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Probabilistic sea level rise flood 
projections using a localized ocean 
reference surface
Noah Paoa 1*, Charles H. Fletcher 1, Tiffany R. Anderson 1, Makena Coffman 2 & Shellie Habel 1

Projecting sea level rise (SLR) impacts requires defining ocean surface variability as a source of 
uncertainty. We analyze ocean surface height data from a Regional Ocean Modeling System reanalysis 
to produce an ocean reference surface (ORS) as a proxy for the local mean higher high water. This 
method allows incorporation of ocean surface level uncertainty into bathtub modeling and generation 
of probability-based projections of SLR-induced flooding. For demonstration, we model the NOAA 
Intermediate, Intermediate-high and High regional SLR scenarios at three locations on the island of 
Oʻahu, Hawai’i. We compare 80% probability-based flood projections generated using our approach to 
those generated using the Tidal Constituents and Residual Interpolation (TCARI) method. TCARI is the 
predecessor of VDatum, the standard method used by NOAA available only for the continental U.S., 
Puerto Rico, and U.S. Virgin Islands. For validation, ORS pixel values representing the Honolulu tide 
gauge location are compared to tide gauge observations. The more realistic distribution of daily higher 
high water provided by ORS improves projections of SLR-induced flooding for locations where VDatum 
is not available. We highlight the importance of uncertainty and user-defined probability in identifying 
locations of flooding and pathways for additional sources of flooding.

Acceleration of global mean sea level rise is likely to increase with continued global  warming1,2. Global mean 
sea level is projected to rise 0.44–0.76 m to 0.63–1.01 m relative to 1995–2014 by the end of the century under 
the low and very-high greenhouse gas emission pathways (SSP2-4.5 and SSP5-8.5, respectively) presented by the 
Intergovernmental Panel on Climate  Change3. However, a magnitude approaching 2 m by 2100 and 5 m by 2150 
cannot be ruled out, as there remains deep uncertainty regarding ice sheet  processes3–9. Given key uncertainties 
in ice sheet mass  loss10,11 and long-term responses to  warming12, this issue continues to complicate efforts by 
coastal communities to engage in planning for unique and demanding flooding  scenarios13,14.

The local expression of sea level rise (SLR) can differ significantly from global mean sea level  rise15–17. In 
addition to vertical land motion and spatially varying patterns of ocean heat storage, gravitational effects related 
to mass  loss18 produce unique local and regional sea level  deviations19–21. Additionally, present day 100-year 
extreme sea level events are projected to occur in many locations around the globe at least once a year by the 
end of the century, even under only 1.5 °C of  warming22. To address the issue of physical models not accurately 
representing all major processes contributing to SLR, Sweet et al.23 developed both global mean and local relative 
scenarios out to the year 2100 providing scenario-specific guidelines for planning and decision-making applica-
tions. However, their Low and Intermediate-low scenarios are already exceeded by the observed acceleration of 
global mean sea level  rise1. Thus Sweet et al.23 Intermediate, Intermediate-high, and High relative sea level rise 
(RSLR) scenarios are being considered in municipal and infrastructure  planning24.

The most intuitive consequence of SLR is the flooding of coastal areas as they become submerged below 
the surrounding  ocean25. Areas surficially connected to the ocean experience flooding as ocean water travels 
inland across the land surface of low-lying topography or through existing waterways such as drainage sys-
tems. This type of flooding has been previously referred to as direct marine  inundation26 and is commonly 
simulated using “bathtub” modeling, which uses a digital elevation model (DEM) to characterize locations 
situated below a projected sea level. This type of modeling ignores dynamic oceanographic processes and thus 
has also been referred to as “passive”27, “static”28, “hydrostatic”29, “planar”30, and “equilibrium”31. Relative to 
other flood-modeling methodologies like wave run-up models, bathtub modeling has a low computational cost 
making it a simple yet powerful tool for producing flood-visualization products. Bathtub modeling is widely 
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used in adaptation planning as coastal planning reference tools and for coastal-land management decisions 
(e.g., National Oceanic and Atmospheric Administration (NOAA) SLR Viewer; https:// coast. noaa. gov/ slr/ and 
Pacific Islands Ocean Observing System (PacIOOS), State of Hawaiʻi SLR Viewer; https:// www. pacio os. hawaii. 
edu/ shore line/ slr- hawaii/).

