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A deep learning model 
for detection of leukocytes 
under various interference factors
Meiyu Li 1,8, Cong Lin 2,8, Peng Ge 1, Lei Li 3, Shuang Song 1, Hanshan Zhang 4, Lu Lu 5, 
Xiaoxiang Liu 2, Fang Zheng 6, Shijie Zhang 7* & Xuguo Sun 6*

The accurate detection of leukocytes is the basis for the diagnosis of blood system diseases. However, 
diagnosing leukocyte disorders by doctors is time-consuming and requires extensive experience. 
Automated detection methods with high accuracy can improve detection efficiency and provide 
recommendations to inexperienced doctors. Current methods and instruments either fail to automate 
the identification process fully or have low performance and need suitable leukocyte data sets for 
further study. To improve the current status, we need to develop more intelligent strategies. This 
paper investigates fulfilling high-performance automatic detection for leukocytes using a deep 
learning-based method. We established a new dataset more suitable for leukocyte detection, 
containing 6273 images (8595 leukocytes) and considering nine common clinical interference factors. 
Based on the dataset, the performance evaluation of six mainstream detection models is carried 
out, and a more robust ensemble model is proposed. The mean of average precision (mAP) @
IoU = 0.50:0.95 and mean of average recall (mAR)@IoU = 0.50:0.95 of the ensemble model on the test 
set are 0.853 and 0.922, respectively. The detection performance of poor-quality images is robust. 
For the first time, it is found that the ensemble model yields an accuracy of 98.84% for detecting 
incomplete leukocytes. In addition, we also compared the test results of different models and found 
multiple identical false detections of the models, then provided correct suggestions for the clinic.

It is of great significance for clinicians to recognize peripheral blood leukocytes through blood smears for 
diagnosing leukemia, and the automation of this process can be a great help in the clinic. Peripheral leukocytes 
consist of five types: lymphocytes, eosinophils, neutrophils, monocytes, and basophils. Wright’s staining of blood 
smears is one of the standard methods for detecting leukocyte  aberrations1, which can suggest a possible leukemia 
diagnosis. A rapid finding of any deviations in leukocyte populations is significant for the clinical detection of 
Burkitt lymphoma and acute promyelocytic leukemia because it facilitates rapid diagnosis and timely  treatment1. 
However, this is a complicated, time-consuming, laborious, and subjectively influenced work for a doctor. At 
the same time, the clinical doctor is required to have sufficient  experience2. Therefore, it is highly demanded to 
develop an automatic detection of peripheral blood leukocytes with high accuracy.

In the past, the research community and medical industry have attempted to automate the detection of 
leukocytes, and this automation has become a developmental trend in medical examination for blood  cells3. 
Several automated cell morphology systems are based on traditional machine learning methods in the medical 
industry. For example, Cella-Vision4 fulfills some automation with digital imaging technologies, and MED-ICA 
EasyCell®  Assistant5 uses image processing and pattern recognition technologies. Compared with clinical experts, 
although these methods provide helpful assistance and can accelerate the process of recognizing blood cells, 
their performance is still far behind the human experts’ level, and they cannot reliably work  independently6,7.

Advanced automatic detection methods are primarily based on data-driven artificial intelligence (AI) using 
smear photographs as prior knowledge. Recent deep learning technology showed a promising solution in medi-
cal image  application8. Since then, many  publications9–13 have reported that the Convolutional Neural Networks 
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(CNN) model, i.e., deep learning, is competent for image recognition tasks in different areas. Thanks to the uni-
fied, homogenous model of CNN, making use of it avoids the disadvantages of multi-step traditional machine 
learning methods. Given large amount of data, deep learning methods are in theory better performing than the 
traditional machine learning, and research community has shifted their focus to improving the use of the latest 
CNN  architectures14,15. Recently, other studies have improved algorithms from different aspects and improved 
the accuracy of identifying leukocytes. However, these  works16–18 focus on leukocyte classification rather than 
detection. Some restrictive assumptions are imposed on the classification task and the dataset. Leukocyte clas-
sification requires that the segmentation must have been done, the existence of target cells in the image must be 
guaranteed, and the photos mostly contain only one leukocyte. This segmentation breaks the automatic process 
and causes inconvenience in practical clinical applications.

