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Estimation of gait events 
and kinetic waveforms 
with wearable sensors and machine 
learning when running 
in an unconstrained environment
Seth R. Donahue  & Michael E. Hahn *

Wearable sensors and machine learning algorithms are becoming a viable alternative for 
biomechanical analysis outside of the laboratory. The purpose of this work was to estimate gait events 
from inertial measurement units (IMUs) and utilize machine learning for the estimation of ground 
reaction force (GRF) waveforms. Sixteen healthy runners were recruited for this study, with varied 
running experience. Force sensing insoles were used to measure normal foot-shoe forces, providing a 
proxy for vertical GRF and a standard for the identification of gait events. Three IMUs were mounted 
on each participant, two bilaterally on the dorsal aspect of each foot and one clipped to the back of 
each participant’s waistband, approximating their sacrum. Participants also wore a GPS watch to 
record elevation and velocity. A Bidirectional Long Short Term Memory Network (BD-LSTM) was 
used to estimate GRF waveforms from inertial waveforms. Gait event estimation from both IMU data 
and machine learning algorithms led to accurate estimations of contact time. The GRF magnitudes 
were generally underestimated by the machine learning algorithm when presented with data from a 
novel participant, especially at faster running speeds. This work demonstrated that estimation of GRF 
waveforms is feasible across a range of running velocities and at different grades in an uncontrolled 
environment.

Biomechanical analysis of running outside the laboratory has become possible, due to advances in wearable 
sensor and machine learning technologies1,2. Laboratory based technologies such as motion capture and instru-
mented force plates have been the traditional method with which to measure biomechanical data, including 
spatial–temporal, kinematic and kinetic variables. These laboratory-based tools require significant investment 
and high levels of training to collect, process and analyze these data. Wearable technologies are an alternative to 
laboratory based methods and have become more widely available for the monitoring of running biomechanics 
in uncontrolled environments3,4. Examples of these are inertial measurement units (IMUs), GPS, and in-shoe 
force or pressure sensors, which can be used to estimate or measure biomechanical data5–8. Earlier research has 
utilized IMUs for the estimation of gait events and foot ground contact time both in and out of the laboratory5,9–13. 
Estimation of specific kinetic variables with statistical or machine learning models has been completed strictly in 
the laboratory14–16. In-shoe force sensors measuring normal force between the foot and shoe during foot contact 
have been validated as a measure of vertical ground reaction forces (GRFs) on an instrumented force treadmill, 
which allows for basic kinetic analysis to be completed outside of the laboratory7.

There are typically 9 sensors in a commercially available multi-axial IMU: tri-axial accelerometers (linear 
accelerations), tri-axial rate gyroscopes (angular velocity), and tri-axial magnetometers (magnetic field). Data 
from IMUs need specific processing and algorithms for extraction of meaningful biomechanical variables17. 
Some approaches have been developed specifically for running, with sensors located on the foot, shank, and 
sacrum9,10,18,19. These algorithmic techniques have demonstrated consistent features can be extracted from iner-
tial data for identification of foot contacts in the laboratory and in real-world environments. However, these 
algorithms are yet to be validated against a kinetic measure in a free running real-world environment, with 
uncontrolled running velocities and different positive and negative grades.
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Machine learning models have been implemented for estimation and prediction of gait events20,21, of single 
kinetic variables14–16, and single stance phase GRFs during running15,22–24. These studies have been constrained 
to the laboratory, with either in-ground force plates or instrumented force treadmills. While there have been 
numerous approaches, and models used, it seems that an optimal machine learning model for the estimation 
of GRF waveforms are Long Short-Term Memory networks (LSTMs) and Bi-Directional LSTMs (BD-LSTMs). 
These network structures were designed for the analysis of temporally related data, specifically natural language 
processing25. Human gait data are ideal for these types of algorithms, as locomotion is cyclic. However, we must 
be cautious with the application of machine learning algorithms trained on data collected in the laboratory for 
evaluation of running performance outside of the laboratory, as it has been well established that gait param-
eters, kinematics and kinetics are different between treadmill running and overground running of different 
durations26–30. It is currently unknown how fully data driven models with no feature engineering performs with 
data collected over the course of an entire run over different grades and velocities.

The purpose of this study was to test two specific methods for the biomechanical analysis of running in an 
unconstrained environment: (1) a heuristic algorithm for the estimation of foot contacts from IMU data; (2) a 
machine learning algorithm with no feature engineering, Bi-Directional LSTM (BD-LSTM), for estimation of 
normal GRFs between the foot and shoe; and therefore, the estimation of gait events and calculation of discrete 
GRF variables. We expect gait event detection from both algorithms to have similar accuracies across the range 
of running velocities and grades in this study. Specifically, we expect a Root Mean Squared Error (RMSE) of 
0.04 s, or 6% error, in the estimation of foot contact from the IMU data, which is similar to the results reported 
by Benson et al.5. Finally, we expect that estimated stance phases (assessed from waveforms output from the 
machine learning algorithm), would have an RMSE of 0.030 BW, and estimated discrete kinetic variables would 
have moderate correlations with measured variables, similar to previous work22.

Results
There were 90,537 foot strikes measured with the force sensing insoles. Algorithmic output data from the foot 
mounted IMU heuristic estimated a total of 90,063 (88,364 analyzed) foot strikes, and the BD-LSTM estimated 
90,579 (85,406 analyzed) foot strikes. The average pace and running speed are shown in Table 1. Two participants 
ran different courses than initially prescribed, each longer than 5 miles. Data from all folds of the LOOCV are 
presented in Table 1.

Specific RMSEs for estimated temporal variables from the IMU heuristic algorithm and those estimated from 
the BD-LSTM across velocities and grades can be found Tables 2 and 3. Performance of foot contact estimation 
from the foot mounted IMU heuristic algorithm can be found in Figs. 1 and 2. Stride frequency as estimated 
from the force sensing insoles are presented in Fig. 4. Stance phase RMSE as estimated from the BD-LSTM is 
presented in Table 4. Kinetic variables measured from the force sensing insoles are presented in Table 5, and 
in Table 6 the RMSE from the BD-LSTM are presented. Kinetic variables across running velocity and slope are 
shown in Figs. 4 and 5. Estimated foot contact and kinetic variables from the BD-LSTM are presented in Figs. 6, 
7, 8 and 9. Pearson correlation coefficients are presented as well as the slope of the regression line. Bland–Altman 
plots show mean difference in the estimated and measured variable with the 95% Limits of Agreement (LoA) 
(Figs. 2, 3, 6, 7, 8 and 9). Each data point in these figures represents a minimum of 10 footfalls for each velocity 
and grade (positive, negative and level ground) from the participant left out of the training set. These results 
show the range of the RMSE for calculated variables from both the heuristic and BD-LSTM algorithms across 
the range of speeds and slopes. Otherwise, if the data were directly measured from the IMUs or the force sensing 
insoles we present the minimum and the maximal values across the range of speeds and slopes.

