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Deep consistency‑preserving hash 
auto‑encoders for neuroimage 
cross‑modal retrieval
Xinyu Wang  & Xianhua Zeng *

Cross‑modal hashing is an efficient method to embed high‑dimensional heterogeneous modal feature 
descriptors into a consistency‑preserving Hamming space with low‑dimensional. Most existing 
cross‑modal hashing methods have been able to bridge the heterogeneous modality gap, but there 
are still two challenges resulting in limited retrieval accuracy: (1) ignoring the continuous similarity 
of samples on manifold; (2) lack of discriminability of hash codes with the same semantics. To cope 
with these problems, we propose a Deep Consistency‑Preserving Hash Auto‑encoders model, called 
DCPHA, based on the multi‑manifold property of the feature distribution. Specifically, DCPHA 
consists of a pair of asymmetric auto‑encoders and two semantics‑preserving attention branches 
working in the encoding and decoding stages, respectively. When the number of input medical image 
modalities is greater than 2, the encoder is a multiple pseudo‑Siamese network designed to extract 
specific modality features of different medical image modalities. In addition, we define the continuous 
similarity of heterogeneous and homogeneous samples on Riemann manifold from the perspective of 
multiple sub‑manifolds, respectively, and the two constraints, i.e., multi‑semantic consistency and 
multi‑manifold similarity‑preserving, are embedded in the learning of hash codes to obtain high‑
quality hash codes with consistency‑preserving. The extensive experiments show that the proposed 
DCPHA has the most stable and state‑of‑the‑art performance. We make code and models publicly 
available: https:// github. com/ Socra tes023/ DCPHA.

Recently, various advanced medical imaging technologies have been applied in modern clinical analysis with 
the advancement of medical  care1. Hospitals are generating a large number of multi-modal neuroimages every 
moment, therefore, it is necessary to establish an effective neuroimage cross-modal approximate nearest neighbor 
retrieval system to assist clinicians in navigating the data. Neuroimage cross-modal retrieval aims to provide 
doctors with similar neuroimages from different modalities that have been diagnosed. An effective neuroimage 
cross-modal retrieval system can reduce the error rate of clinical diagnosis for novice doctors and improve the 
efficiency of clinical diagnosis for skilled physicians.

The remarkable achievements have been made in large-scale data processing based on deep neural network 
in computer  vision2–5, Internet of Things (IoT)6–8, nearest neighbor  retrieval9, 10, and intelligent  networks11, 12. 
The nearest neighbor retrieval methods are solved by learning discriminative representations in the common 
space, which can be roughly classified into cross-modal hash retrieval and cross-modal real-value retrieval by 
classifying the types of values in the common  space10, 13. Cross-modal hashing is an efficient method to embed 
high-dimensional heterogeneous modal feature descriptors into a low-dimensional Hamming space. Due to the 
trade-off between retrieval efficiency and storage cost, learning to hash has been widely used in approximate 
nearest neighbor retrieval of large-scale multi-media data, in particular, using cross-modal hashing to assist 
doctors in effective clinical diagnosis has also attracted increasing attention from researchers.

Since features of different modalities usually belong to various data distributions and are generated from dif-
ferent manifold spaces. Therefore, a basic challenge of cross-modal retrieval is to bridge the modality gap. Most 
existing cross-modal hashing methods have been available to bridge the heterogeneous modality-gap14–16, but 
there are still two challenges leading to the limitation of retrieval accuracy: (1) ignoring the continuous similar-
ity of samples on stream shape; (2) lack of discriminability of hash codes with the same semantics. Our research 
argued that (1) is the reason for (2) and (2) is the result of (1). Therefore, we propose a Deep Consistency-
Preserving Hash Auto-encoders model, called DCPHA, based on the multi-manifold property of multi-modal 
hash codes distributed in Hamming space. In addition, we define the continuous similarity of heterogeneous 
and homogeneous samples on Riemann manifolds from the perspective of multiple sub-manifolds, respectively, 
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and propose two constraints, i.e., multi-semantic consistency and multi-manifold similarity-preserving. And we 
prove theoretically that the multi-manifold similarity-preserving constraint has manifold preserving invariance.