Some recent research efforts have focused on leukocyte recognition as multi-object detection. Compared 
with leukocyte classification, the multi-object detection method drops the classification task’s previous restric-
tive assumptions. It can automatically locate the objects and determine their types. The degree of automation is 
higher in multi-object detection: the quantity, locations, and types of leukocytes can be obtained simultaneously. 
However, the current research on leukocyte detection still needs to be improved. There needs to be more than 
the most existing public leukocyte datasets to support the development of leukocyte  detection19–28. The images 
in existing datasets contain only one leukocyte, which is more suitable for leukocyte classification. Moreover, 
the current research on the detection of leukocytes uses a relatively single type of leukocyte in the dataset, and 
it is difficult to evaluate the level of recognition of the five types of  leukocytes29. Most of the existing datasets are 
collected from one data source, and the heterogeneity of data centers is not  considered30,31. The heterogeneity 
of multi-center data makes the images contain various interference factors in different distributions, which may 
directly affect the performance of the detection algorithm. Ragab et al.32 used the wiener filtering technique to 
purify the original data image to improve the image contrast and then conducted model training and testing. 
Bahaddad et al.33 used the ISFO algorithm to select the optimal feature subset to enhance the accuracy of the 
classifier. We tried to fundamentally solve the problem of multi-center heterogeneity by establishing the datasets 
containing 9 interference factors to strengthen the trained model’s robustness.

In this work, we collected data from multiple hospitals and established a dataset suitable for detecting leuko-
cytes for the first time, which considered the nine interference factors that are likely to affect the performance 
of the detectors in detecting  leukocytes34 in an attempt to fundamentally solve the multi-center heterogeneity 
problem. Based on the dataset, we tested the performance of six mainstream detection models and then tried 
to propose a new and more robust model using an ensemble scheme. The main contributions of this paper are 
summarized as follows:

1. A dedicated, diverse dataset for leukocyte detection is built up. During the collection of data samples, we 
considered the interference factors in practice so that the deep learning models built on these data are more 
robust to common interferences. The dataset is made public for researchers for further investigation.

2. Based on the dataset, the performance evaluation of six mainstream detection models is carried out, and a 
more robust ensemble model is proposed.

3. The proposed approach further considers and tries to address the multi-center heterogeneity problem, which 
is a critical problem in applying automatic leukocyte detection.

Materials and methods
Working pipeline of building up an AI-based detector. To apply the AI-based detection method to 
the automatic identification of leukocytes, the working pipeline of constructing a deep learning-based detector 
consists of 4 stages: (1) data preprocessing; (2) model training; (3) inference; and (4) evaluation.

Data preprocessing. The proposed leukocyte dataset is preprocessed in two different data formats using the 
dataset conversion toolbox developed by the authors. The processed dataset includes ground truth labels and 
split subsets in VOC and COCO format. The dataset in two formats allows us to be easily input into and trained 
with popular machine learning methods. The dataset also provides two sizes for all leukocyte images: (1) original 
size of 3264 × 3264, and (2) reduced size of 600 × 600 (mini size). The data in the former larger size can be used 
for error analysis, visual inspection or confirmation, and even further investigation. The data in the latter size 
can be used for model training, which helps to save a lot of CPU overhead time.

Deep learning models. The deep learning  model35,36, i.e., convolutional neural networks, is a kind of statisti-
cal machine learning models that use convolutional operations to process input data and predict targets in a 
feedforward fashion. It is proven that deep learning models are capable in fitting information between different 
data domains. In the leukocyte detectors, we can use deep learning models to fit the medical images onto the 
leukocyte types and locations in the images.

A typical deep learning-based detector generally consists of two main parts: a feature extraction backbone and 
a regression head. The feature extraction backbones compute deep features from the image by feedforwarding 
the information flow through multiple convolutional layers. These deep features are vectors in the same length. 
The subsequent regression heads project the deep features from previous stage onto the detection output, i.e., 
confidence values, locations, and types. A key design requirement for the backbone networks is the isometric 
mapping. Namely, the backbone networks should be able to extract deep features that maintain similar distances 
in feature space with certain distance metric as the visual distances by human perception. The R-CNN based 
 models37–40 share similar backbones, while  FSAF41 and  FCOS42 used Retinanet as their backbone. The regression 
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heads for different models generally have diverse structures or complex designs, but the aim of design is the 
same: to better use deep features and learn the distributions of the bounding boxes and the types of target objects.

