure 2.  Global results about the relationship between crop yield anomalies (%) and the number of hot, 
and dry (cold, and wet) days during the growing season. Results are shown for studied crops: wheat (A,B,C), 
maize (D,E,F), soybean (G,H,I), and rice (J,K,L). Here, the number of hot, and dry (cold, and wet) days refer 
to days during the growing season above 90th (below 10th) percentile for temperature and soil moisture deficit, 
respectively (i.e. the extreme indicators are calculated separately for each growing season). The results are based 
on partial dependencies calculated separately for each extreme scenario from the XGBoost models trained at 
global scale (see “Methods”). Uncertainty of the results was evaluated by calculating the partial dependencies 
100 times while sampling the years in each training and validation set. The violin plots describe the range of 
estimated crop yield anomalies across model runs in a situation where the respective weather anomalies are 
fixed at 1.5σ, while the heatmaps describe averaged impacts across a range of hot, and cold (cold, and wet) 
scenarios.
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crops (cf. Figs. 2, 3). To assess whether the occurrence of these extreme events, and thus their potential impact on 
crop yields, has changed over the past decades, we calculated how their probability has evolved during the study 
period. Namely, we used logistic regression to analyse how the co-occurrence of hot-dry (and cold-wet) condi-
tions have changed from 1980 to 2009. To do that, we first coded a year in a grid cell as extremely hot and dry, 
if the number of both hot days, and dry days was above 1.5σ compared to the long-term average. The regression 
was then calculated globally as well as for each climate bin separately considering each year-grid cell pair as an 

Figure 3.  The relationship between crop yield anomalies (%) and co-occurring hot-dry and cold-wet 
conditions during the growing season for each climate bin. Results are shown for studied crops: wheat (A,B), 
maize (C,D), soybean (E,F), and rice (G,H). See map and division of the climate bins for each crop in Fig. S2. 
Here, the number of hot, and dry (cold, and wet) days refer to days during the growing season above 90th 
(below 10th) percentile for temperature and soil moisture deficit, respectively (i.e. the extreme indicators are 
calculated separately for each growing season). The results, which are based on partial dependencies calculated 
from the XGBoost models trained for each climate bin separately (see “Methods”), estimate crop yield anomalies 
in a situation where the number of hot and dry days deviates 1.5σ from the long-term average. Uncertainty 
and confidence intervals of the results were evaluated by calculating the partial dependencies 100 times while 
sampling the years in each training and validation set. The mapped value is the average of the 100 crop yield 
anomaly estimates obtained. However, if zero was within the 95% confidence interval of the crop yield anomaly 
estimates, the mapped yield anomaly estimate was also set to zero. The maps presented in the figure were created 
with Matplotlib and Cartopy Python  modules38–40.
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observation. Our analysis shows that at the global level there was a significant increasing trend in co-occurring 
hot and dry conditions for all crops during 1980–2009 (Fig. 4).

Wheat showed globally the strongest increase in co-occurring hot and dry conditions (Fig. 4A,B). We esti-
mated that, for any grid cell within the global wheat production regions, the probability of co-occurring hot 
and dry conditions increased from less than 1% in the early 1980s to ~ 5% in 2009. The observed trends were 
consistent also when using another soil moisture data  (GLEAM45), although smaller (Fig. S14), probably because 
of a non-existent (p-value > 0.05) trend in solely dry conditions (Fig. S17). For those climate bins, where a trend 
was observed (Fig. 4B), the patterns remained similar compared to the global trends (Fig. 4A,B, Fig. S14A,B), 
southern Africa, eastern China and the Middle East showing the strongest increases in co-occurring hot-dry 
conditions.

For maize, soybean, and rice, the trends were relatively similar, and there has been approximately a twofold 
increase in the probability of co-occurring heat and drought during the study period (Fig. 4). For soybean, 
and rice, the global trends were weaker, although still statistically significant (p-value <  10–5 for both), when 
the analyses were conducted utilizing the GLEAM soil moisture data (Fig. S14). For maize, we did not observe 
a consistent trend in co-occurring heat and drought (p-value > 0.05) when utilizing the GLEAM soil moisture 
data. Generally, the trends for different climate bins aligned with those observed at the global level (Fig. 4). 
However, for a few climate bins, the probability for co-occurring heat and drought seemed to decrease during 
the study period. For cold and wet conditions, the trends were consistently decreasing for all the studied crop 
types irrespective of the data used (Figs. S15, S16, S18).