The main contributions of our work can be summarized as follows: 

(1) We propose a Deep Consistency-Preserving Hash Auto-encoders model, called DCPHA, based on the 
multi-manifold property of the feature distribution for neuroimage cross-modal retrieval. DCPHA is 
an end-to-end model consisting of asymmetric auto-encoders and two semantics-preserving attention 
branches.

(2) We propose multi-semantic consistency and multi-manifold similarity-preserving constraints based on the 
multi-manifold property of multi-modal hash codes. And it is proved theoretically that the multi-manifold 
similarity-preserving constraint has manifold preserving invariance.

(3) Without loss of generality, we comprehensively evaluate the DCPHA on four benchmark datasets and 
implement detailed ablation experiments to validate the effectiveness of the DCPHA. The extensive experi-
ments demonstrate the advantages of the proposed DCPHA compared to 15 advanced cross-modal retrieval 
methods.

Deep consistency‑preserving hash auto‑encoders
In this section, the proposed model DCPHA is described in detail, including formulations, deep architecture and 
objective function. The deep architecture of DCPHA is shown in Fig. 1. The DCPHA model consists of asym-
metric auto-encoders and two semantics-preserving attention branches. The encoder is used to extract features 
from neuroimages of different modalities, and the decoder is designed to map the features into Hamming space 
by a non-linear transformation. The semantics-preserving attention branches work in the encoding and decod-
ing stages respectively to ensure that both the learned features and the hash codes have semantics-consistency. 
And two constraints, i.e., multi-semantic consistency and multi-manifold similarity-preserving, are embedded 
in the learning of hash codes to obtain high-quality hash codes with discriminative.

Notations and definitions. In this subsection, the notations and definitions mentioned in the following 
equations are introduced. Without loss of generality, we suppose that there are N multi-modal sample sets in 
the sample space ψ , ψ = {Xi}, i ∈

[

1,N
]

 . Each of multi-modal sample sets Xi consists of different medical scan 
imagings from the same subject (e.g. MRI and PET), Xi =

{

xmi
}

,m ∈
[

1,M
]

 , where M denotes the number 
of different medical scan imagings. xmi  denotes the i-th subject of the m-th modality, assuming dimension Z . 
Since the samples within the same multi-modal sample set originate from the same subject, they naturally share 
the same semantic, which is the reason why our method is appropriate for neuroimages. A one-hot vector ℓi is 
assigned to each multi-modal sample set, ℓi = [l1, l2, · · · , lc , · · · , lC] , where C denotes the number of categories. 
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Figure 1.  The proposed DCPHA model consists of an asymmetric auto-encoders and two semantics-
preserving attention branches. The encoder is used to extract features from neuroimages of different modalities, 
and the decoder is designed to map the features into Hamming space by a non-linear transformation. Best view 
in color.
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When the multi-modal sample set Xi belongs to the c-th category, lc = 1 and the rest is 0. DCPHA consists of an 
asymmetric encoder and decoder. The purpose of the encoder is to learn the features f mi  of sample xmi  , assuming 
that the dimension of f mi  is D , where D ≪ Z . The decoder is designed to map the features f mi  into Hamming 
space by a non-linear transformation. Let the hash code of sample xmi  is hmi  , hmi ∈ {−1, 1}K , and our goal aims to 
learn an end-to-end non-linear hash function F to extract features of multi-modal medical imaging and encode 
them into high-quality hash codes with semantics-consistency and similarity-preserving, hmi = F

(

xmi ; θ
)

 . The 
terms, notations, definitions and types involved in this work are comprehensively shown in Table 1.

The previous  works17–20 has illustrated that multi-modal data contain multiple sub-manifolds. The visualiza-
tion of multiple sub-manifolds in local sample space is shown in Fig. 2. We define the sub-manifold similarity 
and multi-manifold similarity from local and global respectively, as follows.

