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Development and validation 
of a decision model 
for the evaluation of novel 
lung cancer treatments 
in the Netherlands
Zakile A. Mfumbilwa  1, Janneke A. Wilschut  1, Martijn J. H. G. Simons  2,3,  
Bram Ramaekers  2,3, Manuela Joore  2,3, Valesca Retèl  4,  
Christine M. Cramer‑van der Welle 5, Franz M. N. H. Schramel 5, 
Ewoudt M. W. van de Garde 6,7 & Veerle M. H. Coupé  1*

Recent discoveries in molecular diagnostics and drug treatments have improved the treatment of 
patients with advanced (inoperable) non-squamous non-small cell lung cancer (NSCLC) from solely 
platinum-based chemotherapy to more personalized treatment, including targeted therapies and 
immunotherapies. However, these improvements come at considerable costs, highlighting the 
need to assess their cost-effectiveness in order to optimize lung cancer care. Traditionally, cost-
effectiveness models for the evaluation of new lung cancer treatments were based on the findings of 
the randomized control trials (RCTs). However, the strict RCT inclusion criteria make RCT patients not 
representative of patients in the real-world. Patients in RCTs have a better prognosis than patients 
in a real-world setting. Therefore, in this study, we developed and validated a diagnosis-treatment 
decision model for patients with advanced (inoperable) non-squamous NSCLC based on real-world 
data in the Netherlands. The model is a patient-level microsimulation model implemented as discrete 
event simulation with five health events. Patients are simulated from diagnosis to death, including 
at most three treatment lines. The base-model (non-personalized strategy) was populated using 
real-world data of patients treated with platinum-based chemotherapy between 2008 and 2014 in 
one of six Dutch teaching hospitals. To simulate personalized care, molecular tumor characteristics 
were incorporated in the model based on the literature. The impact of novel targeted treatments and 
immunotherapies was included based on published RCTs. To validate the model, we compared survival 
under a personalized treatment strategy with observed real-world survival. This model can be used for 
health-care evaluation of personalized treatment for patients with advanced (inoperable) NSCLC in 
the Netherlands.

The treatment of patients with advanced (inoperable) non-small cell lung cancer (NSCLC) has changed drastically 
in the last decade. New medicines have broadened the options for first-line treatment from solely platinum-based 
chemotherapy to also targeted therapies and immunotherapies1. Likewise, the diagnostic pathway has changed 
to aid patient selection for optimal treatment decision making, which has resulted in a more personalized treat-
ment scheme1,2.
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These innovations were supported by increased understanding of the biology and molecular subtypes of 
NSCLC. As a consequence, NSCLC has been defined as a heterogeneous disease consisting of molecularly defined 
tumor subgroups that require personalized biomarker-guided treatment selection3,4. For some NSCLC tumor 
subgroups, targeted treatment and immunotherapies have been shown to improve progression-free survival 
(PFS) and/or overall survival (OS)4.

Although there are improvements in survival, they are accompanied by a substantial increase in costs for both 
molecular diagnostics and drugs5. To support treatment decisions that optimize budget allocation so that health 
benefits are maximized, decision models are commonly recommended6,7. Decision models simplify complex 
systems and allow integration of data from different sources as well as extrapolation of short-term effects to 
long-term outcomes6–8. Decision models are commonly used for cost-effectiveness analyses and budget impact 
analyses to evaluate diagnostic and treatment decisions in different scenarios9.

For personalized treatment of advanced lung cancer care, cost-effectiveness and budget impact evaluations 
have been carried out based on randomized controlled trials (RCTs)10–15. Holleman et al.10, Chouaid et al.15, 
Barbier et al.11, and Westwood et al.12 have taken a customary approach of modelling single drug(s) for a specific 
indication or a drug-diagnostics combination. To optimize the whole care pathway, the diagnostic and treatment 
pathways must be evaluated over multiple treatment lines. Thus, RCTs on single interventions are no longer suf-
ficient. Simons et al.13 and van Amerongen et al.14 modelled the diagnostic and treatment pathways in multiple 
lines based on data from several RCTs. However, RCTs represent highly selective populations that generally have a 
better prognosis than patients not participating in RCTs16–18. It has been shown , for example, that the real-world 
overall survival (OS) of patients with high programmed death ligand 1 (PD-L1) expression who received first-line 
immunotherapy treatment is shorter than the OS in RCTs17,19–21. It is therefore unclear whether the predictions 
of decision models simulating novel diagnostics and treatments based on the RCT setting translate well to the 
real-world clinical setting. To understand this, it is important to build decision models based on real-world data.