By the different structures of regression heads (with or without region proposal components), the model can 
be further classified into one-stage  detectors41,42 or two-stage  detectors37–40. In general, the one-stage detectors 
are running faster than the two-stage detectors, while two-stage detectors, which are more complex in general, 
generate more accurate predictions.

Model training. Using the training set, we build a deep learning-based detector with leukocyte recognition 
capability. Training samples with ground truth labels are iteratively input into the training algorithm in mini-
batches. The models output the predicted results, compared with the ground truth labels. The training process 
can be stopped when the training loss curve becomes smooth, and the loss value no longer decreases in train-
ing. Finally, the internal parameters of the trained models are fixed and can be used in detecting leukocytes in 
new image samples from clinical practice. We set the training hyper-parameters the same to make the training 
process consistent for the six models.

Inference. In the inference stage, the detectors judge new image samples they have never seen before. New 
image samples collected from the clinical practice are rescaled to the input size for the trained detectors. The 
inference output from the leukocyte detectors includes three data items, the predicted types of leukocytes, the 
confidence values, and the locations of the leukocytes in the image. In our proposed method, the ensemble 
scheme is based on the trained detectors, optimizes the results from the results of other detectors, then outputs 
the final results.

Evaluation. In the evaluation stage, the inferred results are evaluated with multiple metrics, and the model’s 
performance is analyzed with different criteria. Evaluating metrics include mAP and mAR under the different 
values of IoU. Besides, we record executive performance, i.e., the model’s size and the inference speed in frame 
per second (FPS), which helps evaluate whether the detectors are suitable or feasible to put into practice. As for 
accuracy, we emphasize the mAP because it is a popular and proven performance indicator in object detection. 
To further analyze the classification capability, we measure the average precision for each type of leukocyte.

Ensemble scheme for deep learning-based models. In machine learning, an ensemble model is a 
voting scheme that combines the predictions from multiple other models. The ensemble model’s work is similar 
to the collective judgment by a medical expert panel in diagnosing a complicated case. The advantage of an 
ensemble model is that the final results are more stable for complex samples and potentially more accurate in 
quantitative evaluation. On the other hand, however, it may cost more computational time in inference. In this 
work, we integrate the ensemble scheme into the inference stage and evaluate its results. Ensemble linearly com-
bines the bounding boxes of leukocytes with the corresponding confidences as the  weights43. Given a list of N 
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The former equation computes the averaged location by considering the confidences of predictions from 
different models. A model needs to be more confident about its prediction so that its vote is more potent in 
influencing the final result. The latter equation suggests that the updated confidence values are averaged over 
the number of models rather than the number of predictions. In this way, if some models deem that the area has 
no leukocyte, like abstention, the updated confidence values will be lowered.

A simple illustrative example is shown in Fig. 1. Suppose we have trained six models and five out of six output 
the 5 detections as D1, D2, D3, D4, and D5 in the left image in Fig. 1. Each Di contains a bounding box location 
⇀

L
i , a confidence value Ci , and a type label Pi. In the ensemble process, if the number of overlapping detections 

for a possible object is less N/2 , these detections will be discarded in the first place. Thus, in this example, D1 
is ruled out, leaving D1, D2, D3, and D4 for further processing. Three (D1, D2, D3) out of the four detections 
predict leukocyte as neutrophil granulocyte, and then the ensemble scheme judges the type of ensemble predic-
tion E as the same as that of the majority. The ensemble scheme subsequently calculates the confidence value 
and the bounding by computing the corresponding mean values.

Implementation details. The experiments are implemented on a regular workstation computer with Intel 
Core i5-8600 CPU, 16 GB RAM, and an Nvidia TITAN Xp Graphics Card with 12 GB graphic memory. The 
software environments are based on Ubuntu 18.04 OS, and training is carried out on PyTorch 1.7.0 (https:// pytor 
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ch. org/) and mmdetection 2.6.0 codebases (https:// github. com/ open- mmlab/ mmdet ection). The training epoch 
is set to 16, which is high enough for training convergence for the detectors. Setting this relatively excessive 
number of epochs is to ensure the models can approach the optimal state and avoid underfitting. The recorded 
training time for the models is around two hours.