Definition 1 Heterogeneous manifold similarity. A local manifold similarity calculation definition. Assum-
ing that there are M modal neuroimages in the sample space, and each modality contains N samples, then the 
heterogeneous manifold similarity SH is defined for any two samples of different modalities as Eq. (1):

with
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Table 1.  The terms, notations, definitions and types involved in this work.

Notation Definition Type Shape

M The number of different medical scan imagings Constant /

N The number of multi-modal sample sets Constant /

C The number of categories Constant /

ψ Medical multi-modal sample space Array (N,M,Z )

Xi Multi-modal sample set Matrix (M,Z )

xmi Multi-modal sample vector (,Z )

f mi The vectorized features corresponding to the multi-modal sample xmi vector (,D )

hmi The hash code corresponding to the multi-modal sample xmi vector (,K)

ℓi The semantic label corresponding to the multi-modal sample set Xi vector (, C)

A1

A2

B1

Figure 2.  The visualization of multiple sub-manifolds in local sample space. Points A1, A2 and B1 are from 
two different manifolds. The green solid line connects two homogeneous manifold samples, i.e. the similarity 
between two homogeneous manifold samples, and the yellow solid line links two heterogeneous manifold 
samples, i.e. the similarity between two heterogeneous manifold samples. Best view in color.
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where SH
(

hmi , h
n
j

)

 denotes the similarity of the heterogeneous manifold between the i-th sample of the m-th 
modal and the j-th sample of the n-th modal and the calculation method is shown in Eq. (2). τ is the heat kernel 
constant. D(·) in Eq. (3) is the modified distance metric based on the standard euclidean distance d(·).

Definition 2 Homogeneous manifold similarity. A local manifold similarity calculation definition. In the sam-
ple space, the homogeneous manifold similarity SI between samples from the same modality is defined as Eq. (4):

with

where SI (h·i , h
·
j) denotes the homogeneous manifold similarity between the i-th sample and the j-th sample from 

the same modal. The calculation method is the dot product between ℓ2 normalized h·i and h·j (i.e. cosine similar-
ity) as shown in Eq. (5).

Definition 3 Multi-manifold similarity. A global manifold similarity calculation definition. Assuming that 
there are M modal neuroimages in the sample space and each modality contains N samples, then the multi-
manifold similarity SM is defined as Eq. (6):

where S1I denotes the homogeneous manifold similarity between the samples from the 1-th modality, and SMI  
similarly. s1,MH  denotes the heterogeneous manifold similarity between the 1-th modal sample and the M-th 
modal sample, and SM,1

H  similarly.

Objective functions and theory. In this subsection, the theoretical derivation of the proposed multi-
semantic consistency and multi-manifold similarity-preserving constraints is presented. Alexey et al.21 propose 
that the criterion for a good feature representation should ensure that the mapping from the input image xmi  to 
the feature f mi  should satisfy two requirements: (1) There must be at least one feature that is similar for images 
of the same semantics. (2) there must be at least one feature that is sufficiently different for images of different 
semantics. However, the previous  works14–16 can over-satisfy both requirements for hash codes, because these 
works ignore the fact that samples with the same semantics have contiguous similarity on manifold. Construct-
ing the similarity matrix directly using semantic labels leads to samples with the same semantics being encoded 
into the same hash code, causing the lack of discriminability between hash codes with the same semantics. To 
solve the problem, we propose a multi-semantic consistency loss and a multi-manifold similarity-presering loss. 
The multi-semantic consistency ensures that hash codes with different semantics are discriminative. On this 
basis, multi-manifold similarity-preserving defines continuous similarity among samples in terms of multiple 
sub-manifolds, ensuring that hash codes with the same semantics have discriminability as well.

Multi‑semantic consistency. The multi-semantic consistency constraint is to align the intermediate features 
generated by the encoder and the hash codes generated by the decoder with the high-level semantics of the input 
samples to guarantee that the final generated hash codes with different semantics have case-level discriminabil-
ity, which is calculated as follows.