IMU heuristic gait event and contact time.  The average RMSE across speeds and slopes of the esti-
mated initial contact from the IMU heuristic (ICIMU) are presented in Table 2. Differences between the ICIMU 
and the measured initial contact (IC) are shown in (Fig. 1 Panel A). Estimation of toe off from the IMU heuristic 

Table 1.   Participant characteristics.

Sex Age Mass (Kg) Height (cm) Steps Measured Average Speed (m s−1) Pace (mins:secs)

M 19 68 175 10,209 3.62 7:24

F 21 63 168 7215 3.35 7:59

M 21 73 183 6094 3.67 7:15

F 19 55 173 5810 3.62 7:24

M 34 68 185 6407 3.23 8:17

F 23 52 163 6888 3.39 7:51

M 18 68 183 6317 3.60 7:33

M 20 68 170 6434 3.65 7:13

F 27 54 173 8103 3.01 8:57

M 28 88 191 7711 2.93 9:10

M 26 70 169 6787 3.72 7:13

F 27 57 165 7131 3.16 8:31

M 18 61 183 6358 3.16 8:31
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(TOIMU) are presented in Table 2. Differences between the TOIMU and the measured toe off (TO) are shown in 
Fig. 2 Panel B. The RMSE across speeds of estimated contact times are presented in (Table 2). Estimated contact 
times from the IMU are presented in Fig. 1 Panel C, and the measured foot contact times from the force sensing 
insoles are presented in Fig. 1 Panel D. Linear regression and the analysis of bias in the estimate can be found 
in Fig. 2.

Variables calculated from force sensing insoles.  Stride frequency was observed to change across 
velocities but minimally with slope. Stride frequencies are displayed in (Fig. 4). Measured stance average GRFs 
are presented in Fig. 5 Panel A. Peak GRFs are presented in Fig. 5 Panel B. Impulse during stance phase across 
speeds are presented in Fig. 5 Panel C. Measured ALR across speeds is presented in Fig. 5 Panel D.

BD‑LSTM temporal and kinetic variables.  The RMSE of the estimation across speeds of Initial Con-
tact from the BD-LSTM (ICLSTM) are shown in Table 3. Estimation RMSE across speeds of Toe Off from the 
BD-LSTM (TOLSTM) are presented in Table  3. Contact time estimation RMSE across speeds; Table  3. Linear 
regression analysis and Bland Altman plots from the BD-LSTM are presented in Fig. 3. Stance phase GRF whole 
waveform RMSE across speeds ranged from 0.30 BW to 0.64 BW across all running velocities and grades Table 4. 
Stance average GRF RMSE are stated in Table 5. Peak force RMSE are displayed in Table 5. Impulse RMSE are 
presented in Table 5. Average loading rate RMSE are presented in Table 5. Figures 6, 7, 8 and 9 present linear 
regression analysis and Bland Altman plots for the estimated GRF variables.

Table 2.   IMU heuristic temporal variable RMSE.

Running 
Speed (m 
s−1)

Initial contact Toe off Contact time

Level ground Decline Incline Level ground Decline Incline Level ground Decline Incline

2.25 0.018 ± 0.002 – 0.010 ± 0.000 0.034 ± 0.017 – 0.054 ± 0.000 0.032 ± 0.016 – 0.059 ± 0.000

2.50 0.017 ± 0.003 0.015 ± 0.006 0.016 ± 0.007 0.034 ± 0.017 0.046 ± 0.012 0.026 ± 0.009 0.032 ± 0.016 0.044 ± 0.015 0.020 ± 0.012

2.75 0.017 ± 0.003 0.019 ± 0.006 0.015 ± 0.006 0.028 ± 0.008 0.033 ± 0.013 0.022 ± 0.008 0.030 ± 0.011 0.032 ± 0.014 0.023 ± 0.009

3.00 0.019 ± 0.005 0.018 ± 0.006 0.017 ± 0.006 0.028 ± 0.009 0.034 ± 0.011 0.027 ± 0.009 0.027 ± 0.009 0.032 ± 0.007 0.027 ± 0.011

3.25 0.019 ± 0.005 0.018 ± 0.005 0.017 ± 0.005 0.027 ± 0.009 0.025 ± 0.009 0.024 ± 0.007 0.026 ± 0.009 0.024 ± 0.010 0.027 ± 0.010

3.50 0.018 ± 0.004 0.019 ± 0.007 0.017 ± 0.006 0.024 ± 0.006 0.028 ± 0.008 0.026 ± 0.008 0.025 ± 0.009 0.026 ± 0.010 0.026 ± 0.011

3.75 0.018 ± 0.004 0.019 ± 0.005 0.020 ± 0.005 0.025 ± 0.009 0.027 ± 0.012 0.025 ± 0.009 0.025 ± 0.011 0.027 ± 0.010 0.022 ± 0.010

4.00 0.020 ± 0.005 0.022 ± 0.011 0.020 ± 0.006 0.028 ± 0.011 0.025 ± 0.009 0.024 ± 0.011 0.028 ± 0.012 0.029 ± 0.011 0.021 ± 0.010

4.25 0.020 ± 0.007 0.017 ± 0.011 0.019 ± 0.007 0.028 ± 0.014 0.025 ± 0.011 0.020 ± 0.009 0.029 ± 0.012 0.025 ± 0.014 0.026 ± 0.011

4.50 0.019 ± 0.008 0.011 ± 0.007 – 0.026 ± 0.013 0.035 ± 0.008 – 0.033 ± 0.014 0.029 ± 0.012 –

4.75 0.018 ± 0.000 – – 0.042 ± 0.000 – – 0.036 ± 0.000 – –

5.00 0.021 ± 0.000 0.017 ± 0.000 – 0.026 ± 0.025 0.010 ± 0.000 – 0.033 ± 0.022 0.024 ± 0.000 –

5.25 0.051 ± 0.000 – – 0.045 ± 0.000 – – 0.066 ± 0.000 – –

Table 3.   BD-LSTM temporal variable RMSE.