In the Netherlands, decision models based on real-world data have been developed for other tumor types. 
For example, an economic evaluation for advanced breast cancer treatment has been performed based on the 
Southeast Netherlands advanced breast cancer registry22. The study presented here aims to develop and validate 
a lung cancer diagnosis and treatment decision model for patients with advanced (inoperable) non-squamous 
NSCLC based on real-world data in the Netherlands that can be used for economic evaluations of diagnostics 
and personalized treatment in the Netherlands.

Materials and methods
Overview of the microsimulation model.  We developed a patient-level microsimulation model imple-
mented as a discrete event simulation (DES). Patients with advanced (inoperable) non-squamous NSCLC are 
simulated from diagnosis to death, including at most three treatment lines (Fig. 1). We adopted a patient-level 
simulation framework to capture the complexity of the disease by modelling the patients’ characteristics (attrib-
utes) and their treatment history leading to outcome variation on a patient level23. In addition, DES allows time 
to events to vary by patient by directly sampling event times from parametric distributions24.

The model incorporates three life-prolonging treatment lines and five health events:

•	 DIAG, diagnosis of advanced (inoperable) non-squamous NSCLC.
•	 L1T, start of first-line systemic treatment.
•	 L2T, start of second-line systemic treatment.
•	 L3T, start of third-line systemic treatment.

DIAG L1T L2T

L3TDeath

Treated

BSC

Figure 1.   Microsimulation diagnosis-treatment model. DIAG, diagnosis; L1T, L2T, and L3T are start of first-, 
second-, and third-line treatment, respectively; BSC, best supportive care, i.e., patients who are ineligible 
for L1T; Treated, patients who started at least one line of systemic treatment. Arrows indicate the possible 
transitions from one event to the start of a next treatment line or death. Black circles and lines denote the 
disease trajectory after treatment initiation. The corresponding time to event distributions were modelled as 
a parametric multistate statistical model (parMSSM). Gray dotted circle and lines denote the trajectory from 
DIAG to either start of treatment or death. Time-to-events from DIAG to L1T and from DIAG to death were not 
part of parMSSM.
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•	 Death, death (absorption event).

All patients start at DIAG and reach the next event in a continuous-time framework. From DIAG to L3T, a 
patient can start a subsequent treatment line or die. Not every patient passes all events; a patient may die before 
reaching the subsequent treatment line. A patient may die from the disease or from death due to other causes 
(DoC).

The model was developed in two steps. First, we developed a model simulating a non-personalized treatment 
strategy that reflects a real-world disease trajectory under either standard systemic chemotherapy regimens com-
monly used before 2014 or best supportive care (BSC). Second, the model parameters were adjusted to simulate 
a personalized treatment strategy. Adjustment includes adding a molecular diagnosis-treatment decision tree 
(Fig. 2). The molecular diagnosis-treatment decision tree simulates the distribution of molecular biomarkers 
that are used to inform first-line treatment choice. In the personalized treatment strategy, patients can receive 
targeted therapies and immunotherapies, dependent on the presence of these molecular biomarkers.

Below, the data used for model quantification, model development and internal and external validation are 
described in detail.

Data used for parameter estimation.  Santeon registry 2008–2014 (model development based on a 
non‑personalized treatment strategy).  Data from six Dutch teaching hospitals working under the Santeon 
group25 were used. This dataset includes patients with advanced (inoperable) NSCLC diagnosed and treated 
between 2008 and 2014 (Santeon registry 2008 – 2014). Patients were followed until January 31, 201718. Be-
tween 2008 and 2014, platinum-based chemotherapies were the standard of care. At that time, first-line im-
munotherapy was not among the treatment options, while targeted therapy was introduced in the last phase of 
2008–201426–29.

For model development, we used the subset of 2196 patients with non-squamous histology. The median 
(range) follow-up time was 59 months (0–106). At the end-date of follow-up, 98 percent of the 2196 patients 
had died.

We used the following patient characteristics as model attributes: year of diagnosis (year), age at diagnosis 
(age), sex, Eastern Cooperative Oncology Group (ECOG) performance status (PS), and Charlson comorbidity 
index (CCI). Patients received either best supportive care (BSC) or one or more lines of systemic chemotherapy. 
Patients were excluded if they had squamous cell carcinoma (527), were treated with targeted or unspecified 
therapy in any of the treatment lines (258), or had inconsistency in the event times (1). The descriptive statistics 
of the 2196 patients and the bivariate associations among covariates are given in electronic supplementary materi-
als (ESM) Tables A1 and A2. Throughout this manuscript, we will refer to this dataset as the “template dataset”.

