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Effects of grain size and small‑scale 
bedform architecture on  CO2 
saturation from buoyancy‑driven 
flow
Hailun Ni *, Sahar Bakhshian  & T. A. Meckel 

Small‑scale (mm‑dm scale) heterogeneity has been shown to significantly impact  CO2 migration 
and trapping. To investigate how and why different aspects of small‑scale heterogeneity affect 
the amount of capillary trapping during buoyancy‑driven upward migration of  CO2, we conducted 
modified invasion percolation simulations on heterogeneous domains. Realistic simulation domains 
are constructed by varying two important aspects of small‑scale geologic heterogeneity: sedimentary 
bedform architecture and grain size contrast between the matrix and the laminae facies. Buoyancy‑
driven flow simulation runs cover 59 bedform architecture and 40 grain size contrast cases. Simulation 
results show that the domain effective  CO2 saturation is strongly affected by both grain size and 
bedform architecture. At high grain size contrasts, bedforms with continuous ripple lamination at the 
cm scale tend to retain higher  CO2 saturation than bedforms with discontinuous or cross lamination. 
In addition, the “extremely well sorted” grain sorting cases tend to have lower  CO2 saturation than 
expected for cross‑laminated domains. Finally, both a denser  CO2 phase and greater interfacial tension 
increase  CO2 saturation. Again, variation in fluid properties seems to have a greater effect on  CO2 
saturation for cross‑laminated domains. This result suggests that differences in bedform architecture 
can impact how  CO2 saturation values respond to other variables such as grain sorting and fluid 
properties.

CO2 geologic storage, or the injection and sequestration of captured  CO2 in deep geologic formations such 
as saline aquifers, is an imperative measure to address climate  change1–4. Prior research has shown that even 
small-scale (mm-dm scale) geologic heterogeneity can greatly affect  CO2 flow and  trapping5–21. Depositional 
laminations and baffles are examples of such small-scale heterogeneity, and they have been shown to form effec-
tive capillary barriers that can retain a substantial amount of above-residual  CO2 saturation during both the 
injection (drainage) and the post-injection (imbibition) stages through the mechanism known as local capillary 
trapping (LCT), also called capillary heterogeneity  trapping5,8,16,22. Hence, small-scale heterogeneity can greatly 
impact how much  CO2 is retained in the geologic material (the storage capacity of the reservoir) and it is also 
crucial in controlling the  CO2 plume migration speed and  extent16,19,20,23,24. Therefore, it is important to conduct 
simulations that are capable of correctly incorporating this extra amount of  CO2 residual or capillary trapping 
in order to accurately predict how the  CO2 plume migrates through heterogeneous domains.

Conventional reservoir simulations used to study  CO2 plume migration and trapping employ coarse 
(10–100 m scale) grid blocks or cells greatly above the resolution of small-scale heterogeneity to save computa-
tional time and resources, but consequently run the risk of obtaining inaccurate simulation results without proper 
 upscaling16,19,20. Furthermore, conventional full-physics simulators use continuum-scale Darcy-flow physics 
and have convergence issues modeling low-rate  CO2 flow through highly heterogeneous domains when LCT 
is  incorporated25. On the other hand, the modified invasion percolation (MIP) method can easily handle large, 
high-resolution, heterogeneous domains with LCT effects thanks to its simplified  physics25–27. Invasion percola-
tion (IP) simulation methods originated from simulating multiphase fluid flow in pore networks. MIP methods 
extend the IP algorithm to the continuum scale, allowing the usage of continuum-scale grid properties (porosity, 
threshold capillary pressure, etc.) and also include gravity  forces28–31. MIP simulators significantly reduce the 
complexity of the fluid flow physics by assuming viscous forces to be negligible, so they can run several orders 
of magnitude faster than full-physics  simulators26,27.
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The MIP method can be applied to simulate  CO2 geologic storage because capillary and gravity forces strongly 
dominate the vast majority of the plume over the entire post-injection time period, which can last for hundreds 
of years or  longer19,32,33. Under such flow regimes that are most relevant to  CO2 geologic storage, the impact of 
small-scale heterogeneity is especially pronounced due to the lack of viscous  forces22,25,34. Hence, the ability to 
correctly quantify the resulting LCT is highly important in accurately predicting plume migration and storage 
capacity for  CO2 geologic  storage16,19,20,23,35. Therefore, in this study, we run MIP simulations on fine-grid het-
erogeneous domains to easily incorporate the effect of LCT and obtain the domain effective  CO2 buoyant flow 
saturation value, which is highly heterogeneity dependent.