These passive projections of SLR-induced flooding require an assessment of elevation uncertainty related to 
the terrain as well as the surrounding tidal surface, which are commonly combined to obtain a cumulative vertical 
 uncertainty32. Operating under the assumption that the errors associated with the DEM have zero bias, studies 
have previously used a Gaussian distribution to represent the vertical uncertainty of the  terrain33. To estimate 
tidal surface uncertainty for coastlines of the continental U.S., Puerto Rico and U.S. Virgin Islands, NOAA 
uses  VDatum34 (a numerical product representing the difference between modeled and observed water levels). 
However, VDatum has not been made available for the remainder of the U.S. affiliated islands. In the rest of the 
insular U.S., NOAA uses the Tidal Constituent and Residual Interpolation (TCARI)  method35, the predecessor 
of VDatum. The TCARI method projects tidal vertical uncertainty due to astronomical tides, residual water 
levels and datum offsets with the use observed water levels and historical data from tidal gauges. TCARI spatially 
interpolates across the available tide gauges in the region using weighted functions that are generated by solving 
Laplace’s Equation. Projecting SLR-induced flooding with TCARI is accomplished by assigning a standard score 
value to each pixel of the DEM and determining flooding using a single-tail percentile rank.

Here, we present a new method of incorporating the tidal surface uncertainty into bathtub-derived SLR 
flood projections to provide an improved tool for areas where VDatum is not available. We use reanalysis data of 
oceanographic conditions produced by PacIOOS with the use of the Regional Ocean Modeling System (ROMS; 
www. myroms. org)36. The PacIOOS reanalysis assimilates observations for the region surrounding the main 
Hawaiian Islands from a range of sources over the 10-year period 2007–2017 including satellite-derived sea 
surface temperature, salinity, and height anomalies, depth profiles of temperature and salinity from Argo floats, 
autonomous Seagliders, shipboard conductivity–temperature–depth and surface velocity measurements from 
high-frequency  radar37. We use the ocean-surface height component of the reanalysis, here named an ocean 
reference surface (ORS), to represent virtual tide stations (individual pixels near the coast) with which we define 
a tidal surface level and represent spatial variability for the waters around Oʻahu. We produce probability density 
functions (PDFs) for the modeled daily high-water levels and the DEM uncertainty to develop probabilistic 
estimates of flood-depth under scenarios of regional SLR. Projecting SLR-induced flooding is accomplished by 
convolving the PDF of daily higher high-water level of the pixel closest to the area being modeled with a Gauss-
ian distribution of DEM uncertainty. We validate this methodology using data collected at the NOAA Honolulu 
tide gauge and compare our results with those produced using the TCARI method at three locations on Oʻahu 
(Fig. 1). Our products are depicted in the form of geographic information systems (GIS) map layers that can be 
posted to public websites for use by various stakeholders towards developing adaptation plans (e.g., PacIOOS 
SLR Viewer; https:// www. pacio os. hawaii. edu/ shore line/ slr- hawaii/). These products consider user-specified flood 
probabilities, flood depths and specification of flood style for improved use in planning.

Study sites
The study was based on Oʻahu, the capital island of the Hawaiian Island chain (Fig. 1). Three sites along Oʻahu’s 
coastal areas were selected with the intent of investigating the performance of the ORS methodology compared 
to that of the TCARI methodology as well as to compare results across the study sites and potential differences 
related to their location relative to the Honolulu tide gauge.

Waikīkī: A low-lying coastal area located on the southeastern side of the island, within Honolulu’s primary 
urban center, bounded by a dredged canal to the north and a heavily engineered, chronically eroding coastline 
to the  south38. It sits atop a low-lying coastal terrace which is bounded by the Koʻolau shield volcano to the 
north, the Leʻahi volcanic tuff crater (commonly known as Diamond Head) to the east and Honolulu’s main 
seaport and harbor to the west. Waikīkī is the focal point of Hawaiʻi’s tourism industry, hosting the majority of 
the ~ 6 million tourists that visit Oʻahu  annually39. Oʻahu’s main tide gauge, the NOAA Honolulu tide gauge, is 
located ~ 2 mi NW of Waikīkī’s northwestern edge.

Hauʻula: A town which mainly consists of residential properties, is located on the northeastern side of the 
island, along a NW–SE oriented coastline and at the base of the Koʻolau shield volcano. The low-lying coastal 
plain where the town is situated is narrower than that of Waikīkī. An intermittent coastal berm bounds the town 
on the seaward side and the Koʻolau shield volcano to the landward side. The coastline is fronted by a gently 
sloping fringing coral reef. Kamehameha highway runs along the coastline landward from the berm and is one 
of only two routes to the north shore of the island from Honolulu’s primary urban center. Hauʻula is located ~ 22 
mi N of the Honolulu tide gauge.