The models can be efficiently trained in such a short time because of the use of pre-trained backbone networks 
and fine-tuning techniques. The fine-tuning technique allows the model to shift its intelligence from recognizing 
generic objects to detecting leukocytes. The pre-trained weights are trained parameters from a deep learning-
based model (Resnet-5044) in classifying objects in the ImageNet dataset or detecting objects in the MS-COCO 
dataset. To fine-tune a model, we freeze the parameters in the low-level filters, which compute basic image texture 
features. On the other, high-level parameters, which are, for a reason, the structural information, are gradually 
updated by the backpropagation approach. This way, it adjusts the high-level parameters in pre-trained weights 
to our leukocyte detection task.

When training detectors, we used stochastic gradient descent (SGD) as the optimizer for the model parameter 
update. The key hyper-parameters, i.e., the learning rate, momentum, and weight decay coefficient of SGD, are 
set to 0.01, 0.9, and 0.0001, respectively. Other detailed configurations for the detector architecture are defaults 
except for these settings.

Data augmentation technique is employed in model training. Data augmentation is an online process that 
dynamically generates variants of training samples before feeding them into the model, following the sampling 
of the mini-batch of training data from the training set. Supplementary Table 1 shows a transformation list of 
data augmentation used in our implementation. The transforms are composed of an occurrence probability for 
each transform.

Ethical approval. All blood smears involved in this study are historical samples. Since only blood smears 
from patients are photographed, the approval of the institutional review board is not required.

Results
Establishment of a dataset with interference factors. The 111 Wright-stained blood smears were 
collected from Tianjin Medical University Affiliated Medical Center (Tianjin Cancer Hospital and Tianjin Chil-
dren’s Hospital) and the Rehabilitation Hospital of Hexi District, Tianjin. Five types of leukocytes from each 
smear were photographed by a Nikon DS-Ri2 Color Camera at × 1000 original magnification for analysis. The 
five types of leukocytes include neutrophil (NG), basophil (BG), eosinophil (EG), lymphocyte (L), and mono-
cyte (M). Subsequentially, 6273 images in total were obtained, with nearly 2000 images containing multiple 
leukocytes, which is the first dataset suitable for leukocyte detection. These leukocyte images were divided into 
the training set and the test set with a ratio of 4:1.

Each sample in the dataset contains two items: a visual signal map in the form of a color image that may 
contain more than one type of leukocyte and a manually labeled ground truth indicating the location(s) and 
type(s) of existing leukocyte(s). The ground truths are separately annotated by three experts with 18-year clini-
cal experience using Labellmg toolkit software. During expert review and confirmation of the data samples, any 
cells with inconsistent type labels from different experts will be taken out. However, when the top-3 model made 
the same mistake, recognizing the same cell as another cell, we invited another expert with more experience to 
review and verify the data labeled by the above three experts. To avoid the problem of data imbalance, we have 
narrowed the statistical distribution gap among the five types of leukocytes as much as possible. Table 1 shows 

Figure 1.  An illustrative example of the ensemble scheme. The raw detections are given in the left image, and 
the right image is the result after ensemble.

https://pytorch.org/
https://github.com/open-mmlab/mmdetection
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the composition of the five types of leukocytes in the training set and the test set. The processes of dataset for-
mulation are also depicted in the corresponding part of the flowchart presented in Fig. 2.

Some “worse cases”, which are likely to appear in practical clinical scenarios, should be included in the AI 
model’s prior knowledge (training set) for assisting in the detection of leukocytes. The dataset we created contains 
nine factors that interfere with leukocyte detection, making the trained model generalize well. Some typical cases 
are shown in Fig. 3. The statistics of the interference factors are manually collected and summarized. The specific 
numbers of these situations in the training set are shown in Supplementary Table 2. Meanwhile, these images 
contain multiple leukocytes, making the dataset more suitable for detection research. The statistical summaries 
of our dataset are presented in Supplementary Table 3.

Table 1.  The number of images and leukocytes in the created dataset.

Sources

Types and sample numbers

Neutrophil images (cells) Basophil images (cells) Eosinophil images (cells) Lymphocyte images (cells) Monocyte images (cells) Total images (cells)

Training Set 1214 (2812) 282 (286) 1006 (1018) 1232 (1440) 965 (1031) 4699 (6587)

Test Set 1015 (1323) 12 (14) 71 (82) 355 (439) 121 (150) 1574 (2008)

Total 2229 (4135) 294 (300) 1077 (1100) 1587 (1879) 1086 (1181) 6273 (8595)

Figure 2.  The flowchart of model training and evaluation.