This domain effective  CO2 buoyant flow saturation is the saturation at which buoyancy-driven  CO2 breaks 
through or percolates the fine-grid domain during primary drainage. It is therefore also the critical  CO2 satura-
tion for the equivalent upscaled coarse cell at which  CO2 begins to form a continuous phase in the current cell 
and can start flowing to the next cell. For the coarse cell, this is the lowest nonzero  CO2 saturation point (critical 
saturation) on a  CO2 relative permeability curve and corresponds to the threshold capillary pressure (P2) value 
on the drainage capillary pressure curve as shown in Fig. 1. The ability to correctly assign critical  CO2 saturation 
values to coarse field-scale simulation cells is essential, as critical  CO2 saturation directly affects the estimated 
 CO2 dynamic storage capacity. For example, using a flume tank deltaic geologic model, field-scale MIP simula-
tion results obtained on a high-resolution heterogeneous domain demonstrate that by varying the critical  CO2 
saturation from 3 to 48% in the cells, the total amount of  CO2 retained in the system is  doubled23,36. Although 
the critical  CO2 saturation is located on the drainage capillary pressure curve, if imbibition occurs at this point, 
the final residual  CO2 saturation retained is still quite close to the original critical  CO2 saturation. Previous 
tank-scale beadpack experimental results show that 74–89% of the drainage critical  CO2 saturation is residually 
trapped after spontaneous  imbibition22,37. Therefore, the critical  CO2 saturation provides a close upper limit on 
post-imbibition  CO2 residual trapping resulting from buoyancy-driven flow.

The goal of this work is to conduct MIP numerical fluid flow simulations to explore how different types 
and degrees of small-scale capillary heterogeneity affect  CO2 buoyant flow saturation in the context of realistic 
sedimentary bedform architectures and matrix/laminae grain size contrasts. This work builds upon a previous 
study by Trevisan et al. in which MIP simulations were conducted on eight three-dimensional (3D) domains with 
realistic sedimentary  bedforms18. Trevisan et al. discovered the strong dependence of  CO2 saturation on both 
grain size and bedform architecture.  CO2 saturation is found to increase nonlinearly with grain size contrast in 
a predictive manner, forming a distinct S-shaped curve. It is also found that grain sorting has an impact on how 
well the  CO2 saturation values conform to the fitted S curve. However, with just eight bedforms, the limited size 
of the simulation results hinders deeper understanding. Therefore, the novelty of the current work is that it not 
only significantly expands the simulation dataset compared to the previous study (from 8 to 59 bedforms), but 
it also explains how the difference in small-scale bedform architecture (ripple vs. cross-lamination) affects  CO2 
saturation at different grain size contrast, grain sorting, and fluid property values.

Simulation methods
Simulation domains. Rubin and  Carter38 have previously compiled a series of realistic bedform architec-
ture models (BAMs). Each BAM consists of a coarse-grained matrix facies and a fine-grained laminae facies. The 
BAMs used in the study represent a wide variety of cm- to dm-scale heterogeneity patterns seen in sandstone 
formations resulting from different depositional environments. This study applies the same simulation methods 
used by Trevisan et al.18 to 59 of the 62 available BAMs. Note that three BAMs (#8, #9, and #10) are excluded from 
this study because they do not have lamination structures within them. Some example BAMs are shown in Fig. 2. 
BAM #4 is formed by “two-dimensional, stoss-depositional bedforms climbing at a subvertical angle”. BAM #22b 
is formed by “bedforms that fluctuate in migration speed and asymmetry”. BAM #29 represents “simulated tidal 
bundles”. BAM #43a is formed by “bedforms with along-crest-migrating, out-of-phase sinuosities”. BAM #46n 