Running 
Speed (m 
s−1)

Initial contact Toe off Contact time

Level 
Ground Decline Incline

Level 
Ground Decline Incline

Level 
Ground Decline Incline

2.25 0.020 ± 0.014 – 0.023 ± 0.006 0.030 ± 0.019 – 0.025 ± 0.012 0.038 ± 0.022 – 0.025 ± 0.003

2.50 0.021 ± 0.006 0.039 ± 0.000 0.025 ± 0.008 0.030 ± 0.012 0.060 ± 0.000 0.030 ± 0.015 0.033 ± 0.017 0.047 ± 0.000 0.027 ± 0.006

2.75 0.020 ± 0.006 0.021 ± 0.014 0.019 ± 0.005 0.024 ± 0.010 0.023 ± 0.005 0.024 ± 0.009 0.028 ± 0.013 0.022 ± 0.005 0.027 ± 0.012

3.00 0.020 ± 0.006 0.019 ± 0.008 0.019 ± 0.005 0.022 ± 0.009 0.021 ± 0.006 0.022 ± 0.008 0.027 ± 0.014 0.024 ± 0.012 0.026 ± 0.011

3.25 0.020 ± 0.007 0.018 ± 0.008 0.019 ± 0.006 0.022 ± 0.009 0.025 ± 0.006 0.020 ± 0.007 0.027 ± 0.015 0.027 ± 0.012 0.024 ± 0.009

3.50 0.021 ± 0.007 0.021 ± 0.008 0.018 ± 0.006 0.023 ± 0.009 0.024 ± 0.009 0.021 ± 0.009 0.029 ± 0.016 0.027 ± 0.012 0.027 ± 0.011

3.75 0.021 ± 0.010 0.023 ± 0.011 0.016 ± 0.009 0.024 ± 0.009 0.029 ± 0.014 0.016 ± 0.005 0.030 ± 0.015 0.035 ± 0.017 0.021 ± 0.007

4.00 0.021 ± 0.009 0.024 ± 0.011 0.018 ± 0.010 0.026 ± 0.011 0.032 ± 0.011 0.019 ± 0.008 0.034 ± 0.016 0.039 ± 0.017 0.026 ± 0.009

4.25 0.021 ± 0.009 0.024 ± 0.010 0.023 ± 0.011 0.027 ± 0.013 0.030 ± 0.010 0.014 ± 0.002 0.034 ± 0.018 0.039 ± 0.017 0.021 ± 0.004

4.50 0.019 ± 0.005 0.022 ± 0.010 – 0.029 ± 0.007 0.043 ± 0.024 – 0.039 ± 0.011 0.051 ± 0.019 –

4.75 0.022 ± 0.000 – – 0.026 ± 0.000 – – 0.039 ± 0.000 – –

5.00 0.025 ± 0.007 – – 0.025 ± 0.009 – – 0.040 ± 0.010 – –

5.25 0.029 ± 0.000 – – 0.036 ± 0.000 – – 0.040 ± 0.000 – –
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Discussion
The purpose of this study was to test two specific methods for the biomechanical analysis of running in an 
unconstrained environment: (1) a heuristic algorithm for the estimation of foot contacts from IMU data; (2) 
a machine learning algorithm, BD-LSTM, for estimation of normal GRFs between the foot and shoe, specifi-
cally foot contact events and discrete GRF variables. The specific findings of the study are summarized here: (1) 
contact time with foot-mounted IMUs was estimated with an average RMSE of 0.030 s, (2) BD-LSTM output 
waveforms estimated contact times with RMSE of 0.031 s, (3) BD-LSTM output waveform step-by-step average 

Figure 1.   Gait event differences estimated from foot mounted IMUs (Panels A and B). Panels (C) and (D) show 
the estimated and measured contact times.
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Figure 2.   Estimated contact time from foot mounted IMUs. Linear regression and Bland–Altman plots are 
presented for all foot contacts (A and E), followed by level ground (B and F), decline (C and G) and incline foot 
contacts (D and H). Pearson Correlation Coefficients, and the slope of the regression line are presented in panels 
(A)–(D). The Bland–Altman plots present differences between the estimated and measured contact time. The 
average difference and the 95% LoA are shown in panels (E)–(H).

Table 4.   BD-LSTM stance phase ground reaction force waveform RMSE.

Running velocity (m s−1) Level ground (BW) Incline (BW) Decline (BW)

2.25 0.315 ± 0.102 – 0.253 ± 0.081

2.50 0.313 ± 0.066 0.300 ± 0.000 0.265 ± 0.058

2.75 0.304 ± 0.057 0.332 ± 0.004 0.268 ± 0.067

3.00 0.294 ± 0.065 0.292 ± 0.082 0.272 ± 0.073

3.25 0.289 ± 0.059 0.321 ± 0.035 0.277 ± 0.065

3.50 0.299 ± 0.070 0.354 ± 0.070 0.274 ± 0.066

3.75 0.310 ± 0.072 0.389 ± 0.120 0.229 ± 0.036

4.00 0.339 ± 0.085 0.391 ± 0.165 0.309 ± 0.082

4.25 0.358 ± 0.115 0.394 ± 0.172 0.269 ± 0.007

4.50 0.397 ± 0.180 0.576 ± 0.371 –

4.75 0.376 ± 0.000 – –

5.00 0.427 ± 0.010 – –

5.25 0.635 ± 0.000 – –
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for all combinations of velocities and grades had an RMSE of 0.33 BW per step. Throughout the discussion, it 
was assumed the greater ranges of RMSEs, lower Pearson Correlation Coefficients and wider 95% LoA are due 
to three potential sources of error, (1) the unconstrained running environment of this study in comparison to 
running in a controlled laboratory environment. (2) the lack of feature engineering as the process presented is 
completely data driven. (3) The data presented are across a 13-fold LOOCV, data such as this have not yet been 
presented, as normally representative participants have presented in past work.