First, the sample xmi  is learned by encoder to feature f mi  , f mi = Decoder
(

xmi
)

 , and the feature f mi  is passed 
through the Semantic Preserving Attention Branch (SPAB) to obtain the feature prediction classification label 
ymi  , ymi = SPABE(f

m
i ) . The decoder is designed to map the features into Hamming space by a non-linear trans-

formation. The f mi  is fed into the decoder to obtain the hash code hmi  , hmi = Decoder
(

f mi
)

 . The hash code hmi  is 
input into the SPAB which works in the decoding stage to obtain the hash code prediction classification label rmi  , 
rmi = SPABD(h

m
i ) . The multi-semantic consistency loss is shown in Eq. (7), where � · �F denotes the Frobenius 

normalized.
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Multi‑manifold similarity‑preserving. With the basis of multi-semantic consistency, multi-manifold similarity-
preserving defines continuous similarity among samples in terms of multiple sub-manifolds, ensuring that hash 
codes with the same semantics have discriminability as well. According to previous  work18–20, in the sample 
space, neuroimages of different modalities are distributed in different sub-manifolds. They are aggregated into a 
sophisticated multi-manifold structure. Based on the statements of Definition. (1)(2)(3), we derive the following 
optimization equation as Eq. (8):

where SM(·, ·) denotes the multi-manifold similarity. I(·, ·) is an indicator function that has a value of 1 if ℓi = ℓj 
and 0 otherwise. Other notations and the corresponding explanations can be found in Table 1. J2 is the similar-
ity-preserving loss which is defined on multi-manifolds, allowing samples with the same semantics are decoded 
into hash codes with discriminative.

Belkin22 used the correspondence between the Laplace and the Laplace-Beltrami operator on manifold, and 
the connections to heat equation, and proposed a non-linear dimensionality reduction method from Riemann 
space to Euclidean space (i.e. Laplacian Eigenmaps). The objective function as follows Eq. (9):

where Hm
i =

hmi
�hmi �

 , i.e. standardized feature vector.

Theorem 1 Subject to log
(

1+ e
SM

(

hmi ,h
n
j

)
)

= 2SM

(

hmi , h
n
j

)

 , then J2 is equivalent to Llaplacican , i.e. J2 has 

manifold preserving invariance.

The procedure of the theoretical proof of Theorem 1 is placed in the supplementary material. It indicates that 
minimizing Eq. (8) is a standard manifold embedding problem formulated by equivalent to Eq. (9). Multi-mani-
fold similarty-preserving term essentially provides a measure of sub-manifold similarity-preserving. Therefore, 
Eq. (8) can be a reasonable explanation for multi-manifold similarity-preserving.

Combining Eqs. (7)(8), the objective function of DCPHA is:

where α and β are the contribution weight parameters of J1 and J2 , respectively. The third is a regularization 
term, which is used to avoid gradient  vanishing23.

Refinement learning and optimization. The network structure of DCPHA consists of asymmetric 
auto-encoders and two semantics-preserving attention branchinges which working in the feature encoding and 
hash decoding stages, respectively. The encoder adopts a standard CNN network structure. The decoder uses a 
light-weight fully-connected networks. The semantics-preserving attention branch is a linear multi-layer per-
ceptron model. Therefore Eq. (10) is a non-convex function with multiple parameters. We used a stochastic gra-
dient descent method and iterative learning strategy with Adam  optimizer24 to learn the parameters and update 
the network. The complete training of DCPHA consists of three steps: (1) Pre-training encoder, (2) Pre-training 
decoder and (3) Fine-tuning DCPHA, which are described in detail below.
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Experiment
Implementation details. All experiments were conducted on a Tesla V100-SXM2 GPU using same set-
ting. To ensure impartiality and objectivity, all comparison models adopt AlexNet as the backbone network for 
feature extraction. All comparison models, except that the backbone network adopts the same configuration, are 
all original code implementations. The batchsize is 20 and the iterations is 500. The initial learning rate is set to 
10−6.