Figure 1.  Illustration of buoyancy-driven  CO2 invading a water-saturated core from the bottom. Left:  CO2 
saturation fields at increasing capillary pressure values. Right: The resulting drainage capillary pressure curve. 
Swc : Irreducible water saturation. Sgcr : Critical  CO2 saturation. P2: Threshold capillary pressure.
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is formed by “bedforms with along-crest-migrating superimposed bedforms”. BAM #59 is formed by “migrating 
bedforms with spurs that reverse asymmetry and migration direction but have no net along-crest displacement”. 
BAM #67 is formed by “reversing, sinuous bedforms with reversing, superimposed, two-dimensional bedforms”. 
BAM #72 is formed by “straight-crested bedforms with superimposed, sinuous, out-of-phase bedforms migrat-
ing obliquely downslope”. For more information on the BAMs, we would suggest referring to Rubin and  Carter38.

Grain size distribution. In order to populate the BAMs with realistic petrophysical input parameters in 
the simulator, we assign lognormal grain size distributions based on experimental data to both the matrix and 
the laminae facies. By mixing unconsolidated sands into different categories of grain size and  sorting41 as shown 
in Fig. 3, we can compute the mean and the standard deviation values of the lognormal grain size distributions 
using Eqs. (1) to (3),

(1)µ = ln(d50)

(2)σ =
ln(S0)

0.6745

(3)S0 =

√

d75

d25

Figure 2.  Visualization of eight selected 3D two-facies  BAMs38–40.
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where µ is the mean and σ is the standard deviation of the resulting normal distribution after taking the natural 
log of the lognormal grain size distribution. S0 is the Trask sorting  coefficient42,43. σ is determined by grain sort-
ing. The more well sorted the grains are, the smaller the σ in the grain size distribution. d25 , d50 , and d75 are the 
25th, 50th (median), and 75th percentile grain diameters in millimeters. 0.6745 is the constant associated with 
computing quartiles in a normal distribution.

After the grain size distributions for different types of sands are properly defined, we convert the lognormal 
grain size distributions into lognormal distributions of threshold capillary pressure, Pth , using Eqs. (4) to (6),

where µP is the mean and σP is the standard deviation of the normal ln(Pth) distribution transformed from the 
grain size distribution using Eq. (6)45. Pth has a unit of kPa. d is the grain diameter in millimeters and γ is the 
interfacial tension (IFT) between the  CO2 and the water phase in N/m, taken to be 0.03 N/m to represent typical 
reservoir  conditions46. 16.3 is the constant associated with pore geometries and unit  conversion45. Finally, the 
mean (m.) and standard deviation (s.d.) of the lognormal distribution of Pth can be computed with Eqs. (7) and 
(8). These two parameters are direct inputs into the MIP simulator.

Grain size contrast. Because natural sediment depositional processes cause the grains to segregate and 
form coarse-grained matrices and fine-grained laminae, it is necessary to assign each resulting Pth distribution to 
the correct matrix and laminae facies in the corresponding BAM. 40 different matrix-laminae grain size contrast 
cases are selected to cover a wide range of heterogeneity values based on the following two criteria: (a) both the 
matrix and the laminae facies have the same sorting; (b) laminae have grain sizes less than or equal to that of 
the matrix.

(4)µP = −µ+ ln(16.3γ )

(5)σP = σ

(6)Pth = 16.3×
γ

d

(7)m. = e

(

µP+
1

2
σ 2
P

)

(8)s.d. = m.