Haleʻiwa: The main town of Oʻahu’s north shore, is located between the Waiʻanae mountains and the Koʻolau 
shield volcano along a NE-SW oriented coastline. This area is comprised of residential properties, farmlands, 
small shopping centers and other tourism-related infrastructure. Poamoho stream runs from the Waiʻanae 
mountains, through the town and into the ocean. Similarly, the Helemano stream runs from the Koʻolau shield 
volcano, through town and meets the Poamoho stream at the mouth. This area also features many smaller water 
flows associated with agricultural activity. Haleʻiwa is located ~ 25 mi NW of the Honolulu tide gauge.

Results
Validation of daily higher high-water distribution. PacIOOS serves the ROMS reanalysis dataset as 
a regional pixel network with 4 km resolution. For validation, we treated the pixel closest to the Honolulu tidal 
gauge as a virtual tide gauge and compared the mean sea level calculated from the ORS to the mean sea level 
of the Honolulu tide gauge for the tidal epoch (zero) and found that the ORS is 0.013 m higher. The standard 

https://coast.noaa.gov/slr/
https://www.pacioos.hawaii.edu/shoreline/slr-hawaii/
https://www.pacioos.hawaii.edu/shoreline/slr-hawaii/
http://www.myroms.org
https://www.pacioos.hawaii.edu/shoreline/slr-hawaii/
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deviations from both data sets are very comparable; 0.195 m and 0.191 m for ORS and the Honolulu tide gauge, 
respectively. The root mean square error between the sea level distributions from the ORS and the Honolulu tide 
gauge is 0.07 m. The mean higher high water (MHHW) value calculated from the ORS is 0.312 ± 0.115 m, while 
the Honolulu tide gauge MHHW value is of 0.327 ± 0.112 m above mean sea level. A visual comparison of the 
distributions of daily higher high water from the Honolulu tide gauge, the ORS and the TCARI grid is provided 
in Fig. 2.

TCARI vs ORS. Averaging the flooded-pixel count considering each NOAA SLR scenario using the ORS 
method reveals that flooding expands from 1.5% of the total mapped area in 2050 to 37.7% by the end of the 
century. The TCARI method yields similar results with flooded areas expanding from 1.73% to 39.6% between 
2050 and 2100. However, there are differences in flood extent and style when comparing the two methods.

In general, the TCARI method projects greater total flooding than the ORS method. Areas of difference, due 
to greater TCARI flooding, tend to surround areas of agreement (as a “fringe” that expands flooding) (Fig. 3). 
Areas of difference are particularly apparent in Waikīkī and Haleʻiwa but not in Hauʻula.

Table 1 compares TCARI and ORS flood projections. Expressed as a percent difference in flood area, we find 
substantial disagreement in both total flood area, as well as the type of flooding (surficially connected vs. topo-
graphically isolated). The largest disagreement in total flood area is found in the Intermediate scenario where the 
two methods differ by 26.83% in 2050 and 15.82% in 2100. It is notable that in 2050 there is a 46.84% difference 
under the Intermediate scenario for flooding at topographically isolated locations. The greatest disagreements 
are found in the Intermediate scenario by 2050 likely due to the small amount of total flooding projected. Thus, 
smaller differences between the two methods out of an already small proportion of area flooded result in large 

Figure 1.  Location of study areas on the island of Oʻahu, Hawaiʻi. Modified from: Fletcher, Mullane and 
 Richmond40. Reproduced with permission from the Coastal Education and Research Foundation, Inc.
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discrepancies. Strong agreement is found however, in projecting the flooding of surficially connected areas 
under the Intermediate-high scenario for 2050 (4.67%) and for 2100 (4.89%). Overall, the strongest agreement 
in flood projections is found under the High scenario in 2100 where the two methods differ by only 2.64% for 
surficially connected areas and 2.16% in total flood area. Since the projected area flooded is greater under the 
High scenario, especially by 2100, we would expect small differences between the two methods to show less 
discrepancies out of the total flooded area.

Probability-based and flood-depth maps. Spatial information regarding flood probability and flood 
depth are highly useful for various planning applications. User-defined probabilistic flood maps have the poten-
tial to streamline adaptation efforts, thus making it important to provide to users as part of interactive websites 
that host such geospatial information. The cumulative density functions (CDFs) produced following the con-
volution of the distributions of daily higher high-water level from the ORS and the Gaussian distributions of 
DEM uncertainty depict the probability of a certain flood depth. Thus, the CDF curves, individually generated 
for each pixel of the DEMs, can be used by: (1) selecting a probability threshold and finding the corresponding 
flood-depth value to generate maps depicting flood depth ranges (Fig. 4a,c,e), and (2) selecting a flood-depth 
value and finding the corresponding probability threshold to generate maps depicting various probability ranges 
for a single flood depth (Fig. 4b,d,f).