Figure 3.  Some exemplar samples are affected by the interference factors. (a) Colour casts on blood cell smear 
images; (b) low illuminative intensity of blood cell smear images; (c) giant platelets; (d) incorrect imaging focal 
length of cell images; (e) images containing dyes or other impurities; (f) overlapping leukocytes; (g) degenerated 
leukocytes; (h) excessively high phosphate buffer solution (pH > 6.8); (i) excessively low phosphate buffer 
solution (pH < 6.4).
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Performance comparison of the six models and ensemble model result on test sets. We use 
the test set to evaluate the six well-trained detection algorithm models and draw each model’s the precision-
recall (PR) curve under different IOU thresholds, as shown in Fig. 4. In Fig. 4, it is not difficult to find that 
when the IOU threshold is lower than 0.8, all models output good results, and the AUCs are quite large. Among 
them, cascade RCNN and ensemble model are the TOP two among their competitors, FSAF is on par with 
other counterparts, and other models have average performance. When the IOU threshold is increased to 
0.9, this means that the criteria for successful detection are more stringent. We can see that the divergence of 
the curves from each other increases. Now we can more easily distinguish the difference in performance. The 
advantages of cascade RCNN and ensemble model are more prominent. The corresponding specific quantita-
tive results are shown in Table 2. For the test set, mAP@IoU = 0.50:0.95 of cascade RCNN is higher than the 
ensemble model (0.856 > 0.853), but its mAR@IoU = 0.50:0.95 is 0.909, which is lower than that of the ensemble 
model (0.909 < 0.922). In addition, the Top 2 models have the best recognition performance on NG, and AP@
IoU = 0.50:0.95 is 0.916 and 0.925, respectively. The performance of BG recognition is low; AP@IoU = 0.50:0.95 
is 0.781 and 0.752, respectively. Table 2 also shows the corresponding detection performance indicators of other 
detection models.

In this work, we also try to improve the performance by integrating an ensemble model as a post-process 
for the results. Although its mAP@IoU = 0.50:0.95 is slightly lower than the Cascade RCNN among the tested 
models (0.853 < 0.856), its mAR@IoU = 0.50:0.95 is the highest (0.922 > 0.909), which means that the ensemble 
model has the lowest rate of missed detection of leukocytes (Fig. 4). That helps count leukocytes and prompts 
experts to verify the model to detect the wrong leukocytes. In addition, for the detection of leukocyte subtypes 
such as NG, M, and L, the ensemble model performs best, surpassing the cascade RCNN in the current evalu-
ation models shown in Table 2.

The performance comparison of detecting leukocytes with Cascade R-CNN and ensemble 
model. Detection of images is always challenging due to possible variance in staining, overlapping leuko-
cytes, impurities, or even incomplete leukocytes. We deliberately considered these factors that easily affect the 
performance of the detection model on the dataset. In the test set, we focused on the detection effects of the 

Figure 4.  The PR curve of each model at different IoU. Performance comparison of the six models and 
ensemble model on test sets. The x-axis represents the recall values, and the y-axis represents the precision.
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Cascade R-CNN with the highest mAP values and the ensemble model. The accuracy of detecting leukocytes 
is 92.17% and 95.30% on the overly stained 447 images, respectively. Figure 5a shows the detection results of 
some images stained heavily. In addition, the detection accuracy of Cascade R-CNN and the ensemble model 
are 65.79% and 94.74% for the detection of overlapping leukocytes, respectively. Figure 5b shows the detection 
performance of the model on leukocyte-dense scenes. From the results, the detection performance of Cascade 
R-CNN for dense scenes needs to be further improved. In the test set, there are 170 pictures containing impu-
rities such as dye residues, cell debris, etc. The Cascade R-CNN and the ensemble model can better eliminate 
impurities when detecting leukocytes. The ratio of the impurities mistaken for leukocytes is 8.23% and 3.53%, 
respectively. Figure 5c shows the result of the model’s detection of leukocytes containing impurities. In addition, 
the more surprising point is that the two models can accurately determine the type and location of incomplete 
leukocytes. The detection accuracy of incomplete leukocytes is 97.67% and 98.84%, respectively. Figure 5d shows 
the detection results of the model on incomplete leukocytes. Supplementary Table 4 shows the specific number 
of correct detections.