It should be noted that, although, climate change is likely a major driver behind these trends, they are also 
subject to a range of other anthropogenic and natural  influences46,47. For example, irrigation decreases soil mois-
ture deficit and can also lower temperature irrespective of the weather  conditions48,49, aerosols are also known 
to decrease temperatures, especially in some highly populated regions of the  globe50.

Discussion
Using reported crop yield statistics collected across 20,000 political units, we show that co-occurring hot and dry 
events have globally consistent negative effects on wheat, maize, soybean, and rice yields (cf. Fig. 2). Extremely 
cold and wet conditions were observed to reduce crop yields globally too, although to a lesser extent and the 
impacts being more uncertain. These results extend existing global studies, which have mainly studied indi-
vidually occurring extremes or utilized national level  data2,13,15,21,26. Furthermore, our analyses show, that the 
probability of co-occurring heat and drought during the growing season increased globally between 1980 and 
2009 for all studied crops. This aligns with previous estimates, which have shown that the proportion of crop 
growing areas affected by extreme weather events has  increased46,51. Noticeably, consistent increasing trends in 
co-occurring heat and drought were observed in climate bins located in northern latitudes (cf. Fig. 4), for example 
in Europe and North America, where agriculture is sometimes viewed to potentially benefit from climate change 
(for example, through longer growing seasons)52. However, our analyses show that these potential benefits may 
be offset by the increasing probability of hot and dry weather extremes.

Although cold and wet events were also observed to reduce crop yields globally, their impacts were more 
uncertain and diverse compared to those of heat and drought. At the climate bin level, cold-wet events were 
often observed not to have any influence or even increase crop yields, especially in warm climates. This could 
partially be because cold anomalies, defined relative to local climate, are also related to reduced heat stress and 
evaporative demand which can benefit crop growth. This is the case also for abnormally wet growing seasons, 
which could be beneficial for crops in normally water-limited conditions. These issues in the analyses could 
potentially be overcome by using absolute thresholds for defining the extreme weather indicators. However, the 
weather conditions that agriculture has adapted to vary geographically, which would bring challenges to defin-
ing global thresholds. For example, a 0 ºC threshold, based on water’s freezing point, might be sensible in cool 
regions, but less useful in the tropics.

The extent of global crop yield anomaly variability explained by weather was relatively low when using a 
crop yield data set, based on national level crop yield statistics disaggregated with satellite-based net primary 
 productivity44. Although co-occurring heat and drought was also observed to generally reduce crop yields with 
this data set, the results were noisier especially for the impacts of cold and wet events (Fig. S13). It should be 
noted that some differences between results are expected, as the two crop yield data sets utilized in this study have 
been shown to not correlate in a large proportion of global  croplands4. It might also be that the sub-nationally 
reported data used in the main analyses captured impacts of spatially more granular weather events; this is 
especially beneficial for large countries, such as the United States and China, where weather conditions might 
largely vary in distinct parts.

To keep the data consistent throughout the different parts of the study and considering the uncertainties 
related to adaptation, we did not de-trend the extreme climate indicators for the main analyses investigating 
their impacts on crop yields. Another source of uncertainty is that we studied weather impacts on crop yields in a 
fixed 90-day period before harvest. Although these 90-day periods were defined for each grid cell separately (see 
“Methods”) and these periods cover the crop development stages most sensitive to  stress10,53, extreme conditions 
occurring during earlier phases of crop development can also have major influence on  yields54. However, the 
observed impacts remained the same also with de-trended extreme indicators and when calculating the climate 
indicator for the whole growing season (cf. Figs. 2, S8–S9).