Flooding style. When decomposing the total area flooded into topographically isolated and surficially con-
nected flooding, we notice differences in the style of flooding derived with the two methods. Areas that are clas-
sified as topographically isolated flooding by one method can be classified as surficially connected by the other 
method (Fig. 5). Figure 3 depicts the difference between the two methods in terms of total flooding while Fig. 5 
depicts the total flooding split into its two components. The projected style of flooding varies depending on the 
topography of the terrain and the amount of RSLR in a single mapping method. For instance, using the ORS 
method, in the Waikīkī study area, with a RSLR of 0.75 m by 2050 (High scenario), projected flooding is largely 
confined to topographically isolated locations, and is not the result of overland marine flow (Fig. 6a). However, 
by 2100, under the Intermediate scenario (1.19 m), the situation changes and surficially connected, and topo-
graphically isolated areas display similar amounts of flooding (Fig. 6b).

Discussion
Our results show that when comparing ORS model products with flood maps produced using the TCARI method, 
differences in flooding style and extent are found when considering Sweet et al.’s scenarios for 2050 and 2100. 
The flood maps reveal several features to consider when applying these products.

Disagreement. Analyzing the TCARI and ORS model products highlights a different pattern in the form 
of a “fringe” surrounding flood projections where the two methods otherwise agree. We find that the fringe 
zone is a TCARI product. That is, the ORS method projects less flooding than the TCARI method. As shown 
in Fig. 2, this disagreement reflects a difference in the shape and location of the probability distributions of the 
ORS and TCARI methods. The TCARI tidal distribution has a tighter spread (higher daily high-water values 
occur more often), and it is shifted right compared to the ORS distribution. As a result, the CDF obtained using 
the TCARI method has a steeper slope consequently projecting a larger amount flooding at higher probability 
values (Fig. 7).

Figure 7 illustrates how the spread of the CDF determines the inundation probability value for a given pixel 
despite having the same mean. When selecting the value that corresponds to any amount of flooding (i.e., > 0 m 

Figure 2.  PDFs of daily higher high-water variability as obtained from the Honolulu tide gauge, the ORS, 
and a normal distribution of the mean of daily higher high water from the TCARI tidal surface. Vertical lines 
correspond to the mean of the respective distributions.
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flood-depth) the extent of flooding will be lower at higher probabilities when the spread is larger (Note: (b) = 1–
0.27 = 0.73 < (a) = 1–0.18 = 0.82). Thus, if we were to map flooding with a probability of at least 80%, CDF (a) 
would represent a flooded pixel, whereas CDF (b) would not. Conversely, at lower probability values, a steeper 
CDF (Fig. 7c) would map less flooding than a gentler CDF (Fig. 7d).

Flood Patterns. The distinction between direct marine flooding and groundwater flooding hinges on 
whether a flooded area is surficially connected to the ocean. The difference may be determined by a single pixel 

Figure 3.  Maps depicting flooding considering the NOAA Intermediate scenario by  210023 for the Honolulu 
tide gauge (1.19 m) as projected using TCARI and ORS methods; red—area of difference, blue—area of 
agreement. (a) Waikīkī; (b) Haleʻiwa; (c) Hauʻula. (Maps generated with ArcGIS Desktop 10.8.2; http:// www. 
esri. com).

http://www.esri.com
http://www.esri.com
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Table 1.  Average across all study sites of percent difference in flood area between the ORS and TCARI 
approaches, for three NOAA regional sea level scenarios (Honolulu tide gauge), in the years 2050 and 2100.

RSLR scenarios

2050

RSLR scenarios

2100

Surficially connected (%) Topo isolated (%) Total (%) Surficially connected (%) Topo isolated (%) Total (%)

Intermediate (40 cm) 26.27 46.84 26.83 Intermediate (119 cm) 15.19 16.00 15.82

Intermediate High (57 cm) 4.67 18.29 9.17 Intermediate High 
(193 cm) 4.89 19.50 5.23

High (75 cm) 12.59 18.58 15.10 High (270 cm) 2.64 19.06 2.16

Figure 4.  Maps depicting flooding under the Intermediate scenario by 2100 of Sweet et al.23 for the Honolulu 
tide gauge (1.19 m) using the ORS method. (a,c,e) Show the range of flood-depths with at least 80% probability 
of occurrence for Waikīkī, Haleʻiwa and Hauʻula, respectively (blues—surficially connected; greens—
topographically isolated). (b,d,f) Show probability ranges for lands experiencing any amount of flooding in 
Waikīkī, Haleʻiwa and Hauʻula, respectively (distinction between surficially connected and topographically 
isolated not identified). (Maps generated with ArcGIS Desktop 10.8.2; http:// www. esri. com).

http://www.esri.com
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Figure 5.  Maps depicting flooding in Waikīkī considering the NOAA Intermediate scenario by  210023 for the 
Honolulu tide gauge (1.19 m) distinguishing between (a) surficially connected and (b) topographically isolated; 
purple—area of agreement, blue—ORS method only, red—TCARI method only. (Maps generated with ArcGIS 
Desktop 10.8.2; http:// www. esri. com).