To further investigate the model’s capabilities, we analyze the classification performance of Cascade R-CNN 
and the ensemble model comparatively. The confusion matrix of Cascade R-CNN and the ensemble model is 
shown in Fig. 6. In Fig. 6a, we found identifying eosinophils with Cascade R-CNN challenging, and some neu-
trophils are mistaken for monocytes. Meanwhile, the accuracy of eosinophils or basophils was relatively lower 
than other types because many eosinophils were misclassified into basophils. It is difficult for the ensemble 
model to identify basophils and eosinophils, and a small part of neutrophils are incorrectly identified as other 
types of leukocytes (Fig. 6b).

Discussion
In this study, we established a dataset with multi-leukocyte images, considering nine common interference fac-
tors in clinical application. Based on the research foundation and search results of the machine vision algorithm 
for detecting blood cells, we selected six detection models: Cascade R-CNN, DH Faster R-CNN, grid R-CNN, 
Faster R-CNN, FCOS, and FSAS for leukocyte detection. Cascade R-CNN has the best detection performance, 
mAP@IoU = 0.50:0.95 is 0.856, and mAR@IoU = 0.50:0.95 is 0.909. Then we provide a powerful ensemble model. 
Without major modifications, the ensemble model can obtain high-performance indicators for leukocyte detec-
tion. mAP@IoU = 0.50:0.95 is 0.853 and mAR@IoU = 0.50:0.95 is 0.922. Through further in-depth analysis of the 
detection performance of Cascade R-CNN and the ensemble model, it is found that the ensemble model may be 
a better choice for the automated blood cell morphology system.

Datasets are the basis for solutions using data-driven artificial intelligence. The existing public leukocyte 
 datasets19–28 are either small data, or the images only contain a single leukocyte. These datasets are considered 
simple and cannot support the building up of an intelligent model for the complicated scenario in the clinic. 
To our knowledge, this study created the first dataset with multi-leukocyte images close to the practical envi-
ronment of clinical testing of peripheral blood smears. As shown in Fig. 3, the dataset considers nine frequent 
interference factors in the clinical blood cell recognition process. The image is not limited to one leukocyte but 
includes multiple leukocytes, which is more suitable for the clinical environment. Considering these interference 
factors in the dataset and using the online data augmentation technique, the Cascade R-CNN and other models 
were trained on much broader data distributions, increasing generalization and alleviating the multi-center 
heterogeneity problem.

Research on using AI to detect leukocytes is still limited in the literature. A report showed that mAP@
IoU = 0.5 used to detect normal leukocytes was 0.93130. Fanous et al.45 first converted the SLIM images into 
bright-field micrographs using the AI model, then performed the parallel task of locating and labeling cells 
using the object detection model EfficientNet and finally achieved an average accuracy of 75% in locating and 
classifying neutrophils, eosinophils, lymphocytes, and monocytes.  Alhazmi46 utilized the BCCD dataset to train 
deep learning models to detect leukocytes, red blood cells, and platelets, thus counting them, but did not further 
classify the types of leukocytes. However, when we evaluate the performance of the detection model, we consider 
common clinical interference factors, which increase the difficulty of detection and are closer to the actual clinical 
detection environment. The mAP@IoU = 0.5 of the Cascade R-CNN and ensemble model are 0.948 and 0.940 
on the test set, higher than 0.93128 and 75%45 (Table 2). In addition, although the mAP@IoU = 0.50:0.95 of the 
ensemble model is slightly lower than that of Cascade R-CNN (0.853 < 0.856), its mAR@IoU = 0.50:0.95 is the 
highest (0.922 > 0.909), which means the integrated model has the lowest rate of missed detection of leukocytes 

Table 2.  Performance in key evaluation criteria of six methods and ensemble model on the test set.