√

e
(

σ 2
P

)

− 1

Figure 3.  Grain size and grain sorting for unconsolidated sand  mixtures18,41,44. d50 : The median grain size. S0 : 
Trask sorting coefficient. Full description is also labelled on some sand mixture pictures. Taking the top leftmost 
sand mixture as an example, EW-U-C-Sa means “Extremely Well Sorted Upper Coarse Sand”. Figure is adapted 
from Meckel et al.39.
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The dimensionless grain size contrast parameter, δ , is defined to gauge the degree of grain size (and the result-
ing Pth ) heterogeneity in the domain. It is shown in Eq. (9)22,37,

where µi and σi (i = 1, 2) can either be the mean and standard deviation respectively of the logged grain size 
distribution specified in Eqs. (1) and (2) or of the logged Pth distribution specified in Eqs. (4) and (5). Subscripts 
1 and 2 represent the matrix and the laminae facies. In this study,  σ1 and σ2 are taken to be the same.

Numerical model. All MIP simulations are conducted using Permedia®’s Static Migration  module47. Per-
media’s MIP simulator is based on the classical IP algorithm. The classical continuum-scale IP algorithm repli-
cates the primary drainage process of a nonwetting phase fluid emitted from a point source by modelling a con-
tinual invasion of the neighboring grid block with the next lowest threshold capillary pressure ( Pth )  value28,29,48. 
The Pth values are determined by interfacial tension ( γ ) and grain size (d) as shown in Eq.  (6). The driving 
potential ( � ) for the migration of the nonwetting phase fluid is buoyancy ( �ρgz ) and hydrodynamic pressure 
( �h ) as shown in Eq. (10),

where �ρ is the density difference between the nonwetting phase and the wetting phase, g is the gravitational 
acceleration, and z is relative depth. To implement hydrodynamic pressure, the original Pth field is modified to 
incorporate �h prior to running the IP  algorithm49. As for buoyancy, Permedia implements special migration 
and trapping rules to reflect previously known theoretical and lab findings.

Past studies have shown that under strongly capillary-dominated flow regimes (i.e. regimes with low flow 
rates), the nonwetting phase fluid migrates by pulsing and forms fragmented finger flow paths that have low 
 saturation45,50. However, the nonwetting phase forms backfilled pools with high saturation when encountering 
baffles/capillary  barriers51,52. Therefore, in Permedia’s MIP simulations, only the pools build up significant buoy-
ancy pressure, while the fingers have negligible buoyancy pressure. The maximum nonwetting phase column 
height (h) within the pool is determined by Eq. (11),

where �Pth is the difference in Pth between the matrix and the laminae facies. As the nonwetting phase fluid 
migrates through the domain, the migration direction is determined by the driving potential gradient, and the 
nonwetting phase fluid pools behind capillary barriers until the maximum column height is reached before it 
breaks through.

Saturation-wise, any cells invaded by  CO2 that are in the fingers will be assigned the fine-grid critical  CO2 
saturation value ( Sgcr ) and those in the pools will be assigned the  CO2 saturation value ( 1− Swc ; Swc : irreducible 
water saturation)18,47. Sgcr is the minimum  CO2 saturation needed for the  CO2 (nonwetting) phase to span the 
fine-grid cell. This is the  CO2 saturation below which the  CO2 phase is no longer continuous in the cell. 1− Swc is 
the maximum  CO2 saturation that the cell can contain. However, this is only the case at the field scale. For smaller 
scales such as the case in this study, all invaded cells are assigned the  CO2 saturation value 1− Swc to compensate 
for the small cell size. Therefore, the effective domain  CO2 saturation output is dependent on the input value for 
Swc . Because determining the exact value of Swc is out of the scope of the current study, we instead focus on the 
normalized  CO2 saturation, 〈SCO2

〉 (Eq. (12)), that is independent of the Swc value and is solely determined by 
the  CO2 plume distribution in the domain.