Datasets. ADNI225 contained 579 subjects with T1-weighted sMRI and 500 subjects with PET. we adopt a 
single slice and strong pairing data preprocessing method. Finally, we collected 300 pairs (600 images) of sMRI 
and PET neuroimages as datasets.

OASIS326. We collected MRI T1-weighted and PET images of 300 subjects from the OASIS3 dataset, with a 
total of 600 images as the dataset. We strongly matched two different modal images of the same subject to form 
a cross-modal paired dataset for training. We divided the above datasets into training-set and test-set in the 
ratio of 8/2. The datasets generated and analysed during the current study are available from the corresponding 
author on reasonable request.

Compare with 15 advanced methods. In this experiments, We used the mean average precision (mAP) 
scores of all returned results with cosine similarity as a quantitative metric. The mAP scores jointly consider 
ranking information and precision and are widely used performance evaluation criteria in cross-modal hash. We 
report the mAP scores of the compared methods for two different cross-modal retrieval tasks: (1) retrieving PET 
samples using T1-wighted MRI queries (M→ P) and (2) retrieving T1-wighted MRI samples using PET queries 
(P→M). On the premise of objectivity and impartiality, the comparison experiments on ADNI2 and OASIS3 
datasets are shown in Tables 2, 3, respectively. From the results, DCPHA achieves state-of-the-art performance 
on the test-set of each dataset. The detailed analysis is as follows.

The results of neuroimage cross-modal retrieval on ADNI2 using mAP scores are shown in Table 2. As can 
be seen from the table, the proposed DCPHA outperforms 15 advanced counterparts. Regarding the average 
mAP score of 128 bits hash codes on ADNI2 dataset, DCPHA outperforms several sub-optimal models DIHN, 
DPN, and CSQ by 6.86% , 5.16% , and 3.85% respectively. In other words, our method can significantly improve 
the performance of neuroimage cross-modal retrieval. For further comparison, the precision curve is plotted 
in Fig. 3. The experimental results are consistent with the retrieved mAP results in Table 2, where DCPHA has 
the best performance.

We evaluated DCPHA on OASIS3 dataset for cross-modal retrieval. The mAP scores of the retrieval are shown 
in Table 3. The experimental results show that DCPHA has the highest retrieval mAP scores in several metrics 
compared to 15 advanced retrieval methods. The proposed DCPHA improves 2.53% over the best counterpart 
DSH from the average mAP score of 16 bits hash codes. Although the average mAP score of DSH with 32 bits 
hash codes is higher than DCPHA, the model constructed based on the multi-manifold property of data distribu-
tion has a great advantage in processing the multi-modal task method has a great advantage. The performance of 
proposed method is more stable on different lengths of hash codes. We plotted the precision curve to investigate 
the effectiveness of different methods for cross-modal retrieval on OASIS3 dataset as shown in Fig. 4. From the 
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visualization, it is observed that the proposed DCPHA also outperforms all the compared methods, which is 
consistent with the retrieved mAP results.

The further analysis of DCPHA. In this subsection, we will further analyze our proposed DCPHA from 
ablation experiments, hyper-parameters sensitivity analysis and comparison on natural image benchmark data-
set.

Ablation experiments. The objective function of DCPHA is mainly composed of a multi-manifold similarity-
preserving loss and a multi-semantic consistency loss. In order to research the contribution of these components 
to the model in more detail, we developed and evaluated two variants of DCPHA. i.e. DCHA and DPHA. DCHA 
only uses the multi-semantic consistency loss as the objective function and DPHA only uses the multi-manifold 
similarity-preserving loss as the optimization objective. Table 4 shows the results of ablation experiments on 
ADNI2. We found that both multi-manifold similarity-preserving and multi-semantic consistency contribute to 

Table 2.  The mAP scores of cross-modal retrieval on ADNI2 with different lengths of hash codes. Best 
Performance in Bold.