Validation of ground reaction force variables.  We observed a decrease in estimated contact time with 
increased running velocity, for level ground, incline and decline foot contacts (Fig. 1 Panel C). Minimal dif-
ferences were noted in measured contact times between level ground, incline, and decline (Fig.  1 Panel D). 
Comparison of stride frequencies for running velocities from 2.5 to 4.5 m s−1 between the current study and a 
treadmill study showed minimal differences ranged from [−  2.60 − 4.64] strides min−131. There were negligible 
differences between level ground running, decline and incline stride frequencies (Fig. 4). This finding is not 
surprising, as velocity has been shown to have a larger effect on stride frequency32,33. However, we have shown 
that stance average GRFs, peak GRFs and ALR increased with running velocity (Fig. 5), following the same 
trends previously reported31,34. The current study measured impulses ranging from 0.33 to  0.40 BW*s (Table 5), 
compared to another study that reported impulse across different velocities and grades on a treadmill rang-
ing from 0.30 to 0.34 BW*s22. The range of ALR in our study (31.92–58.31 BW s−1) is similar to previous work 
(30.10–64.70 BW s−1)22 across a variety of velocities and grades. Differences in ALR during decline running 
showed an increase of 9.3 BW s−1, and decrease of 2.05 BW s−1 during incline running (Fig. 5), which is similar 
to values reported previously33.

Estimation of gait events and foot contacts with IMUs and BD‑LSTM.  Our approach to estimat-
ing gait events used both acceleration and angular velocity data, which differs from previous work, as most stud-
ies have made use of only one type of data, either accelerations or angular velocities5,8,35–40. Differences between 
ICIMU and measured IC in the current study occurred in the expected range (− 0.020–0.020 s), due to the iterative 
corrections algorithm used. A previous study in a controlled laboratory environment reported identification of 
ICIMU across a small range of velocities (8–11 km h−1), with a range of RMSE 0.004–0.008 s35. This is a smaller 

Table 5.   Measured kinetic variables from force insoles (Mean ± SD).

Running speed (m s−1)

Stance average ground reaction force (BW) Peak ground reaction force (BW)

Level ground Decline Incline Level ground Decline Incline

2.25 1.350 ± 0.075 – 1.230 ± 0.021 2.318 ± 0.146 - 2.157 ± 0.052

2.50 1.314 ± 0.079 1.294 ± 0.000 1.230 ± 0.021 2.253 ± 0.152 2.168 ± 0.000 2.157 ± 0.052

2.75 1.327 ± 0.076 1.350 ± 0.084 1.277 ± 0.097 2.282 ± 0.165 2.249 ± 0.185 2.223 ± 0.203

3.00 1.294 ± 0.081 1.316 ± 0.085 1.257 ± 0.086 2.254 ± 0.151 2.248 ± 0.187 2.195 ± 0.163

3.25 1.291 ± 0.089 1.320 ± 0.066 1.253 ± 0.085 2.254 ± 0.154 2.279 ± 0.135 2.187 ± 0.151

3.50 1.314 ± 0.091 1.352 ± 0.118 1.264 ± 0.084 2.298 ± 0.162 2.338 ± 0.216 2.212 ± 0.146

3.75 1.317 ± 0.100 1.355 ± 0.133 1.280 ± 0.084 2.308 ± 0.186 2.367 ± 0.255 2.242 ± 0.156

4.00 1.337 ± 0.109 1.375 ± 0.141 1.278 ± 0.075 2.341 ± 0.206 2.401 ± 0.268 2.236 ± 0.130

4.25 1.338 ± 0.118 1.386 ± 0.178 1.305 ± 0.063 2.346 ± 0.230 2.431 ± 0.344 2.294 ± 0.128

4.50 1.335 ± 0.114 1.351 ± 0.245 – 2.353 ± 0.234 2.394 ± 0.435 –

4.75 1.457 ± 0.000 – – 2.514 ± 0.000 – –

5.00 1.515 ± 0.150 1.590 ± 0.000 – 2.669 ± 0.260 2.846 ± 0.000 –

5.25 1.449 ± 0.000 – – 2.505 ± 0.000 – –

Impulse (BW*s) Average loading rate (BW s−1)

Level Ground Decline Incline Level Ground Decline Incline

2.25 0.356 ± 0.023 – 0.365 ± 0.024 40.380 ± 8.429 – 26.897 ± 4.971

2.50 0.373 ± 0.031 0.354 ± 0.000 0.365 ± 0.024 31.919 ± 1.564 46.045 ± 0.000 26.897 ± 4.971

2.75 0.369 ± 0.026 0.365 ± 0.024 0.370 ± 0.024 35.168 ± 5.992 50.658 ± 11.145 29.969 ± 4.459

3.00 0.357 ± 0.029 0.366 ± 0.026 0.361 ± 0.029 34.657 ± 5.588 38.220 ± 6.578 30.215 ± 3.581

3.25 0.352 ± 0.027 0.353 ± 0.024 0.354 ± 0.028 36.008 ± 6.455 45.744 ± 12.826 30.755 ± 4.304

3.50 0.350 ± 0.028 0.357 ± 0.028 0.353 ± 0.027 39.088 ± 5.242 47.238 ± 13.109 32.381 ± 4.213

3.75 0.346 ± 0.029 0.348 ± 0.029 0.348 ± 0.027 39.984 ± 5.073 51.401 ± 10.231 36.196 ± 4.405

4.00 0.348 ± 0.030 0.347 ± 0.029 0.342 ± 0.026 43.588 ± 5.613 55.461 ± 9.529 38.833 ± 4.716

4.25 0.346 ± 0.032 0.347 ± 0.036 0.342 ± 0.026 46.055 ± 8.777 55.107 ± 11.352 43.496 ± 8.523

4.50 0.342 ± 0.032 0.340 ± 0.041 – 47.118 ± 6.174 47.399 ± 17.226 –

4.75 0.398 ± 0.000 – – 40.092 ± 0.000 – –

5.00 0.374 ± 0.042 0.403 ± 0.000 – 57.365 ± 14.135 57.359 ± 0.000 –

5.25 0.333 ± 0.000 – – 58.307 ± 0.000 – –
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average RMSE than the current study, with the current ICIMU RMSE range 0.011–0.051 s. The same previous 
study reported a larger RMSE range for identification of TOIMU: 0.008–0.011  s, while our study presented a 
TOIMU RMSE range from 0.020 to 0.053 s35. Machine learning estimation of gait events allows for flexibility in the 
identification of ICLSTM and TOLSTM instead of relying on specific heuristics, as presented above. We have shown 
minimal differences between the IMU heuristic estimated contact time and the BD-LSTM estimated contact 
time; RMSE ranges for ICIMU of 0.011–0.051 s, compared to a range of 0.016–0.039 s for ICLSTM. There was a 
larger RMSE in the lower bound of ICLSTM, but a narrower range of RMSEs across the range of running velocities. 
Estimation of TOIMU had an RMSE range of 0.020–0.053 s, while TOLSTM RMSE was 0.014–0.059 s (Tables 2 and 
3). The estimation of TO with inertial sensors has shown more variability than estimation of IC in many different 
studies, including the current study5,9,35,36.