Simulation setup. All input parameters entered into the Permedia MIP simulator are listed in Table 1.
As shown in Table 1, the total domain size is 0.202 m × 0.202 m × 0.202 m with about 106 cells. This domain 

size is selected based on the previous sensitivity analysis conducted by Trevisan et al.18. Results have shown that 
any subvolumes extracted from the BAMs that are above this size demonstrate consistent matrix-to-laminae 
ratios, which are equivalent to the net-to-gross sand/shale  ratios53. The cell size is selected to be above the scale 
of the representative elementary volume so that petrophysical properties such as porosity and capillary pressure 
are well defined at the cell  level18,25,54,55.

For both matrix and laminae facies, grid properties such as porosity ( φ ), Sgcr , and Swc use Permedia default 
values and are kept constant across all cells. The only grid property that we vary across simulations is the Pth 
field, which is derived using the method previously explained in Section "Grain size distribution". All grid 
properties for each facies are assumed to be isotropic in each cell. The bedform architecture creates natural ani-
sotropy. The fluid model is selected based on typical  CO2 geologic storage conditions and is also kept constant 
across  simulations18. Simulation Pth input data for all grain size contrast cases can be found in supplementary 
information.

The domain is initially assumed to be completely water filled.  CO2 enters the domain through a planar source 
at the bottom and rises through the domain through buoyancy. The MIP simulation stops when  CO2 perco-
lates the top of the domain (percolation threshold). To ensure that simulation continues until the percolation 

(9)δ =
|µ1 − µ2|

(σ1 + σ2)/2

(10)� = �ρgz +�h

(11)h =
�Pth

�ρg

(12)�SCO2
� =

SCO2

1− Swc
=

cells invaded

total cells
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threshold, the domain is set to have closed boundaries on all sides. For each of the 40 grain size contrast cases, 
50 stochastic Pth property field variations are generated by randomly drawing values from the pre-defined log-
normal distributions.

Results and discussion
Effects of grain size contrast. As a result of having 59 BAMs, 40 grain size contrast cases, and 50 stochas-
tic Pth fields, a total of 118,000 simulation runs have been conducted. The mean domain  CO2 saturation averaged 
over 50 stochastic simulation runs ( 〈SCO2

〉 ) for the different BAMs and grain size contrasts can be visualized in 
Fig. 4. Numerical values for all simulation results can be found in supplementary information.

The results in Fig. 4 show that at low grain size contrast (a low degree of heterogeneity),  CO2 saturation 
reached in the domain at the percolation threshold is low. As grain size contrast increases to reflect higher 
degrees of heterogeneity,  CO2 saturation in the domain also increases to much higher levels, though not linearly. 
As a consequence, the data series for each BAM almost always displays a distinct “S” shape (Fig. 4). This result 
demonstrates the strong effect of grain size contrast on  CO2 buoyant flow saturation and is consistent with the 
result from Trevisan et al.18. The grain size contrast between the matrix and the laminae facies directly translates 
to the threshold capillary pressure ratio of the two facies. Therefore, domain  CO2 saturation increases with grain 
size contrast because greater laminae threshold capillary pressure promotes more  CO2 column height buildup 
underneath each lamination layer. A maximum domain  CO2 saturation value exists because as the laminae 
threshold capillary pressure increases, more  CO2 backfilling occurs underneath the lamination layers and at some 

Table 1.  Domain size, grid and fluid properties used in the MIP simulations.

Input parameters Input values

Domain size
Number of cells 101 × 101 × 101

Cell size 2 mm × 2 mm × 2 mm

Grid property

Porosity,φ 0.2

Fine-grid critical  CO2 saturation,Sgcr 0.02

Irreducible water saturation,Swc 0.2

Threshold capillary pressure,Pth Lognormal(µP , σP)

Fluid model

CO2 density 700 kg/m3

Water density 1000 kg/m3

Interfacial tension 0.03 N/m

Figure 4.  Mean domain  CO2 saturation ( 〈SCO2
〉 ) as a function of the dimensionless grain size contrast 

parameter (δ) for different BAMs. Every data point is the average of 50 stochastic simulation runs. The legend 
shows the color of the data series for the 59 BAMs and their corresponding number as defined by Rubin and 
 Carter38.
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point all the matrix pore space available underneath the lamination layers is filled. Hence, further increase in the 
laminae threshold capillary pressure would no longer increase the domain  CO2 saturation.