Method

16 bits 32 bits 64 bits 128 bits

M→P P→M Aver M→P P→M Aver M→P P→M Aver M→P P→M Aver

DHN27 0.5853 0.5864 0.5858 0.5176 0.5461 0.5318 0.5339 0.5318 0.5328 0.5397 0.5433 0.5415

DSH28 0.6236 0.6250 0.6243 0.5883 0.5929 0.5906 0.5615 0.5675 0.5645 0.5777 0.5950 0.5864

DPSH29 0.5984 0.5773 0.5878 0.5515 0.5736 0.5625 0.5780 0.5844 0.5812 0.5802 0.5765 0.5783

DAPH30 0.5117 0.5292 0.5205 0.5587 0.5683 0.5635 0.5178 0.5190 0.5184 0.5244 0.5240 0.5242

HashNet31 0.5341 0.5724 0.5533 0.5575 0.5735 0.5655 0.5718 0.5784 0.5751 0.5470 0.5558 0.5514

DSDH32 0.5649 0.5703 0.5676 0.5681 0.5810 0.5745 0.5523 0.5432 0.5477 0.5890 0.5734 0.5812

LCDSH33 0.5697 0.5717 0.5707 0.5616 0.5861 0.5738 0.5826 0.5570 0.5698 0.5635 0.5559 0.5597

ADSH34 0.5932 0.5986 0.5959 0.5789 0.6016 0.5902 0.6045 0.6391 0.6218 0.5852 0.6213 0.6032

DIHN35 0.5598 0.5978 0.5788 0.6015 0.5924 0.5969 0.6002 0.6371 0.6187 0.6076 0.6179 0.6127

DSCMR36 0.4745 0.4742 0.4744 0.4244 0.4297 0.4271 0.4334 0.4264 0.4299 0.4140 0.4139 0.4139

IDHN37 0.5712 0.5724 0.5718 0.5794 0.6001 0.5898 0.5844 0.5971 0.5908 0.5729 0.5854 0.5791

PCDH38 0.6074 0.6155 0.6114 0.6273 0.6606 0.6439 0.5791 0.6195 0.5993 0.5997 0.5952 0.5974

CSQ39 0.5982 0.5756 0.5869 0.6302 0.6249 0.6275 0.6253 0.6208 0.6231 0.6430 0.6425 0.6428

DPN40 0.5400 0.5561 0.5480 0.5830 0.5534 0.5682 0.6307 0.6527 0.6417 0.6229 0.6366 0.6297

FAH41 0.5797 0.5943 0.5870 0.5808 0.6062 0.5935 0.5711 0.5642 0.5676 0.5798 0.5905 0.5851

DCPHA 0.6600 0.6534 0.6567 0.6732 0.6912 0.6822 0.6700 0.6857 0.6779 0.6827 0.6798 0.6813

Table 3.  The mAP scores of cross-modal retrieval on OASIS3 with different lengths of hash codes. Best 
Performance in Bold.

Method

16 bits 32 bits 64 bits 128 bits

M→P P→M Aver M→P P→M Aver M→P P→M Aver M→P P→M Aver

DHN27 0.5982 0.5995 0.5989 0.5603 0.5676 0.5639 0.5947 0.5868 0.5908 0.5820 0.5850 0.5835

DSH28 0.6263 0.6262 0.6263 0.6547 0.6681 0.6614 0.6377 0.6279 0.6328 0.6337 0.6047 0.6192

DPSH29 0.6134 0.6123 0.6129 0.5877 0.6046 0.5962 0.5927 0.6013 0.5970 0.6016 0.6258 0.6137

DAPH30 0.5831 0.5913 0.5872 0.5604 0.5660 0.5632 0.5609 0.5652 0.5631 0.5705 0.5765 0.5735

HashNet31 0.6001 0.6110 0.6055 0.6304 0.6390 0.6347 0.5914 0.6227 0.6071 0.5969 0.6159 0.6064