Our findings show that the probability of hot and dry weather extremes has increased in the study period 
(Fig. 4). This finding does not necessarily imply that effects on crop yield have also increased. More frequent hot 
and dry events point to increased hazard, but crop yield is also determined by changes in the exposure of crops 
and changes in the vulnerability to heat and drought events. It is well known, for example, that the growing areas 
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Figure 4.  Historical evolution in the probability of co-occurring hot and dry conditions during the growing 
season between 1980 and 2009. Results are shown for studied crops: wheat (A,B), maize (C,D), soybean (E,F), 
and rice (G,H). Here, a grid cell is considered hot and dry for a specific year, if the number of both hot, and 
dry days during the growing season deviates at least 1.5σ from the long-term average. The number of hot, and 
dry days refer to days during the growing season above 90th percentiles for temperature and soil moisture 
deficit, respectively (i.e. the extreme indicators are calculated separately for each growing season). The historical 
evolution of the probability in co-occurring hot-dry events was assessed by logistic regression. For the global 
results (A,C,E,G), event frequencies were calculated as a percentage of hot-dry events for each year and as a 
five-year average, whereas the uncertainty intervals for the regression lines in the figure were calculated by 
bootstrapping (N = 100) the observations and plotting the regression line for each sample (in gray color). For 
the climate bins (B,D,F,H), the trend obtained from the logistic regression are represented as odds ratios. If 
odds ratio is above (below) one, the trend is increasing (decreasing). Note that, if the trend was statistically 
insignificant (p-value > 0.05) for any of the statistical tests conducted (see “Methods”), the reported odds ratio 
was set to one (i.e., no trend). The maps presented in the figure were created with Matplotlib and Cartopy 
Python  modules38–40.
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of the crops considered in this study have changed considerably in the study period with increasing crop shares 
of maize and soybean in temperate climate  regions55. Together with changes in sowing and harvest dates this 
results in a modified exposure of these crops to heat and  drought56. In addition, there are efforts to adapt crop 
production to more frequent extreme weather, for example by breeding heat and drought tolerant cultivars and 
by improving crop and soil management. However, an analysis of the impact of these complex interactions on 
crop yields was beyond the scope of the present study.

Future research could investigate how the daily co-occurrence of extreme weather impact crop yields, as recent 
research conducted in growth chambers suggests that the impacts of co-occurring heat and drought become 
even larger, when inspected at daily  level57. This approach would be very interesting, as heat and drought can 
amplify each other in the environment. Higher temperatures lead to larger evaporation, which dries the soil. 
Drier soils can then lead to higher temperature close to the plants, if the water available for evapotranspiration 
and the related cooling effects decrease.

A clear understanding of climate-induced food shocks is imperative in striving for food security for all. Our 
results provide an important step towards understanding the effects of co-occurring extreme events on global 
food crop production. As the probability of crop yield reducing dry and hot weather has increased, global efforts 
should help farmers to adapt to weather extremes in addition to reducing the emissions that cause climate change.

Materials and methods
Crop yield data. For crop yield data (t  ha−1), we used reported annual maize, rice, soybean, and wheat 
yield data collected across approximately 20,000 political  units27. The current version of the data span years 
1961–2013 and we use it with a resolution of half degree (~ 50 km at the equator). Here we use data only for 
years 1981–2009, due to the restrictions posed by the climatological data sets (see below). Gaps that exist in the 
collected crop statistics in specific countries were filled with the last time period available 5-year subnational 
average and finally scaled to match UN FAO reported numbers at the country level. It should be noted that the 
gaps are concentrated in the earlier time-period of the data, which is not used here. The crop yield data used 
in this study have been previously used in numerous studies on historical crop yield and hydrometeorological 
 variability1,2,27,47.

Furthermore, for reference, we also used another global gridded crop yield data set developed by Iizumi and 
Sakai (2020)44. These data are based on country-level crop statistics, which are disaggregated to 0.5º resolution 
using satellite-based net primary productivity estimates and spans 1981–2016 (data for 1984–2009 is utilized 
here). These data have also been used extensively in global studies about drivers of interannual crop yield 
 variability58,59.

To remove temporal trends related to for example changes in management conditions, and thus to isolate 
interannual variability of crop yield anomalies, for each raster cell the crop yield data were de-trended. The de-
trending was conducted by subtracting a five-year moving average from the annual values, similarly to several 
previously conducted studies about yield  variability4,58. The anomalies were then divided by five-year averages 
to obtain proportional annual deviation from the normal values. Previous studies have tested other de-trending 
methods as well but have not found the selected method to have a major  influence4,59.