Effects of bedform architecture. In Fig. 4, it is also observed that at low grain size contrast, different 
BAMs have similar 〈SCO2

〉 values, whereas at high grain size contrast, the values diverge. This result indicates 
that different bedform architectures only have a substantial influence on  CO2 buoyant flow saturation when the 
domain has a high degree of heterogeneity.

Trevisan et al.18 have devised a four-parameter equation to fit the S-shaped curve for each BAM, as shown 
in Eq. (11),

where C1 and C4 define the minimum and the maximum asymptotes at the two ends of the S curve, while C2 and 
C3 define the slope and the inflection point of the S curve. This equation fits the simulation results for all BAMs 
quite well, with a mean coefficient of determination  (R2) value of 0.927. Fitted S curves for selected BAMs are 
shown in Fig. 5. Figure 5 shows that BAMs #59 and #29 have unusually low C4 values, the reason for which is 
explained next.

Figure 6 shows the bedform architecture and the  CO2 saturation distribution for the same set of BAMs fea-
tured in Fig. 5. From Fig. 6, we can see that at high grain size contrast, BAMs with continuous ripple lamination 
(#67 and #4) tend to trap more  CO2, whereas BAMs with cross lamination (#43a, #22b, #72, and #46n) trap less 
 CO2. Finally, BAMs with discontinuous cross lamination trap the least  CO2. In Fig. 5, the two exceptional BAMs 
(#59 and #29) with much flatter curves instead of a typical S curve both have discontinuous cross lamination 
punctured with holes.

The reason that continuous ripple lamination retains more  CO2 than discontinuous cross lamination at high 
grain size contrast is as follows. Because ripple lamination tends to be flatter than cross lamination, this allows 
 CO2 to spread to a much greater area laterally before building up enough column height vertically to break 
through the lamination. Whereas for cross lamination,  CO2 can easily rise along a cross lamina and break through 
without spreading laterally. Therefore, fine ripple lamination that is closely spaced allows for greater  CO2 sweep 
of the domain during its buoyant migration upward. In addition, continuous lamination forces  CO2 to build up 
column height underneath, whereas discontinuous lamination simply lets  CO2 through so that it bypasses the 
laminae altogether. Therefore, discontinuous lamination barely retains any buoyant flow  CO2.

Effects of grain sorting. From Fig. 5, it can be clearly seen that for some BAMs (#43a, #22b, and #46n) the 
data points do not all collapse onto the fitted S curves as well as they do for other BAMs. It tends to be the case 
that BAMs with cross lamination (#43a, #22b, and #46n) have much greater spread around the fitted models 
than BAMs with ripple lamination (#67 and #4). This spread around the fitted curve is especially large for the 
“extremely well sorted” grain sorting type.

To investigate the effect of grain sorting on  CO2 buoyant flow saturation, we have conducted extra simulation 
runs on one particular BAM with 270 grain size contrast cases. The BAM selected is #5 as the simulation data 
points have a discernable spread around the fitted model. The 270 grain size contrast cases are those that satisfy 
the selection criteria in Section "Grain size distribution". To reduce computational intensity, only 10 stochastic 
simulation runs are conducted per grain size contrast case. The simulation results are shown in Fig. 7. The fitted 
model (solid red line) has highly similar parameters as those of the model fitted on just 40 grain size contrast 
cases, indicating that having 40 cases is sufficient in capturing the full range of  CO2 buoyant flow saturation 
values.

As shown in Fig. 7, it is clear that while at low grain size contrast all the data points collapse well onto the 
fitted model, at high grain size contrast there is a much greater spread in the values. This is especially the case for 
the “extremely well sorted” grain sorting type. A closer examination of the size of the symbols (mean Pth for the 
laminae facies) in Fig. 7 shows that at the same δ value, domains with greater laminae Pth (finer laminae) tend to 
retain more  CO2. This is true regardless of the grain sorting type, but the effect is especially pronounced within 
the “extremely well sorted” category, which has some particularly small laminae Pth values. Cross-laminated 
domains with small laminae Pth values tend to retain less  CO2 than the fitted model compared to ripple-laminated 
domains because the existence of cross-lamination tends to favor upward migration and hinder lateral spreading 
of the plume.