DSDH32 0.5864 0.5978 0.5921 0.5979 0.6012 0.5996 0.6094 0.6248 0.6171 0.6333 0.6207 0.6270

LCDSH33 0.5880 0.6169 0.6024 0.5885 0.5988 0.5937 0.5793 0.5847 0.5820 0.5836 0.5904 0.5870

ADSH34 0.5835 0.5836 0.5836 0.5917 0.5922 0.5919 0.6182 0.6041 0.6111 0.6078 0.6152 0.6115

DIHN35 0.6124 0.6139 0.6131 0.6175 0.6377 0.6276 0.6068 0.6318 0.6193 0.6343 0.6345 0.6344

DSCMR36 0.5956 0.5905 0.5930 0.5756 0.5803 0.5780 0.5918 0.5953 0.5935 0.5856 0.5922 0.5889

IDHN37 0.6129 0.6005 0.6067 0.6035 0.6106 0.6071 0.6146 0.6189 0.6168 0.6209 0.6399 0.6304

PCDH38 0.5836 0.5568 0.5702 0.6062 0.6036 0.6049 0.6060 0.6186 0.6123 0.5919 0.6021 0.5970

CSQ39 0.6063 0.5997 0.6030 0.5942 0.5790 0.5866 0.6197 0.5921 0.6059 0.6016 0.6119 0.6068

DPN40 0.6151 0.5957 0.6054 0.6120 0.6091 0.6106 0.6007 0.5808 0.5907 0.6026 0.5916 0.5971

FAH41 0.5292 0.5335 0.5313 0.5328 0.5257 0.5292 0.5526 0.5478 0.5502 0.5899 0.5862 0.5881

DCPHA 0.6491 0.6541 0.6516 0.6495 0.6494 0.6495 0.6633 0.6388 0.6511 0.6335 0.6487 0.6411
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the final retrieval performance of the model. DCHA obtains better performance when the hash codes is shorter, 
and the mAP score of DPHA is higher when the hash code is longer, which shows that optimizing the two objec-
tive functions at the same time is better than only optimizing one of them.

Hyper‑parameter sensitivity analysis. The objective function of DCPHA contains two hyper-parameters α and 
β , and we investigate the effect of the hyper-parameters that control the weight ratio between the losses in Eq. 
(10). First, we fix the length of the hash code mathcal K to 32. Then, we keep α and β in the range of [0.1, 1] to 
calculate the MAP score. The result is shown in the Fig. 5. It is clear that different hyperparameters yield different 
performance. Considering from the average MAP, we finally chose α = 0.3 and β = 1 as hyper-parameters for 
the ADNI2 dataset. By using the same scheme, we can obtain the optimal values of hyper-parameters for α = 0.1 
and β = 1.0 on the OASIS3 dataset.

Experiments on natural image benchmark datasets. In order to further measure the fitting and generalization 
ability of DCPHA, we conduct comparative experiments with 10 advanced cross-modal retrieval methods on 
the natural image benchmark datasets MIRFLICKR25K. In our experiments, we follow the dataset partition and 
feature exaction strategies  from36, 42. In this experiment, we report the mAP scores of the compared methods for 
two different cross-modal retrieval tasks: 1) retrieving text using image queries (I→ T) and 2) retrieving images 
using text queries (T→I). The experimental results obtained in “I→ T” and “T→ I” tasks on MIRFLICKR25K 
are shown in Table 5. Since our proposed multi-semantic consistency and multi-manifold similarity preserving 
constraints based on the multi-manifold property of multi-modal hash codes, DCPHA achieves a significant 
performance improvement on the multi-label benchmark dataset, i.e., MRIFLICKER25K.

Figure 3.  The precision curves of DCPHA and comparisons on ADNI2 dataset.

Figure 4.  The precision curves of DCPHA and comparisons on OASIS3 dataset.

Table 4.  The mAP of ablation experiments on ADNI2 with different lengths of hash codes.