Contact time estimated from both the foot mounted IMUs and the BD-LSTM decreased with increased run-
ning velocity (Figs. 2 and 3). Contact time estimation calculated from the heuristic algorithm in this study had an 
RMSE from 0.020 to  0.066 s. Contact time estimated from the BD-LSTM had an RMSE that ranged from 0.021 
to 0.040 s, an improvement over the heuristic estimated contact time. Foot contact durations for IMU estimates 
had an r2 = 0.460, and the BD-LSTM estimated foot contact durations had an r2 = 0.524 (Figs. 2 Panel E, and Fig. 3 
Panel E). Despite better agreement in the output from the BD-LSTM, there was more bias in the estimation of 
contact time from the BD-LSTM compared to the heuristic calculated contact time, (Level Ground: 0.010 s vs. 
0.005 s), and this trend continued with the different grade conditions (Figs. 2 and 3 Panels E–F). Another study 
reported an r2 = 0.665 for estimated contact times from a Quantile Regression Forest, while the current study 
presented an r2 = 0.524 across all foot contacts 14. For external comparison, our model showed a reduced bias in 
the estimation of contact time compared to Benson et al.5. They reported an offset of − 0.016 s with 95% LoA 
[− 0.058 0.027 s], while the current model resulted in an offset of 0.005 s with 95% LoA [− 0.035 0.044 s] across 
all heuristic calculated foot contacts, and an offset of 0.010 s with 95% LoA [− 0.025 0.044 s] across all BD-LSTM 
estimated foot contacts. Our approach resulted in narrower limits of agreement for both the heuristic and BD-
LSTM estimated contact times. The previous study used raw data for analysis, compared to the use of averages 
of each combination of velocity and grade presented in this work.

Table 6.   Kinetic variable RMSE from BD-LSTM estimated waveforms.

Running speed (m s−1)

Stance average ground reaction Force (BW) Peak ground reaction force (BW)

Level Ground Decline Incline Level Ground Decline Incline

2.25 0.160 ± 0.068 – 0.089 ± 0.013 0.222 ± 0.087 – 0.117 ± 0.042

2.50 0.149 ± 0.063 0.191 ± 0.000 0.106 ± 0.021 0.233 ± 0.097 0.430 ± 0.000 0.115 ± 0.021

2.75 0.153 ± 0.047 0.132 ± 0.003 0.122 ± 0.048 0.201 ± 0.091 0.218 ± 0.042 0.182 ± 0.106

3.00 0.134 ± 0.055 0.123 ± 0.061 0.121 ± 0.049 0.187 ± 0.097 0.197 ± 0.128 0.169 ± 0.102

3.25 0.141 ± 0.058 0.138 ± 0.068 0.118 ± 0.044 0.194 ± 0.097 0.205 ± 0.109 0.154 ± 0.089

3.50 0.153 ± 0.070 0.185 ± 0.061 0.124 ± 0.056 0.208 ± 0.114 0.268 ± 0.126 0.163 ± 0.119

3.75 0.162 ± 0.079 0.227 ± 0.126 0.106 ± 0.023 0.220 ± 0.129 0.351 ± 0.194 0.138 ± 0.038

4.00 0.186 ± 0.088 0.212 ± 0.151 0.158 ± 0.059 0.255 ± 0.132 0.316 ± 0.241 0.213 ± 0.110

4.25 0.204 ± 0.100 0.233 ± 0.159 0.139 ± 0.017 0.259 ± 0.155 0.345 ± 0.251 0.136 ± 0.031

4.50 0.245 ± 0.171 0.337 ± 0.315 – 0.311 ± 0.261 0.508 ± 0.416 –

4.75 0.247 ± 0.000 – – 0.392 ± 0.000 – –

5.00 0.298 ± 0.076 – – 0.380 ± 0.252 – –

5.25 0.313 ± 0.000 – – 0.223 ± 0.000 – –

Impulse (BW*s) Average loading rate (BW s−1)

Level Ground Decline Incline Level Ground Decline Incline

2.25 0.024 ± 0.004 – 0.022 ± 0.010 19.208 ± 4.419 – 13.043 ± 2.744

2.50 0.038 ± 0.015 0.086 ± 0.000 0.024 ± 0.011 14.963 ± 4.868 28.065 ± 0.000 12.242 ± 4.931

2.75 0.035 ± 0.008 0.036 ± 0.006 0.030 ± 0.012 15.399 ± 4.307 24.423 ± 5.967 12.915 ± 3.642

3.00 0.031 ± 0.011 0.035 ± 0.011 0.030 ± 0.014 16.549 ± 4.926 18.346 ± 6.540 13.225 ± 3.691

3.25 0.031 ± 0.011 0.036 ± 0.013 0.029 ± 0.015 18.065 ± 4.870 22.735 ± 4.258 15.267 ± 4.550

3.50 0.031 ± 0.009 0.040 ± 0.011 0.031 ± 0.011 18.830 ± 4.966 27.728 ± 5.564 15.812 ± 4.568

3.75 0.034 ± 0.010 0.043 ± 0.011 0.032 ± 0.008 20.028 ± 4.578 30.510 ± 2.926 13.566 ± 2.308

4.00 0.039 ± 0.012 0.037 ± 0.013 0.039 ± 0.014 22.185 ± 5.708 32.335 ± 13.041 19.349 ± 9.038

4.25 0.039 ± 0.014 0.043 ± 0.025 0.035 ± 0.009 25.270 ± 5.889 32.324 ± 13.928 21.642 ± 3.445

4.50 0.047 ± 0.018 0.047 ± 0.018 – 30.374 ± 19.786 45.121 ± 18.762 –

4.75 0.058 ± 0.000 – – 31.505 ± 0.000 – –

5.00 0.066 ± 0.009 – – 33.656 ± 9.727 – –

5.25 0.058 ± 0.000 – – 34.680 ± 0.000 – –
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BD‑LSTM ground reaction force analysis.  Accuracy in the estimation of GRF waveforms during stance 
phase using the BD-LSTM varied across running velocities (Table  4). Level ground running had the largest 
RMSE range (0.29–0.64 BW), compared to decline running (0.29–0.58 BW) and incline running (0.23–0.31 
BW). It should be noted however that level ground running also had the largest range of velocities (Table 3). We 
observed that the BD-LSTM underestimated GRF across the full range of velocities and grades. Stance phase 
RMSE ranged from 0.23 BW to 0.64 BW for all velocities and grades, compared to a previously estimated stance 

Figure 3.   Estimated contact time from the BD-LSTM. Linear regression and Bland–Altman plots are presented 
for all foot contacts (A and E), followed by level ground (B and F), decline (C and G) and incline foot contacts 
(D and H). Pearson Correlation Coefficients, and the slope of the regression line are presented in panels (A–D). 
The Bland–Altman plots present differences between the estimated and measured contact time. The average 
difference and the 95% LoA are shown in panels (E–H).
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phase RMSE ranging from 0.12 to 0.20 BW derived from kinetic waveforms estimated from a machine learning 
algorithm for treadmill running at different velocities and inclinations22.