Temperature and precipitation data. For temperature (ºC) and precipitation (mm  day−1) data we used 
the AgMERRA re-analysis data set that fuses modelled weather reanalysis with observations to more accurately 
capture extreme weather events for agricultural  studies28. AgMERRA provides daily estimates of minimum and 
maximum temperature, precipitation, solar radiation, and humidity at 0.25 degree resolution for years 1980–
2010. It is bias-corrected especially for agricultural areas. Here, we used data for daily average, minimum and 
maximum temperature as well as daily precipitation. The AgMERRA data set has been used extensively for 
modelling climate impacts on agriculture, including in The Agricultural Model Intercomparison and Improve-
ment Project (AgMIP)60.

To align with the other data sets used here, the temperature and precipitation data were resampled from 0.25 
to 0.5 degree resolution using linear interpolation. Further, for obtaining an estimate of the daily temperature 
distribution, the daily data were interpolated assuming that the daily temperature distribution follows the sine 
function, and using minimum temperature as the lowest value and half of the difference between minimum and 
maximum temperature as amplitude.

Soil moisture deficit data. The soil moisture data  (m3/m3) for this study come from ERA5 re-analysis 
product spanning from 1979  onwards29. The ERA5 dataset provides hourly estimates of soil moisture (as well as 
a wide range of other hydroclimatological parameters) at ~ 0.28 degree (interpolated linearly here to 0.5 degree 
resolution) resolution at global scale. It is based on the Integrated Forecasting System (IFS) Cy41r2 and main-
tained by European Centre for Medium-Range Weather Forecasts (ECMWF). Here, we used hourly soil mois-
ture obtained at 12:00 pm UTC as a daily soil moisture estimate. In ERA5 soil moisture is estimated by utilizing 
Advanced Scatterometer (ASCAT) soil moisture data combined with other land surface variables (including e.g. 
temperature and humidity) via a simplified point‐wise Extended Kalman  Filter61.

We acknowledge that there are uncertainties in global soil moisture estimates. Therefore, for reference, we 
also obtained soil moisture data from another source, namely from the Global Land Evaporation Amsterdam 
Model (GLEAM) v3.2a45. In GLEAM, surface soil moisture is estimated based on microwave satellite observations 
combined with a water balance model. GLEAM provides data for both surface and root-zone soil moisture, and 
here surface soil moisture data are used.

Because soil conditions vary across regions, the soil moisture data were standardized and transformed to rela-
tive soil moisture deficit. This transformation was conducted by subtracting each daily value from the maximum 
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reported daily soil moisture value of the whole data set and dividing with the difference between maximum and 
minimum values. Hence, in these transformed soil moisture data, larger values mean drier conditions (i.e. larger 
soil moisture deficit).

Growing season data. The growing season data (i.e. planting and harvest dates) were obtained from 
 AgMIP4,60. In AgMIP, the planting and harvest dates are determined based on three sources:  MIRCA200035, 
Sacks et al. (2010)62, and those simulated by the Lund-Potsdam-Jena managed Land (LPJmL)  model63. Planting 
and harvest dates are separately estimated for irrigated and rainfed scenarios. In these data, for those areas where 
data from MIRCA2000 or Sacks et al. exist, the values closest to the LPJmL estimates are selected, while the mod-
elled LPJmL estimates are used elsewhere. Because crops tend to be most susceptible to weather extremes around 
the time of harvest, the time period from 90 days prior and until harvest were selected for the main analyses 
here. The 90-day time interval before harvest was also chosen because the seasonal weather variation during the 
growing season can be large, as is the case for example for winter wheat. Note still, that we conducted the same 
analyses also using climate indicators calculated for the full growing season (Table S1).

Crop-specific climate bins. We developed 25 crop-specific climate bins based on growing season average 
temperature and annual  precipitation28. The binning divides crop-specific growing areas into 25 climatologically 
analogous zones, which have similar annual precipitation and temperature characteristics. For each crop, the 
binning was conducted in two steps. First, we divided considered grid cells with data for the crop in questions 
into quintiles based on growing season temperature. After that, each temperature quintile was again divided into 
quintiles based on total annual precipitation.