Model mAP
mAP
@IoU0.50

mAP
@IoU0.75 mAR AP-BG AP-EG AP-NG AP-M AP-L

FSAF 0.742 0.874 0.860 0.866 0.618 0.684 0.870 0.756 0.785

FCOS 0.795 0.896 0.880 0.913 0.642 0.826 0.894 0.795 0.819

Faster R-CNN 0.815 0.940 0.919 0.879 0.738 0.847 0.893 0.785 0.814

Grid R-CNN 0.822 0.926 0.920 0.903 0.709 0.836 0.847 0.890 0.832

DH Faster R-CNN 0.848 0.951 0.939 0.910 0.753 0.892 0.908 0.842 0.843

Ensemble 0.853 0.940 0.933 0.922 0.752 0.898 0.925 0.843 0.848

Cascade R-CNN 0.856 0.948 0.938 0.909 0.781 0.905 0.916 0.838 0.841



8

Vol:.(1234567890)

Scientific Reports |         (2023) 13:2160  | https://doi.org/10.1038/s41598-023-29331-3

www.nature.com/scientificreports/

(Fig. 4). It helps to calculate leukocytes and prompts experts to verify the model to detect wrong leukocytes. In 
addition, for detecting leukocyte subtypes such as NG, M, and L, the ensemble model performs best, surpassing 
the Cascade R-CNN model, as shown in Table 2.

Figure 5.  Some real examples of detecting leukocytes in different scenarios with Cascade R-CNN and the 
ensemble model. (a) An example of excessively high phosphate buffer solution (pH > 6.8) and small neutrophils. 
(b) An example of overlapping leukocytes. (c) An example of incomplete leukocytes. (d) An example of 
impurities in the picture.
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The performance of the two models is further analyzed from the results of the challenging cases. Both Cas-
cade R-CNN and the ensemble model are robust to significant pH changes beyond the normal pH range [6.4, 
6.8], and the models can accurately locate and identify poorly stained leukocytes. The ensemble model performs 
better (95.30% > 92.17%) (Fig. 5a). Moreover, the detection ability of the ensemble model in the dense scenes is 
also higher than that of Cascade R-CNN, with a detection accuracy rate of 94.74% > 65.79%, which makes the 
potential model advantages in the detection of some leukemias (Fig. 5b). In the clinical detection of leukocytes, 
common impurities, including dye residue, broken red blood cells, dust, etc., frequently occur. These common 
impurities will affect the performance of the detection model. Cascade R-CNN and the ensemble model are 
robust to the interference of impurities. The latter performs better and has a low probability of misjudgment 
of impurities as leukocytes (3.53% < 8.23%) (Fig. 5c). It is worth noting that for the first time, this article found 
that both Cascade R-CNN and the ensemble model can detect the types of incomplete leukocytes with high 
 accuracy29,30,47. The ensemble model is slightly better than Cascade R-CNN (98.84% > 97.67%), even for only 
covering 25–50% of the cells in a limited visible area, which means that the algorithm is superior to traditional 
image recognition algorithms (Fig. 5d).

Regarding Cascade R-CNN and the ensemble model for the lowest detection results of basophils (Table 2, 
Fig. 6), research shows that in computer vision tasks, more training examples can improve performance indica-
tors, and the success of image classification tasks largely depends on the availability of labeled  data29. A total of 
8595 leukocytes were collected in our study. However, the distribution of labels varies due to the different propor-
tions of leukocyte types in the blood. There are 300 basophils in the training set and test set, while the numbers 
of other types of leukocytes are all > 1000. Therefore, basophils showed the lowest mAP values in several models, 
ranging from 0.618 to 0.781. It is expected that its detection performance will be significantly improved with the 
expansion of the training set in the future and the increase of basophils. Since the established dataset contains 
various interference factors, although the ensemble model has strong anti-interference ability, a small number 
of leukocytes were misidentified. For example, in Fig. 7a, the neutrophil was small and deeply stained, which 
was mistaken as the lymphocyte. In Fig. 7b, the neutrophil was large and had many nuclear lobes, which was 
identified as a monocyte. In Fig. 7c, the degenerate neutrophil was redder and had an unclear cellular structure, 
which was mistaken for eosinophil. In Fig. 7d, the neutrophil granulocyte was deeply stained and contained 
toxic particles, which was identified as a basophil. If the number of images with various interference factors can 
be increased in the future, the recognition accuracy of the model will be higher.