Figure 6.  Maps depicting flood depth ranges with at least 80% probability in Waikīkī, (a) RSLR flooding 
scenario by 2050 (High scenario, 0.75 m); (b) RSLR flooding scenario by 2100 (Intermediate scenario, 1.19 m) as 
projected using ORS method (blues—surficially connected; greens—topographically isolated). (Maps generated 
with ArcGIS Desktop 10.8.2; http:// www. esri. com).

Figure 7.  Comparison of two pairs of CDFs with the same mean but different flood-depth spread. CDF pair 
8a and 8b illustrate differences that would result in an at least 80% probability-based map. CDF pair 8c and 8d 
show the result of a probability-based map of at least 20%. The figure illustrates how the shape of the CDF affects 
probability for a given flood depth.

http://www.esri.com
http://www.esri.com
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that allows for a region identified by the ORS method as topographically isolated, to be mapped by the TCARI 
method as flooded by marine overland flow (Fig. 5). Given the difference in the probability distributions of the 
TCARI and ORS data, there is considerable opportunity for this to occur. Single pixels or a small group of pixels 
can connect otherwise isolated areas and may serve as tipping points or flood pathways that open areas to flood-
ing by marine overland flow. The distinction between flooding styles is imperative as low-lying inland areas will 
likely flood, if not by marine overland flow, by groundwater  inundation26,41 and addressing each flood style will 
require additional flood management considerations.

Distance from tide gauge. When comparing the total area flooded using the ORS and the TCARI meth-
ods considering Sweet et al.’s23 Intermediate scenario, we observe larger disagreement in Waikīkī and Haleʻiwa 
(~ 2 mi SE and ~ 25 mi NW from the Honolulu tide gauge respectively) than in Hauʻula (~ 22 mi N from the 
Honolulu tide gauge) (Fig. 3). These differences suggest that the distance to the Honolulu tide gauge does not 
play a meaningful role controlling the disagreement between the two methods. ROMS reanalysis includes more 
thoroughly the observed ocean processes around the main Hawaiian Islands when compared to the TCARI 
method which interpolates a surface using only tide gauge observations. This results in the ORS daily higher 
high-water level distribution to resemble more that of the Honolulu tide gauge than the interpolation produced 
for the TCARI method despite the mean being 0.015 m lower. Hence, the maps that result from the ORS method 
may be considered a better representation of the amount of flooding projected. In areas of the insular U.S. other 
than Puerto Rico and U.S. Virgin Island and locations around the world with sparse tidal observations it is 
appropriate to use ROMS reanalysis data as a source of ocean surface uncertainty.

King tides. The hydrostatic projections presented in this study do not consider dynamic ocean processes 
such as wave overtopping, wave run-up and coastal erosion. However, they are useful for the visualization of 
extreme tidal impacts owing to consideration of tides in the ORS daily higher high-water level distribution. For 
instance, Thompson et al.42 project that by midcentury, coastal sites will see a dramatic increase in king tide fre-
quency. Additionally, under the NOAA Intermediate scenario, global mean sea level is projected to reach 0.3 m 
by  205023. Thus, a hydrostatic map depicting 0.6 m of flooding is useful for illustrating a 0.3 m king tide on top 
of the 0.3 m SLR projection.

Probability-based maps. The range of probability values provided through our method can be assigned 
as standards to specific types of assets based on their economic value, societal role, or other criteria. For assets of 
greater value that when flooded impose a larger impact on a community, decision makers should prefer a smaller 
probability value. Although it might be counter intuitive, a smaller probability value will result in a larger area of 
projected inundation and therefore a more conservative approach to policy development and decision-making. 
Put in perspective, areas of at least 80% probability of flooding are surrounded by areas of at least 20% probability 
of staying dry. Conversely, areas of at least 20% probability of flooding are surrounded by areas of at least 80% 
probability of staying dry. Some users tend to prefer probability values that correspond to standard deviations in 
a normal distribution (e.g., 68%, 95%, 99.7%). Similar values were used by Mastrandea et al.43 when developing 
the likelihood scale presented in the fifth assessment report by the Intergovernmental Panel on Climate Change. 
Other users may prefer different values as thresholds when determining risk, exposure, vulnerability, and other 
criteria. For instance, NOAA uses 20% and 80% as confidence bounds in their flood mapping  methodology44. 
However, information regarding confidence is not immediately visible in NOAA SLR Viewer maps. In addition, 
the flooded areas are displayed with blue shades but there is no flood-depth value associated with the colors. 
Although there is uncertainty associated with this type of mapping, the lack of flood-depth information leaves 
users, particularly those that oversee adaptation of public infrastructure, with poor understanding of potential 
damage related to flood depth. For instance, a 15 cm flood, which can be associated with a king tide event, is 
considered a critical threshold for transportation engineering as it is considered likely to stall small  vehicles33,45. 
However, a 15 cm temporary flood in open spaces or recreational areas might not be a reason to trigger expen-
sive and disruptive adaptation efforts.