Climate indicators. To obtain annual growing season-specific temperature and soil moisture deficit distri-
butions for each crop type and raster cell, the daily values were allocated to bins, which for soil moisture range 
from 0.0 to 1.0 (0.001 intervals) and for temperature from -20 to 60 ºC (0.1 ºC intervals). Hence, the unit for 
these aggregated data is days per soil moisture or temperature bin. Practically, we obtain a histogram for growing 
season temperature and soil moisture conditions for each grid cell and year. Because the growing season data are 
provided for irrigated and rainfed areas separately and a single grid cell can include both irrigated and rainfed 
fields, we calculated a harvested area weighted average number of days per bin of the irrigated and rainfed grow-
ing season scenarios. Here, the harvested areas data were obtained from  MIRCA200035. These binned daily data 
were then transformed into explanatory variables by calculating percentiles of the respective histograms. Specifi-
cally, for each raster cell we calculated the days below 10th (cold, and wet indicators), and above 90th (hot, and 
dry indicators) percentiles (Figs. S19–S20) for temperature and soil moisture deficit across all years. Note, that 
here each extreme indicator was calculated separately.

In addition to the variables describing extremely hot, dry, cold, and wet conditions, we used additional 
weather and climate variables to describe average conditions during the growing season (Table 1). These vari-
ables were included to account for potential interactions between the average and extreme conditions. For the 
main analyses, we used average growing season temperature, and soil moisture as well as total yearly (prior to 
harvest) and growing season precipitation as explanatory variables in the model. The full list of model-set ups 
conducted for this study can be found in Table S1.

After the aforementioned steps, all the data were standardized by calculating their z-score (by subtracting the 
mean and dividing with standard deviation) prior to running the statistical analyses. To ensure an even distribu-
tion of observation across the range of inspection, the number of dry and wet days during the growing season 
were transformed by calculating their square root. Finally, all those climatological data describing average condi-
tions were linearly de-trended (see correlation matrices across the climate variables as well as crop yield anomaly 
in Fig. S21 and the relationship between the extreme indicators in Fig. S22). Please note that, for comparison, we 
performed the main analyses of this study also for a scenario where also the extreme indicators were de-trended.

The effects of heat and drought on crop yields. To model interannual crop yield variability based on 
the above-described explanatory variables, we used XGBoost regression. XGBoost regression is a non-paramet-
ric machine learning method based on boosted decision trees. In XGBoost an ensemble (here 400 trees with a 
maximum depth of 3) of decision trees are trained  iteratively31. The procedure of using previously calculated 
errors in each iteration step, improves performance and can effectively avoid the overfitting problem associated 
with individual decision trees. Further, because XGBoost utilizes decision trees for training and prediction, it 
does not make assumptions about the distribution of the data or the independence of the explanatory variables 
and is relatively robust to outliers. Because XGBoost regression is a non-parametric regression method and 
able to capture non-linear dependencies, we expect it to perform relatively well for modelling the relationship 
between crop yields and climate  variability64. For comparison, the analysis was also conducted with Random 
Forest regression (Fig. S10).

Here, the XGBoost model was fitted for all crop types (N = 4) separately at the global level as well as for each 
climate bin (N = 25), considering each year-cell combination as an observation. Prior to fitting the model, all 
years were randomly split into four groups. For each of these groups, crop yield anomalies were estimated with 
the XGBoost model using data from the other three groups for model training (i.e. we obtain out-of-sample 
predictions for each grid cell and year). When training each model two of the three training groups were utilized 
for fitting the model whereas one group was utilized for evaluating training progress. Namely, to avoid overfit-
ting, the training of each XGBoost model was halted when the evaluation error increased for 40 consecutive 
training rounds.
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Furthermore, we assessed the uncertainty associated with XGBoost hyperparameters by conducting a ran-
domized grid search each time a model is trained. In the randomized grid search (5 iterations), we sample four 
regularizing hyperparameters: the proportion of training data (50–100%), and the number of variables used 
(50–100%) for building each tree, as well as the lambda (0.5–1.5) and gamma (0–0.05) parameters. Based on 
the 5 iterations, we select the most suitable set of hyperparameters using a threefold cross validation, where we 
ensure that each fold has data for different years. Although this method will often not provide the most optimal 
set of hyperparameters, it does allow us to assess the sensitivity of our results to the hyperparameters.