Stance average forces mirrored the estimation of the whole waveform. Correlation of stance average GRFs 
reported in previous work from our group was r2 = 0.408 across running velocities41. However, the current 
analysis yielded a much lower agreement; r2 = 0.105. The current study had 95% LoA [− 0.33 0.11] BW and a 
mean difference of − 0.11 BW for all foot contacts (Fig. 6). This is slightly more bias than reported in previous 
work from our group (mean difference = − 0.09 BW)41. For external comparison, an LSTM was developed for 
the estimation of stance average GRFs reported an RMSE between 0.34 and 0.63 BW15, while the current study 
reported a stance average GRF RMSE between 0.09 and 0.31 BW.

Estimated peak force had similar patterns to the estimated stance average GRF (Fig. 7). The correlation of 
peak force reported in previous work from our laboratory was r2 = 0.614 for level ground steady state running 
velocities, while the current work resulted in an r2 = 0.332 across all foot contacts, with worse performance in 
the estimation of peak force during incline running foot contacts (r2 = 0.264)41. Previous work reported a mod-
erate correlation between the estimated and measured peak GRFs, from data collected on a force instrumented 
treadmill (r2 = 0.665)14. For further external comparison, a BD-LSTM that utilized only foot contact information 
from a single sensor on the sacrum resulted in an r2 = 0.62, with 95% LoA [− 0.17 0.18] BW and a bias of 0.01 BW. 
In another study, the 95% LoA ranged from [− 0.50 0.22] BW with a bias of − 0.14 BW15. The major difference 
between the previous work and ours was that they estimated single stance phase vertical GRFs on a treadmill, 
while we estimated entire waveforms in a free running environment, which is inherently more variable than in 
the controlled laboratory setting.

Impulse had the best performance of the calculated discrete kinetic variables from the estimated GRF wave-
form, as it was the least effected by underestimation of the force waveform magnitude. Linear regression showed 
that estimated and measured impulse were moderately correlated, r2 = 0.571 for all foot contacts (Fig. 8 Panel 
A). Impulse was underestimated by 0.04 BW*s for all foot contacts, which equates to approximately 6–8% error 
in the estimation of impulse across the range of locomotion velocities and grades. More precise estimation of 
contact time from the BD-LSTM increased the impulse calculation accuracy. In comparison to previous work 
from our laboratory, estimated impulse was weakly correlated with the measured impulse, r2 = 0.385, with a bias 
of 0.01 BW*s and 95% LoA [− 0.05 0.07] BW*s, while for the current study we observed an r2 = 0.571, a bias 
of − 0.02 BW*s and 95% LoA [− 0.06 0.02] BW*s41. A different group reported estimated impulse with a mean 
absolute error of approximately 0.03 BW*s across velocities and grades running on a treadmill22, compared to 
the current study with RMSE across running velocities and grades ranging from 0.02 to 0.09 BW*s. The RMSEs 
for impulse in the present study tended to be larger for decline running compared to level ground and incline 
running, due to the more pronounced impact peak observed in that condition.

Estimated ALR was weakly correlated with measured ALR, with r2 = 0.160 for level ground running, r2 = 0.210 
for decline running, and r2 = 0.492 for incline running. In a previous study by our group, correlation between 
the estimated and measured ALR during level ground running on a track surface yielded an r2 = 0.61441. For 
comparison, in another study using data collected in a laboratory environment across a range of velocities, load-
ing rate was moderately correlated to measured loading rate, with an r2 = 0.57, a bias of − 2.9 BW s−1 95% and 
LoA [− 16 10] BW s−115, while the current study presents a 95% LoA [34.00 7.92] BW s−1 with a bias of − 13.04 
BW s−1. Other work has presented a direct estimation of Vertical Average Loading Rate (VALR), in which the 
performance of their model at two running velocities and in the laboratory environment had a correlation coef-
ficient of 0.93. The output of this model was specifically VALR, and utilized IMUs and data from force plates in 
a highly controlled environment42. Estimated ALR has been reported to have larger percent errors than other 
estimated kinetic variables22. In the present study, the errors in our estimation may be due to the inherent differ-
ences in loading rate between decline, incline, and level running and the unconstrained environment. The ALR 
is typically much larger for decline running than it is for incline or level ground running33.

There are various limitations in the collection of running data outside of the laboratory, some of which have 
been highlighted above. There were two corrections made to the force data in this study. The first of these was an 
iterative corrections algorithm to resolve differences between the internal clocks of the IMU and the force sensing 
insoles. Second, throughout the study, approximately 500 footfalls were observed to have a drifting baseline. The 

Figure 4.   Stride Frequency measured from the force sensing insoles, across the range of velocities and grades.
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drifting baseline may have been a result of the force sensing insole moving between the foot and the shoe during 
the highly dynamic running activities being tested. For example, the ALR may have reduced accuracy due to the 
low sampling rate of 100 Hz, compared to in lab studies where the force plate data are sampled at > 1000 Hz22,42. 
Improvements in wearable sensors, such as increased signal sampling rates and fidelities would likely improve 
the outcomes of future work in this domain. There was also a small error in the synchronization of GPS data to 
IMU and GRF. This protocol greatly improved our data analysis capacity, but unfortunately there remained a 
slight offset in the GPS data for each footfall. This can be rectified by the use of on-board GPS with the IMUs or 
force sensing insoles, which will lead the to the GPS being hard synced. The integration of these sensor networks 
would provide improved synchronization and lead to fewer assumptions in the methodology.