Molecular characteristics and effects of novel treatment.  The prevalence of molecular biomarkers used to aid 
personalized treatment decisions was taken from the scientific literature30–33 (see ESM Table A3). The molecular 
biomarkers included activating mutation of the epidermal growth factor receptor (EGFR) gene, anaplastic lym-
phoma kinase (ALK) gene rearrangements, genetic aberrations of ROS proto-oncogene 1 (ROS1), B-Raf proto-
oncogene (BRAF), MET proto-oncogene (MET), RET proto-oncogene (RET), neurotrophic receptor tyrosine 
kinase 1 (NTRK(1, 2, 3)) and Kirsten rat sarcoma viral oncogene homolog (KRAS). Furthermore, PD-L1 protein 
expression3 was included. With respect to EGFR mutations, a distinction was made between classic activating 
EGFR mutations (exon 19 deletions and exon 21 L858R point mutations, i.e., EGFRclassic) and non-classic activat-
ing EGFR mutations, resistance mutations, and other mutations (EGFRnon-classic)31.

The impact of novel treatments in terms of reducing the hazard rate to progression compared to standard 
chemotherapy per molecular subgroup and per treatment line was taken from randomized controlled trials 
(RCTs) (i.e., direct treatment comparisons34–38, a network meta-analysis (NMA)39 and a systematic review pro-
viding a pooled estimate40). See ESM Tables A4 and A5.

Diagnostic-

treatment strategy

Molecular

diagnostics

EGFR* / ALK / ROS1

/ BRAF / NTRK

No mutation / MET /

RET / KRAS
Assess PD-L1 PD-L1 ≥ 50%

PD-L1  < 50%

Targeted therapy

Immunotherapy

Immunotherapy +

PDCT

x

75%

25%

Immunotherapy +

PDCT

Best supportive care

poor baseline

prognosis or refusal

of treatment

* EGFR includes classic activating EGFR mutations (exon 19 deletions/ 21 L858R , i.e., EGFRclassic), and non-classic activating EGFR mutations,

resistance mutations and other mutations (i.e., EGFRnon-classic); +, with; x, randomly assigned to Immunotherapy or Immunotherapy with PDCT;

PDCT, platinim doublets chemotherapy.

Figure 2.   Molecular diagnosis-treatment decision tree.
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Validation datasets.  The strategy that simulates personalized treatment was externally validated using PFS and 
OS curves for different therapies from the Santeon registry 2015–201819. Data from Cramer-van der Welle et al.19 
were reconstructed using the method described by Hoyle & Henley41. The reconstructed data were 1) the OS of 
147 patients with an EGFRclassic mutation treated with first-line EGFR tyrosine kinase inhibitor (EGFR-TKI, i.e., 
gefitinib or erlotinib). 2) the PFS and the OS of 83 patients with PD-L1 ≥ 50% treated with first-line pembroli-
zumab monotherapy. Patient characteristics are provided in Cramer-van der Welle et al.19. Additionally, we used 
patient-level data of 52 patients with known EGFRclassic mutations treated with first-line EGFR-TKIs (gefitinib 
or erlotinib) in the Santeon registry 2008–201442. Their characteristics are given in Slug et al.42. Lastly, published 
data from the United States (US)17,21 were used to validate model projections for the subgroup of patients treated 
with a combination of pembrolizumab and chemotherapy for patients with PD-L1 ≥ 50% and PD-L1 1–49%.

Parameterization of the non‑personalized strategy.  Parameters for the non-personalized strategy 
were directly estimated from the template dataset. We used the chi-square test, t-test, and one-way ANOVA to 
assess the bivariate association between baseline patient characteristics and treatment decisions after diagnosis. 
Logistic and linear regression models were used to sample a treatment decision based on the influential patient 
characteristics (ESM Table A6).

Parameters for sampling a patients’ time to event were estimated by fitting parametric survival models. First, 
from DIAG to L1T and to Death (Fig. 1, dotted circle and lines), two independent parametric distributions were 
used to describe time to L1T for the patients receiving life-prolonging systemic treatment (first-line treatment) 
and time to death for the BSC group as a function of baseline attributes. This means that first-line treatment 
and BSC were not considered competing events. The following survival functions were considered: exponential, 
Weibull, Gompertz, log-logistics, log-normal, and generalized gamma. Based on visual inspection43,44, log-logistic 
and log-normal distributions had the best fit from DIAG to L1T and DIAG to death, respectively.