Effects of the fluid model. Further simulations on eight selected BAMs have been conducted to investi-
gate the effect of differing density contrast and IFT values on  CO2 buoyant flow saturation. The base case fluid 
model has a density contrast of 300 kg/m3 and an IFT value of 0.03 N/m between the  CO2 and the water phase. 
In this section, new values for the fluid model are used: (a) density difference: 100, 500, and 700 kg/m3; (b) IFT: 
0.02, 0.04, and 0.05 N/m. Each fluid property is changed individually while keeping the other input parameters 
the same as the base case. To obtain the desired density difference, the water density is kept constant while only 
the  CO2 density is reduced. Selected results are shown in Fig. 8.

As shown in Fig. 8, while increasing the density difference decreases  CO2 buoyant flow saturation, increasing 
the IFT value increases  CO2 saturation. This is because a less buoyant nonwetting phase fluid can build up more 
column height before breaking through the capillary barrier. A higher IFT value means stronger capillary forces 
opposing  CO2 breakthrough, which also allows for more column height buildup. Larger column height means 

(11)�SCO2
� = C4 +

C1 − C4

1+

(

δ
C3

)C2
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greater rock volume invaded beneath the capillary barrier, and directly translates to higher  CO2 saturation in 
the domain. It is also generally the case that the  CO2 saturation of ripple-laminated domains is less affected than 
cross-laminated domains by changes in the density difference and IFT at high grain size contrast. This is because 
the existence of cross lamination compartmentalizes the domain, increasing the number of possible migration 
paths that the  CO2 can take before it breaks through the domain at the top.

Uncertainty and verification. Previously, it has been difficult to quantify the effect of small-scale het-
erogeneity on  CO2 LCT for buoyancy-driven flow because of the complexity of such heterogeneities and lack 
of data. However, as shown by the simulation results, the impact of small-scale heterogeneity on critical  CO2 
saturation is significant. Depending on the types and degrees of the heterogeneity, the resulting critical  CO2 
saturation value can vary between 2 and 77%. As explained in the introduction, such a wide range of critical 
 CO2 saturation values can greatly affect the field-scale  CO2 trapping  capacity23,36. Therefore, it is of interest to 
develop prediction models that can accurately quantify the influence of small-scale heterogeneity. The value of 

Figure 5.  Mean domain  CO2 saturation data and the corresponding fitted model for eight selected BAMs. The 
different symbols represent different grain sorting. The fitted model is shown with a red line. The value of the 
fitted parameter C4 for each BAM is also displayed.
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Figure 6.  Bedform architecture and  CO2 saturation distribution for eight selected BAMs. Green: matrix; red: 
laminae; orange:  CO2 invaded cells with saturation 1− Swc . The  CO2 saturation distribution is taken from a 
single simulation run with high grain size contrast values. The value of the fitted parameter C4 for each BAM is 
also displayed.

Figure 7.  Mean domain  CO2 saturation data and the fitted model for BAM #5 for all 270 grain size contrast 
cases. The inset graph shows the cross lamination pattern for BAM #5. The size of the symbols represents the 
laminae mean threshold capillary pressure (m. as defined in Eq. (7)). For more figure description, see Fig. 5.
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this study is then to provide a comprehensive simulation dataset, upon which said prediction models can be built 
for upscaling purposes in field-scale simulations.