Figure 5.   Kinetic variables across the range of running velocities and grades.
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The BD-LSTM algorithm shows promise for machine learning paradigms to estimate running GRF wave-
forms. However, the current algorithm appears to have limited transferability to a novel participant, as evidenced 
by the inferior performance in the estimation of kinetic variables, especially at faster running velocities. There 
may have been significant over training of the model for level ground running speeds, therefore in the future it 

Figure 6.   Stance average GRF. Linear regression and Bland–Altman plots are presented for all foot contacts 
(A and E), followed by level ground (B and F), decline (C and G) and incline foot contacts (D and H). Pearson 
Correlation Coefficients and the slope of the regression line are presented in panels (A–D). The Bland–Altman 
plots present differences between the estimated and measured stance average GRF. The average difference and 
the 95% LoA are shown in panels (E–H).
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may be necessary to have different models for different slopes, velocities, and terrain. Performance would likely 
improve with the addition of more data at faster running velocities, and the inclusion of more participants to 
introduce more variability into the dataset. Additions to the neural network architecture and training data are 

Figure 7.   Peak Force. Linear regression and Bland–Altman plots are presented for all foot contacts (A and E), 
followed by level ground (B and F), decline (C and G) and incline foot contacts (D and H). Pearson Correlation 
Coefficients and the slope of the regression line are presented in panels (A–D). The Bland–Altman plots present 
differences between the estimated and measured stance average GRF. The average difference and the 95% LoA 
are shown in panels (E–H).
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necessary to improve model output before these algorithms are ready for application in the clinical or research 
setting. These may include the inclusion of features extracted from the waveform, or other data such as stride 
frequency, velocity and slope. In future work, it may be necessary for the use of feature engineering in addition 

Figure 8.   Impulse. Linear regression and Bland–Altman plots are presented for all foot contacts (A and E), 
followed by level ground (B and F), decline (C and G) and incline foot contacts (D and H). Pearson Correlation 
Coefficients and the slope of the regression line are presented in panels (A–D). The Bland–Altman plots present 
differences between the estimated and measured stance average GRF. The average difference and the 95% LoA 
are shown in panels (E–H).
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to the use of temporal windowing for estimation of GRFs while running, as the model currently over fit to the 
mean of the level ground running ground reactions forces.

Figure 9.   Average loading rate. Linear regression and Bland–Altman plots are presented for all foot contacts 
(A and E), followed by level ground (B and F), decline (C and G) and incline foot contacts (D and H). Pearson 
Correlation Coefficients and the slope of the regression line are presented in panels (A–D). The Bland–Altman 
plots present differences between the estimated and measured stance average GRF. The average difference and 
the 95% LoA are shown in panels (E–H).
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In conclusion, this is the first study to our knowledge to report kinetic measures during free run outside of the 
laboratory, despite having inherent limitations in its transferability to biomechanical analysis of running in the 
real world. The purpose of this paper was to implement a fully data driven technique to estimate ground reaction 
forces from data collected from persons running in a real-world environment. While the results an applicability 
of this study are limited, it does highlight the potential of these algorithms as the LOOCV results are presented, 
when data from a given participant is included the error in the model is expected to be significantly reduced. 
Further, this is the first study to estimate IMU contact times and validate them against a kinetic standard with 
data collected in a real-world running environment across a wide range of running velocities and slopes. We 
have also shown that the BD-LSTM architecture can be used to estimate kinetic waveforms via machine learning 
from running data collected in the real world, without feature engineering. We have shown estimation of gait 
events and contact time using IMU data matches the estimation of the same variables from a machine learning 
algorithm. Future studies focusing on building models for training load, single participant machine learning 
models, and direct inclusion of GPS data as input may reduce the underestimation of the stance phase GRFs at 
faster running velocities.

Methods
This study was approved by the University of Oregon Institutional Review Board (protocol #: 10062020.007). All 
participants provided written informed consent prior to enrolling in the study. All research procedures adhered 
to the principles defined in the Declaration of Helsinki. Data were collected from 16 participants (Table 1), (8 
male, 8 female, age: 23.2 years, height: 167.8 cm, mass: 65.0 kg) as part of a larger ongoing study. Three partici-
pants were excluded from the analysis, due to GPS malfunctions. All analyses were performed in custom Matlab 
programs (MathWorks, Natick, MA, USA)48. Multi-axial IMUs (Casio Computer Co., LTD, Tokyo, Japan) were 
mounted bilaterally on the dorsal aspect of each participant’s foot and approximately on the sacrum (clipped on 
the back of each participant’s waistband). Each of the IMUs were oriented such that the x-axis of the IMU was 
in alignment with the sagittal plane. The use of multiple inertial sensors has been suggested to improve estima-
tion of spatial temporal and kinetic variables, compared to a single inertial sensor10,43,44. These multi-axial IMUs 
recorded 3D linear accelerations and angular velocities at 200 Hz. Acceleration data were post-processed with a 
Kalman filter to orient the local (IMU) coordinate system vertical to gravity. Foot-shoe normal force data were 
recorded with Loadsol insole force sensors (Novel Electronics, St. Paul, MN, USA) at 100 Hz. Participants were 
asked to run a five-mile course around the University of Oregon and surrounding parks. Participants also wore 
a GPS watch (Forerunner 130 or 135; Garmin, Kansas City, KS, USA) to record elevation and running velocity. 
These data were exported to Garmin Connect (https://​www.​garmi​nconn​ect.​com/) and then second by second 
running velocity and percent grade were extracted with Golden Cheetah v3.5 (https://​www.​golde​nchee​tah.​org/).

Data processing
Force-sensing insole and IMU data were synced with ‘foot stomps’ before and after each run. The IMU data 
were downsampled to 100 Hz to match the force sensing insoles and filtered with a 4th order low pass zero-lag 
Butterworth filter (fc = 35 Hz). Internal clock drift between the IMUs and force sensing insoles was resolved with 
an iterative corrections algorithm. The kinetic data were normalized to each participant’s bodyweight (BW) and 
were filtered with a 4th order low-pass zero-lag Butterworth filter (fc = 20 Hz). Post-hoc corrections to force 
insole data due to a drifting baseline were made as needed. Making these corrections entailed identifying swing 
phases during a period in which the forces had a drifting baseline and setting the swing phases to 0 BW. Less 
than 1% of the measured footfalls needed this adjustment. Additionally, force data < 5% BW were set to 0 BW.