After the training and prediction procedure was conducted for all four groups, we obtained a continuous time 
series of estimated crop yield anomaly for each grid cell. We used the squared Pearson’s correlation coefficient 
between reported and estimated crop yield anomalies aggregated (with a harvested area-weighted average) to 
global and climate bin level to evaluate the explanatory power of the model. To assess uncertainty related to the 
grouping of the years, this operation was conducted 100 times by randomly splitting the years into the four groups 
in each iteration. To assess the importance of each climate variable in the prediction of crop yield anomalies, we 
calculated and combined the Shapley values across all the random splits (Fig. S6)65.

To understand the effects of hot and dry as well as cold and wet conditions on crop yields, we calculated the 
partial dependence of the trained XGBoost models. This was conducted by restricting the values in hot, dry, 
cold, and wet conditions, while randomly selecting a sample of 1000 observations for all other variables and 
then calculating the output of the model. The calculation of the partial dependence was conducted using the 
‘_partial_dependence_brute’ function in the ‘sklearn’ Python  library66. Since, this method calculates the marginal 
effects of one or two variable(s) by taking a random sample of the other variables, it is possible that the results 
become unstable, if the combinations are very unlikely. To account for this potential instability, and to assess the 
uncertainty related to the grouping of the years, the partial dependence calculations were conducted for each of 
the 100 random splits. For each iteration round, the partial dependencies are averaged over the four train-test 
splits, and hence we obtain 100 estimates of crop yield anomaly for each extreme climate scenario.

More specifically, partial dependence was calculated as the output of the trained model by varying the anom-
aly in hot, dry, wet, and cold conditions (from − 2.25 to 2.25 with 0.25 intervals). For example, the partial depend-
ence of crop yield to solely dry conditions (i.e. when the number of dry days deviates 1.5σ from the long-term 
average) was calculated by selecting a random sample of 1000 observations from the training data, and switching 
the value 1.5σ to the drought column of all observations and calculating the average model output with this data. 
Similarly, the partial dependence of co-occurring dry and hot conditions (i.e., when the number of hot days, and 
dry days during the growing season both deviate 1.5σ from the long-term average) was calculated by switching 
the value 1.5σ to both heat and drought columns of all observations.

Historical changes in co-occurring extreme weather conditions during the growing sea-
son. The trend in the probability of co-occurring hot and dry (wet and cold) extreme events was assessed 
with logistic regression utilizing the ‘statsmodels’ Python  library67. The regression was calculated globally and 
separately for each climate bin considering each year-grid cell pair as an observation. The data were transformed 
into logical event space prior to running the regression. Namely, a year in a grid cell was considered hot and dry 
(cold and wet) if the standardized anomaly in number of both hot and dry (or cold and wet) days during the 
growing season was at least 1.5σ. The same trend assessment was also conducted for solely dry, hot, cold, and 
wet events at the global level.

As logistic regression estimates the probability of an event with the logit function, for the global analyses we 
transformed the logit estimates to probability, while for the climate bins, the logit estimates were transformed 
to odds ratio to provide a single value describing the trend. The statistical significance of the logistic regression 
models was assessed with the Likelihood ratio test, while the statistical significance of the coefficients was tested 
with two distinct methods. Firstly, the coefficient p-values were calculated parametrically with the two-tailed 
t-statistic, and secondly non-parametrically by bootstrapping (N = 100) the observations and calculating the 
regression coefficient for each sample. The results were considered statistically significant if the p-values of all 
these three tests were below 0.05. Finally, the linearity of the globally aggregated log-odds was visually checked 
by calculating average log-odds values of co-occurring dry and hot (or cold and wet) events for each temporally 
defined quintile (Figs. S23–S24).

Data availability
This work was built upon publicly available datasets. Nevertheless, the crop yield data are available from D.K.R. 
upon a reasonable request, whereas the other data utilized to conduct this study are available from M.H. upon 
a reasonable request.

Code availability
The processing codes are available at https:// github. com/ mathe ino/ crops_ vs_ extre mes.
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