Because the reported simulated critical  CO2 saturation values are averaged over 50 stochastic runs, the 
associated uncertainty can be represented by the standard deviation across the stochastic runs. The standard 
deviation values associated with each bedform and grain size contrast case are generally small, with a mean 
value of 3% and a maximum value of 12%. In this study, only vertical flow simulations are conducted, and the 
resulting domain effective critical  CO2 saturation values can be treated as isotropic. However, this will only be 
accurate if the grain size contrast is low. At high grain size contrast, the trapping amount tends to be different if 
horizontal flow simulation is also conducted. This is particularly likely to be the case for bedforms with higher 
degrees of anisotropy, or ripple bedforms. Therefore, future simulation studies should focus on further simula-
tions to quantify the effect of anisotropy on critical  CO2 saturation. For any critical  CO2 saturation prediction 
model built upon this simulation dataset, another source of uncertainty would be the effect of the fluid properties. 
The assumption is that typical geologic  CO2 storage conditions should be similar to the simulation setup in this 
study. And as Fig. 8 shows, slight deviations in density contrast or IFT from the base case values should not lead 
to major differences in critical  CO2 saturation.

In order to verify that the simulation results are reliable and accurate, we compare the simulation results to 
previous experimental  results22,37,56. These are physical fluid flow experiments conducted in Hele-Shaw cell type 
sand tanks with analog fluids with similar fluid properties to this study and at low flow rates so that the flow 
regime is strongly buoyancy- and capillary-dominated as is the case for the simulation. Realistic sedimentary 
bedforms were packed in the sand tank with different grain size contrast cases. Not only do the experimental 
results demonstrate the same S-curve with increasing grain size contrast, but the critical  CO2 saturation values 
also roughly match the simulation values for the specific BAM #537. In the future, more physical experiments 
should be conducted to verify the simulation results for the other BAMs.

Because the domain effective critical  CO2 saturation values in this study are obtained at vanishing flow 
rates with no viscous forces, one concern may be how the addition of viscous forces would affect the upscaling 
of this parameter. At low degrees of heterogeneity, we would likely have a viscous fingering pattern with early 
breakthrough at high flow rates, which would lead to lower critical  CO2 saturation  values57,58. However, at high 
degrees of heterogeneity, higher viscous forces (greater injection rates) would increase the critical  CO2 saturation 
at domain percolation, according to another set of physical experimental results for BAM #522. Therefore, the 
interplay between heterogeneity and flow rates determines the domain effective critical  CO2 saturation values.

Figure 8.  Effects of varying the density difference and the IFT value for two selected BAMs. The inset graphs 
show the BAM patterns. The fitted models have solid lines with the same color as the data series shown in 
circles.
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Conclusion
To investigate how grain size and bedform architecture affect  CO2 buoyant flow saturation, we ran 118,000 MIP 
simulations, covering 59 BAMs, 40 grain size contrast cases, and 50 stochastic variations. Simulation results show 
that grain size contrast has a considerable impact on the effective  CO2 saturation for heterogeneous domains, 
whereas bedform architecture only becomes important at high grain size contrast values. Different grain sorting 
as well as varying density differences and IFT values also affect the simulated domain effective  CO2 saturation. 
More specifically, the following conclusions can be reached.

1. The domain effective  CO2 buoyant flow saturation value increases nonlinearly with increasing grain size 
contrast values. The relationship can be described by a parametrized S-shaped curve for bedform architec-
tures with continuous lamination layers.

2. At low grain size contrast values, effective  CO2 saturation values for different BAMs all have similar values. 
However, as grain size contrast values increase, different BAMs reach different maximum  CO2 saturation 
values. Domains with continuous ripple lamination tend to have greater maximum  CO2 saturation values 
than domains with discontinuous cross lamination.

3. Simulations of the “extremely well sorted” grain sorting type often tend to deviate from the S-shaped curve 
for domains with cross lamination. At the same grain size contrast value, domains with finer lamination 
grains tend to retain more  CO2.

4. Domain effective  CO2 saturation decreases with increasing density differences between the  CO2 and the 
water phase, and increases with increasing IFT values between the two phases. The strength of the influence 
that the fluid model has on  CO2 saturation is bedform dependent.

Data availability
All simulation input and output data is available in supplementary information.
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