Synchronization of IMU and force data to the GPS was achieved by matching the sudden increase in velocity 
measured by the GPS to the beginning of the run, and the periods in which the runner had minimal velocity 
(e.g., while waiting at street crossings). Elevation and velocity measured by the GPS (sf = 1 Hz) were filtered with 
a zero-lag 10-sample moving average filter. Velocities from GPS data were set to the nearest 0.25 m s−1 ranging 
from 2.25 to 5.25 m s−1, and the upper limit for running velocity was set by the number of footfalls available for 
analysis. Running velocities < 2.25 m s−1 are typically walking velocities and the walk to run transition typically 
occurs at around 2.00–2.10 m s−145. Grade was calculated from the elevation data and binned into three different 
groupings. Incline foot strikes were identified at measured grades of > 5, and decline foot strikes were identified 
as measured grades of < − 5°, with level ground foot strikes between 5° and − 5°. The range of grades that were 
considered level ground running [− 5°, 5°] was set due to observed noise of ± 4° throughout the run during por-
tions of the course with no physically discernible grade. Data from the GPS were then time-synced to the IMU 
and kinetic data. For data to be included in the analysis, a minimum of 10 footfalls for a combination of velocity 
and grade were required from a given participant. From the force sensing insoles, we calculated stride frequency, 
stance average GRF, peak GRF, impulse and average loading rate (ALR). Average loading rate was calculated by 

https://www.garminconnect.com/
https://www.goldencheetah.org/
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identifying the impact peak and then calculating the force/time slope in the middle 60% of the region between 
initial contact (IC) and the impact peak46.

Gait event detection algorithms.  Gait event estimation, initial contact (IC) and toe off (TO) from IMU 
data utilized heuristic rules similar to previous work5,8,36. Initial contact from the IMUs on the dorsal aspect of 
the foot (ICIMU) was identified with two rules. First was the identification of minimum angular velocity about the 
x-axis of the IMU with a minimum of 0.500 s between identified minima. Second, a temporal window relative 
to each minimum, ranging from 0.005 s to 0.045 s post was searched for a resultant acceleration > 50 m s−2. If 
this condition was satisfied then the peak resultant acceleration was set to be ICIMU

5,35,36. Identification of Toe off 
from the IMU (TOIMU) was performed by searching a specific temporal window beginning 0.010 s after ICIMU 
and ending at the half-width of the estimated stride time. In this window TOIMU was either identified as the local 
maxima of vertical acceleration or the first instance that vertical acceleration was > 3 g5,47. Identification of gait 
events with foot-shoe normal force data utilized a 5% BW cutoff; the first instance of force > 5% BW was identi-
fied as IC, and TO was identified as the last instance of force < 5% BW. We then removed foot contacts that could 
not be matched to the IMU and force sensing insole measures. If ICIMU was not within half contact time of the 
IC from the force sensing insole it was removed from the analysis.

Machine learning architecture and analysis.  The hyperparameters of the BD-LSTM were optimized 
with a Bayesian Hyperparameter Optimization algorithm from Matlab48. The only hyperparameter found to 
have a significant effect on the model was the number of hidden units in the LSTM layer, which was optimized at 
19 from a range of 10 to 1000 hidden units. All other hyperparameters were set to the Matlab defaults. The tem-
poral windowing was identified with a sweep of window lengths ranging from one second to five seconds at half 
second intervals. One second window lengths were found to have the most accurate results with each of the net-
works from the Bayesian optimization process. Using the ADAM algorithm, the learning rates were initialized at 
the Matlab default of 0.001. The model consisted of a sequence input layer, the LSTM layer (standard activations 
at each of the gates), a fully connected layer (sigmoid activation) and a regression layer. The number of footfalls 
held out from the LOOCV are shown in the steps measured column of Table 1. The workflow for the hyperpa-
rameter optimization is shown in (Fig. 10 Panel A). The loss function for the BD-LSTM was mean squared error.

We utilized a BD-LSTM with 19 hidden units and a regression output. A more thorough description of the 
network architecture can be found here25. The activations of the BD-LSTM were the standard LSTM activation 
functions, and the regression layer had a linear activation function. The number of epochs was 100, and the 
batch size was 50. Input into the BD-LSTM were 1-s windows of inertial data: 3-D accelerations, angular veloci-
ties, and their respective resultants, from three anatomical locations (dorsum of both feet, and the waistband at 
approximately the sacrum). Output from the BD-LSTM were 1-s intervals of estimated GRF data, the summation 
of the GRF waveforms from both force sensing insoles. The algorithm was evaluated with a Leave One Out Cross 
Validation (LOOCV) with 12 participants in the training data and 1 participant in the test data, repeated for each 
participant. The estimated force data were then filtered with a 2nd order low-pass zero-lag Butterworth filter 
(fc = 15 Hz). Estimated data tended to be noisier than the input GRF waveforms. This was accounted for with a 
lower cutoff frequency in the filter (Fig. 10 Panel D). Errant estimated GRF data were removed by setting esti-
mated force < 5% BW to 0 BW, and by removal of false “foot-contacts” generated by the model that were < 0.100 s 
or > 0.500 s. Foot contacts shorter than 0.100 s were not consistent with measured foot contacts during running 
and foot contacts longer than 0.500 s tended to occur during periods of quiet standing (e.g. participant was at 
a street crossing). We observed that the swing phase estimation error approached 0 as most of the errant data 
were corrected for using the steps described above. Initial contact from the machine learning output (ICLSTM) 
was identified by the first instance of force > 5% BW and toe off (TOLSTM) was identified by the last instance of 
force greater than > 5% BW. To ensure matching foot contact correctly during analysis, if ICLSTM was not within 
a half contact time of the measured IC, it was removed from the analysis. The total number of footfalls analyzed 
per speed are shown in (Fig. 10 Panel B). From the model output GRF waveforms, stance average GRFs, peak 
GRFs, impulse and ALR were calculated (Fig. 10 Panel C).

Statistical analysis included RMSE, linear models and bias analyses to assess estimated contact time, calcu-
lated as the temporal difference between TO and IC as measured by the force sensing insole, and the kinetic 
variables. Differences between the model estimated variable and measured variable waveform are presented in 
both linear regression and Bland–Altman plots with 95% confidence intervals (CIs) or Limits of Agreement 
(LoA), respectively. Pearson correlation coefficients (r2) were calculated to show agreement between estimated 
and measured data. A strong correlation was defined as r2 ≥ 0.8, a moderate correlation as 0.5 ≤ r2 ≤ 0.8 and a 
weak correlation as 0.3 ≤ r2 ≤ 0.5.
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