Conclusion
In this study we have introduced a new methodology for generating flood maps. We use data from a ROMS 
reanalysis to add the uncertainty of ocean surface height to the uncertainty related to the DEM of the terrain. 
We use this approach to model three NOAA RSLR  scenarios23 for the purpose of demonstration and compare 
the results with the NOAA standard methodology applied to areas of the insular U.S. We find great agreement 
in the extent of flooding but disagreements in the style of flooding in some areas. The differences arise due to 
the location and shape of the ORS daily higher high-water level distribution which is more like the distribution 
of observed sea levels from the Honolulu tide gauge and likely result in more accurate projections. Thus, we 
find that the ORS method is an improvement over the current method used for the insular U.S. Visualizing the 
differences between ORS and TCARI simulations reveals the importance of single pixels (or groups of pixels) 
that create a direct connection to the ocean in otherwise topographically isolated areas. Distinguishing between 
flood styles is crucial as it can be used to inform adaptation management projects.

Further, we illustrate that bathtub simulations can offer additional valuable information including both flood 
depth at a given probability threshold, and probability range for a given flood depth. Using the presented method, 
map servers could be reconfigured to depict flood exposure and allow for a range of user-defined values to assist 
in optimizing SLR adaptation and management decisions. In doing so, users of said maps would have the ability 
to define SLR magnitude and probability parameters based on individual needs and identify flooding style and 
flooding pathways for use in flood management and planning applications.
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Methods
To compare the ORS and TCARI methods we modeled RSLR exposure under the Intermediate, Intermediate-
high, and High scenarios of Sweet et al.23 for the years 2050 and 2100 for three areas on Oʻahu: (1) Waikīkī 
(south shore), (2) Hauʻula (east shore), (3) Haleʻiwa (north shore). In Sweet et al.’s23 study, RSLR scenarios were 
produced for all NOAA tide gauge locations in the U.S. The RSLR scenarios consider site-specific influences from 
phenomena including ocean circulation patterns, changes in Earth’s motion, flexure of the crust and upper mantle 
due to melting of land-based ice, vertical land motion due to glacial isostatic adjustments, sediment compaction, 
and groundwater and fossil fuel  withdrawals23. We recognize that the most recent NOAA report entitled “Global 
and Regional Sea Level Rise Scenarios for the United States”46, provides RSLR projections for Hawaiʻi that slightly 
differ from those published previously by Sweet et al.23 Because SLR is an ongoing phenomenon, these differences 
in RSLR projection represent an offset in timing towards reaching specific magnitudes of SLR. Since the study’s 
aim is to characterize flooding extent, depth, and uncertainty associated with specific magnitudes of rise, the 
use of Sweet et al.’s projections remain appropriate for the purpose of demonstration.

Surficially connected locations exposed to direct marine inundation, and topographically isolated locations 
vulnerable to groundwater inundation and drainage  flooding47, are depicted relative to an ocean reference surface 
that is a proxy for MHHW. We convolved a distribution of the daily highest water level provided by the PacIOOS 
ROMS reanalysis, with a Gaussian distribution of terrain elevation unique to each DEM pixel to produce a 
flood-depth probability distribution. The convolution was solved numerically using Python 3.5. The result is a 
PDF of flood-depth for each pixel of the DEM. This allowed us to produce two types of probability-based flood 
maps, one that shows the range of depths at a fixed probability of flooding, and one that shows the range of 
probabilities at a fixed flood-depth. In order to compare the ORS methodology with the TCARI methodology, 
we produced flood maps illustrating daily higher high-water flooding representing at least 80% probability for a 
given scenario using both methods. We averaged differences in the flooded-pixel count for each method as well 
as for the specific cases of surficially connected and topographically isolated locations. Each step is detailed below.