Method

16 bits 32 bits 64 bits 128 bits

M→P P→M Aver M→P P→M Aver M→P P→M Aver M→P P→M Aver

DCHA 0.6238 0.6672 0.6455 0.6345 0.6527 0.6436 0.6175 0.6173 0.6174 0.6083 0.6317 0.6200

DPHA 0.6274 0.6099 0.6186 0.6068 0.6482 0.6275 0.6361 0.6313 0.6337 0.6387 0.6322 0.6355
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Conclusion and future work
In this paper, we proposed a deep consistency-preserving hash auto-encoders model, called DCPHA, based 
on the multi-manifold property of hash codes distributed in Hamming space to solve the problem of lack of 
discriminability of hash codes with the same semantics. Specifically, DCPHA consists of a pair of asymmetric 
auto-encoders and two semantics-preserving attention branches that work in the feature encoding stage and hash 
decoding stage, respectively. In addition, two constraints, namely multi-semantic consistency and multi-manifold 
similarity-preserving, were embedded in the learning of hash codes. We theoretically demonstrated that our 
proposed multi-manifold similarity-preserving has manifold preserving invariance. As the experimental results 
show, the proposed DCPHA can obtain state-of-the-art performance on simple medical multi-modal image 
datasets (i.e., ADNI2) and multi-label natural image datasets (i.e., MIRFLICKER25K). In future work, we will 
build a medical multi-modal database, including diagnostic reports, audio, and construct a multi-modal hash 
method to accomplish mutual retrieval of data from multiple sources. And we will further explore the impact 
of multi-view on the generation of hash codes for multi-modal samples.

Data availability
The datasets generated during and analysed during the current study are available from the corresponding author 
on reasonable request.
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Figure 5.  The mAP scores on ADNI2 with hyper-parameters in the range of [0.1, 1].

Table 5.  The mAP scores of cross-modal retrieval on MIRFLICKER25K with different lengths of hash codes. 
Best Performance in Bold.

Method

16 bits 32 bits 64 bits 128 bits

I→T T→I Aver I→T T→I Aver I→T T→I Aver I→T T→I Aver

DSH28 0.6284 0.6378 0.6331 0.6244 0.6271 0.6257 0.6009 0.6122 0.6066 0.5776 0.5626 0.5701

DPSH29 0.6993 0.6971 0.6982 0.7011 0.7016 0.7014 0.7020 0.6992 0.7006 0.7025 0.6996 0.7010

LCDSH33 0.6806 0.6941 0.6873 0.6828 0.6919 0.6873 0.6851 0.6967 0.6909 0.6893 0.6940 0.6916

ADSH34 0.6891 0.6939 0.6915 0.6905 0.6936 0.6920 0.6901 0.6935 0.6918 0.6910 0.6941 0.6925

DSCMR36 0.6513 0.6671 0.6592 0.6748 0.6891 0.6820 0.6849 0.6883 0.6866 0.6868 0.6895 0.6881

IDHN37 0.6663 0.6608 0.6635 0.6518 0.6393 0.6456 0.6401 0.6311 0.6356 0.6344 0.6241 0.6293

DBDH43 0.6974 0.6973 0.6973 0.7006 0.6972 0.6989 0.7006 0.6971 0.6988 0.7008 0.6987 0.6997

PCDH38 0.6460 0.6407 0.6433 0.6350 0.6236 0.6293 0.6102 0.6293 0.6197 0.6171 0.6026 0.6099

DPN40 0.6790 0.6749 0.6770 0.6493 0.6692 0.6592 0.6905 0.6808 0.6857 0.6906 0.6916 0.6911

QSMIH44 0.6619 0.6615 0.6617 0.6687 0.6616 0.6652 0.6740 0.6693 0.6716 0.6805 0.6700 0.6752

DCPHA 0.6989 0.7046 0.7017 0.7045 0.7053 0.7049 0.7060 0.7065 0.7062 0.7054 0.7066 0.7060
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