The error detection result map of the models may provide some correct suggestions to the clinical detection 
staff. As shown in Fig. 8, we noticed consistent detection errors among the top-three models, which all detected 
a monocyte as a lymphocyte. In the post-review, it was noted that the leukocyte was considered an inaccurate 
marker by clinical experts. The leukocyte is an atypical lymphocyte. As we know, there are three subtypes of 
atypical lymphocytes: plasmacyte prototype (I), monocyte prototype (II), and prolymphocyte prototype (III), 
where the shape of sub-type II is close to monocyte. It is difficult to accurately identify them in clinical practice, 
which needs to be combined with the overall blood smear of the subject and other test results to make a compre-
hensive judgment. Clinicians usually observe blood smears under a microscope. Since the cells are stereoscopic, 
they generally need to constantly adjust the fine quasi-focal spiral to observe the characteristics of the images 
of different layers of leukocytes, which can improve the recognition  accuracy48. Supposing that only images of 

Figure 6.  The heat map of the confusion matrix for the Cascade R-CNN and the ensemble model’s 
performance detecting five types of leukocytes on the test set.
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leukocytes are given to doctors, even trained pathologists cannot guarantee accurate identification of all of them, 
especially when they are presented with cells of similar morphology, such as many large atypical lymphocytes 
that look similar to small  monocytes45. Furthermore, that reflects the correct suggestions from the model to 
some extent. The deep network has learned many image characteristics of leukocytes of different shapes. The 
model summarizes the unique features of distinguishing different types of them, which may improve the level 
of clinical detection of leukocytes. However, the model’s ability for atypical lymphocyte detection needs to be 
strengthened in future work.

In the future, with the current well-established baseline, we plan to extend our work and overcome some 
limitations. Firstly, the current size of the dataset only meets the primary demand for data-driven deep learning. 
We plan to collect more data to help the deep learning models generalize better. Secondly, some data imbalance 
still exists in the current dataset, partly because basophil cells appear less than others. More samples of basophil 
will be targeted during the expansion of the dataset. The current detector is built using the large backbone models 
pre-trained on the 1000-class ImageNet dataset. Technically, it is possible to build up an effective detector for 
six types of objects by using lightweight backbone models, and in the next stage, exploring lightweight models 
should be the new focus. The outcome can lead to lower computational costs and more flexible deployment in 
embedded devices.

In summary, the ensemble model may be a better choice for automatic blood cell morphology systems. Using 
the ensemble model, the leukocyte detection process can reduce the dependence on experts, overcome the inher-
ent limitations of clinicians’ manual identification, such as the influence of subjectivity on identification, and 
improve the consistency of diagnosis. By considering the interference factors and training on collective knowl-
edge from experts, the ensemble model “remembered” the accurate and wide-ranged prior information from the 
clinic. Therefore, the model is highly adaptive and robust to daily clinical environments. Another advantage of 
the ensemble model is that its processing speed demonstrates a tremendous advantage over manual recognition 
and reduces workload.

Conclusions
Our paper established a dataset with multi-leukocyte images, considering nine common interference factors 
in clinical application. We evaluated six mainstream detection models and developed a new model to evalu-
ate their performance in terms of mAP@IoU = 0.50:0.95, mAR@IoU = 0.50:0.95 comprehensively, AP for each 
type of leukocyte, and robustness to different interference factors. The developed ensemble model can count 
leukocytes more accurately and prompt experts to detect wrong detections, and it is more robust. In addition, 

Figure 7.  Some examples of partial neutrophils misidentified by the ensemble model. (a)–(d) The neutrophils 
were misidentified separately as lymphocyte, monocyte, eosinophil, and basophil.

Figure 8.  Qualitative true positive results yielded by different models. For the same leukocyte, Cascade R-CNN, 
Ensemble model, and DH Faster R-CNN all detect it as a lymphocyte, and experts labeled it a monocyte.
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we found that the model’s error detection result can provide clinical with some correct suggestions, which can 
help experts perform clinical testing.

We also build a web service to test data from a different source. The web service helps increase technical 
readiness of our work, which reflects its potentials in deployment as well. Once the automatic leukocyte detector 
is fully deployed, the service can be provided in the clinic in the countryside or in remote regions, where there 
is a lack of well-maintained instruments and skilled medics, and help medical personnel diagnose leukocyte-
related diseases.

Data availability
The datasets used and analyzed during the current study are available from the corresponding author upon 
reasonable request.
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