Ocean reference surface (ORS). To define an ORS as a proxy for MHHW, we analyzed a 10-year ocean 
reanalysis for the region surrounding the main Hawaiian  Islands37 available from the Pacific Islands Ocean 
Observing System (PacIOOS; https:// pacio os. org/). The reanalysis was performed by Powell et al.37 using ROMS 
v3.6 with a 4-D variational data assimilation that includes sea surface temperature, salinity, height anomalies, 
surface velocity, and depth profiles of temperature and salinity. The output consists of 3-hourly data, at a spatial 
resolution of approximately 4 km.

To match the datum of the DEM, we followed the procedure used by the U.S. Army Corps of Engineers by 
subtracting the geoid offset (0.633 m) from each of the ROMS reanalysis  pixels48. We compared the hourly and 
3-hourly means of the Honolulu tide gauge for the time period 2007–2017 and found that the 3-hourly mean is 
0.022 m lower than the hourly mean. We added this value to the ROMS data to account for the inherent subsam-
pling bias of the ROMS reanalysis. To examine the validity of the use of ROMS data, we analyzed the daily higher 
high-water level distribution from the ocean surface height component of the ROMS reanalysis for the location 
closest to the Honolulu tide gauge (NOAA #1612340) and compared it to the Honolulu tide gauge  observations49.

The purpose of using ROMS reanalysis data is to generate a distribution of daily higher high-water levels to 
convolve with a normal distribution of DEM error, not to use the water levels of the ROMS period (2007–2017) 
as a reference for future sea level rise increments. Therefore, we compared the Honolulu tide gauge MHHW for 
the NOAA 19-year tidal epoch (1983–2001) to the MHHW from the period (2007–2017). We found a differ-
ence of 0.027 m, which was removed from each ROMS data point to account for the difference in mean sea level 
between time periods. Since our interest is identifying flooding considering mean higher high tide conditions, 
we scanned the adjusted ocean surface component of the ROMS reanalysis data for daily higher high-water level 
using a 24-hr window. We calculated the root mean square error between the ROMS adjusted daily higher high-
water level and the daily higher high-water level observations from the Honolulu tide gauge for the NOAA tidal 
epoch. The sea level data contained in each pixel surrounding Oʻahu was similarly adjusted. For modeling, we 
selected the pixel of the ROMS reanalysis located closest to the area of interest.

Digital elevation model (DEM). A DEM representing the topographic elevation of the local terrain was 
obtained from NOAA Digital  Coast50. Elevation data used for DEM production was derived from Light Detec-
tion and Ranging data collected for the island of Oʻahu in 2013 by the U.S. Army Corps of  Engineers50. The 
DEM is a hydro-flattened, bare-earth product referenced to local MSL with a horizontal resolution of 3 m and 
a vegetated vertical accuracy of 0.268  m50. The vegetated vertical accuracy is larger than the vertical accuracy 
value of the bare-earth DEM. In conformity with NOAA SLR Viewer methodology, we used the vegetated verti-
cal accuracy as the uncertainty (standard deviation) in DEM elevations to produce more conservative results. 
A normal distribution of DEM error was used for convolution and employed under the assumption that errors 
associated with the DEM have zero  bias33.

ORS method. Components required to produce bathtub simulations using the ORS method include a dis-
tribution of daily higher high-water values and a DEM. The steps followed to perform bathtub modeling using 
the ORS method are listed below and depicted visually in Fig. 8:

(1) Create a PDF of daily higher high-water levels as defined in the ORS.
(2) Create a PDF of terrain elevation at each DEM pixel as a gaussian distribution where the mean is the DEM 

elevation, and the standard deviation is the vegetated vertical accuracy of the DEM.

https://pacioos.org/
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(3) Calculate a PDF of flood depth at each pixel by numerically convolving the PDF of water level (step 1) with 
the PDF of the DEM (step 2) multiplied by (− 1). Note: the PDF of the sum of two independent random 
variables is the convolution of the two individual PDFs. Thus, PDF (water level − DEM) = CONV [PDF 
(water level), PDF (− DEM)].

(4) Derive a CDF from the result of the convolution to make two types of maps: a map of flood-depth at a 
specified probability threshold, and a map of the probability of exceeding a specific flood-depth.

(5) To simulate a rise in sea level, add the desired SLR increment to the PDF of the current daily higher high-
water levels as defined by the ORS and continue with steps 3 and 4.

(6) Once the maps are generated, crop the coastline to visualize the SLR increments in relation to present 
sea level. The present-day coastline is defined by creating a probability-based flood map following steps 
provided above without incrementing sea level and selecting the pixels with at least 80% probability of 
flooding. This raster illustrates the 80% probability of the extent of MHHW. A shapefile is derived from 
this raster and used to crop the subsequent maps illustrating SLR increments.

TCARI method. To perform bathtub modeling using the TCARI method, we used the TCARI surface pro-
vided by NOAA and the same DEM used in the ORS method. The TCARI surface and the DEM used here are 
the same as those used in the production of NOAA SLR Viewer maps representing the Hawaiian Islands. The 
modeling was accomplished by analytically performing convolution of a gaussian distribution representing the 
pixel value and uncertainty of the TCARI surface and a gaussian distribution representing the pixel value and 
uncertainty of the DEM. The analytical computation requires the following steps (visually depicted in Fig. 8):

(1) Create a single-value cumulative uncertainty surface by calculating the root sum square of the standard 
deviation of the TCARI surface and the DEM (i.e., sqrt  (T2 +  D2); where  T2 is the uncertainty associated 
with the TCARI surface and  D2 is the uncertainty associated with the DEM). The uncertainty associated 
with the TCARI method is 0.073  m51.

(2) Calculate a standard score value for each PDF by subtracting the TCARI surface from the DEM eleva-
tions for each pixel and dividing by the cumulative uncertainty (step 1) (i.e., z = (TCARI surface − DEM)/
uncertainty surface).

(3) Classify the pixels using a one-tail percentile rank.
4) As in the ORS method, to simulate a rise in sea level add the desired SLR increment to TCARI surface and 

continue with steps 2 and 3.
5) As done with simulations produced using the ORS method, crop the simulation produced using the TCARI 

method using a shapefile representing the present-day coastline.

Surficially connected vs topographically isolated flood simulation. Modeling and monitoring by 
Habel et al.47 found that groundwater level at high tide in Honolulu’s coastal areas can be represented by the pas-
sive MHHW surface. We adopted assumptions made by Anderson et al.27 and findings by Habel et al.47 that bath-
tub modeling can be used as a first-cut approach towards identifying vulnerabilities to groundwater inundation 

Figure 8.  Data-flow diagram comparing the ORS methodology (left) to the TCARI methodology (right); blue 
boxes are steps to be repeated for all DEM pixels of the modeled area.
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owing to similar and opposing magnitudes of the hydraulic gradient and tidal efficiency in coastal groundwater. 
In depicting flooding related to RSLR, we defined flooded areas as those that probabilistically fall below our 
reference surface. We then labeled pixels as either: (1) surficially connected to the ocean, or (2) topographically 
isolated (no surficial connection to the ocean) under the assumption that topographically isolated flooded pixels 
will be flooded by groundwater inundation. To distinguish between surficially connected and topographically 
isolated pixels we looked at the intersection between flooded areas for each RSLR scenario and the coastline 
generated in steps (6) of the ORS method.

To analyze differences in flooded area between TCARI and ORS methodologies, we calculated the percent 
difference of flooded pixels while distinguishing between flooding styles (surficially connected vs topographi-
cally isolated). Note: percent difference = (TCARI area − ORS area)/((TCARI area + ORS area)/2). This was done 
for each study site and for all NOAA RSLR scenarios. Finally, we averaged percentages for each flooding style 
across the study sites for 2050 and 2100.

Uncertainties. Uncertainties considered in both mapping techniques include those associated with the 
DEM and sea surface level. In the TCARI method, the uncertainties were joined when creating a single value 
uncertainty surface with a root sum of squares. In the ORS method, the uncertainties were joined when numeri-
cally solving the convolution of the daily higher high-water level distribution with the normal distribution of 
DEM error. When generating flood simulations using either method, we assumed that the magnitude of SLR 
is known. Therefore, uncertainties related to SLR projections were not accounted for within each modeling 
method. It should also be noted that our approach of simulating increases in sea level neglects potential changes 
in tide behavior and storm surge activity.

Probability of flood-depth. Maps depicting ranges of flood-depth under an assumed RSLR scenario (e.g., 
1.19 m by 2100, Intermediate  scenario23) were produced using chosen probability values (e.g., 20%, 80%, 90%) 
and by matching depths from the CDF for each pixel. Maps have been color coded to highlight 0.3 m depth 
increments for the given RSLR scenario, and to identify surficially connected vs. topographically isolated pixels. 
These provide depictions of flood depths for a given probability at a given SLR scenario, which are useful for 
land use planning and infrastructure  design52–54 or further processed to develop risk-management  products55,56.

Probability of flooding. Maps that depict the probability of flooding under a given SLR flood depth were 
similarly derived using the CDF of individual pixels. Here, color coding reveals probability rather than depth. 
The entire map depicts the probability of surficially connected and topographically isolated flooding produced 
by a specific magnitude of SLR. Such maps are useful for planning applications, especially where the probability 
of a specific flood-depth is a critical design parameter, such as in transportation  planning52,54,57.

Data availability
The data used in this study is available from the groups in the text or in citations. Other intermediate products 
are available upon request to npaoakan@hawaii.edu.
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