Second, after the start of first-line treatment (from L1T to L2T and to death; from L2T to L3T and to death; 
and from L3T to death, Fig. 1, solid circles and lines), the patients’ disease trajectory was estimated by a parametric 
multistate statistical model (parMSSM) adjusted for patients’ baseline attributes45,46. In this study, we evaluated 
three proportional hazard (PH) distribution functions (Exponential, Weibull, and Gompertz). The optimal dis-
tribution was chosen based on visual inspection. The Gompertz distribution had the best fit for time from L1T 
to L2T and L1T to death, while the exponential distribution was optimal for time from L2T to L3T and L2T to 
death. Because of the limited number of patients, the exponential distribution was selected for the time from 
L3T to death. The patient attributes influencing the time to event were selected based on backward selection 
(cutoff p-value < 0.05).

Time to death was corrected for background mortality (DoC), described by age- and sex-specific life tables 
for the general Dutch population adjusted for smoking47.

Data analysis and the construction of the microsimulation model were performed using statistical software 
R, version 4.0.248. For time-to-event data analysis, the dataset was managed using the “msprep” function of the 
mstate package49 and analyzed using the “phreg” function of the eha package50 and the “flexreg” function of the 
flexsurv package51.

For details on parameter estimation and microsimulation model development, see ESM.

Adjustment of the non‑personalized strategy to simulate a personalized treatment strat‑
egy.  To simulate a personalized treatment strategy, we adjusted the non-personalized strategy by adding 
information on molecular biomarkers currently used to aid treatment decisions, as shown in Fig. 2. In the model, 
we assumed that molecular biomarkers are independent of clinical and pathological characteristics. The molecu-
lar biomarkers included are described in Sect. “Molecular characteristics and effects of novel treatment”, and 
their prevalence is given in ESM Table A3.

Subsequently, first-line systemic treatment as well as second-line treatment was adapted to project outcomes 
under the personalized strategy according to the decision tree shown in Fig. 21. The decision tree can flexibly 
be specified in the model, detailing the type of treatment as a function of the presence of molecular biomarkers 
in the individual patient.

We assume that patients with a targetable mutation (EGFRclassic, EGFRnon-classic, ALK, ROS1, BRAF, and NTRK) 
receive corresponding first-line targeted therapy; all other patients are treated according to PD-L1 expression1 
(see ESM Table A4).

Second-line treatment in the personalized strategy depends on first-line treatment. For example, patients 
with an ALK mutation treated with alectinib as first-line treatment are treated with lorlatinib as second-line 
treatment, and patients with a BRAF mutation treated with a first-line combination of dabrafenib plus trametinib 
are treated based on PD-L1 expression as second-line treatment. In all other patient subgroups, chemotherapy 
is given as second-line treatment (ESM Table A5).

To simulate a patient’s disease trajectory under the personalized strategy, the survival models were adjusted 
to reflect the PFS and OS benefit of receiving targeted therapy or immunotherapy compared to chemotherapy. 
For patients treated with first-line or second-line targeted therapy, hazard ratios (HR) for PFS derived from RCTs 
(described in Sect. “Molecular characteristics and effects of novel treatment”) are straightforwardly incorporated 
in the time-to-event functions from L1T to L2T and from L1T to death and in the time-to-event functions from 
L2T to L3T and from L2T to death. No treatment adaptations for third-line treatment are currently included in 
the model. It is known that the long-term benefit of EGFR-TKIs is limited52; thus, two approaches were explored 
for the adaptation of the first-line time-to-event distribution to reflect EGFR-TKI treatment. First, assuming a 
durable treatment benefit until progression to subsequent treatment-line or death. Second, assuming a limited 
treatment benefit. A limited treatment benefit was achieved by assuming that from a given time point “t” after 
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start of treatment, the patients’ time to event function to subsequent treatment or death would be identical to 
the time to event function fitted under the non-personalized treatment strategy. Time point “t” was calibrated 
against the validation dataset by comparing the modelled progression-free survival estimate assuming durable 
treatment benefit against the progression-free survival estimate from the validation dataset. Then, “t” was the 
point at which the modelled progression-free survival curve started to deviate from the curve based on the 
validation dataset. Furthermore, the prognostic value of the EGFRclassic

53 and ALK mutation54 were incorporated 
into the time-to-event functions from L1T to L2T and from L1T to death.

Simulating time to event for immunotherapy.  Evidence suggests that patients treated with immunotherapy are 
divided into two subgroups: a subgroup of patients who have long-term benefit and a subgroup of patients with 
moderate benefit55–57. Standard time-to-event distributions may fail to capture these differences and in turn 
underestimate long-term survival outcomes. To account for that, we assumed that the time-to-event from the 
start of first-line immunotherapy (i.e., from L1T to L2T and from L1T to death) follows a mixture cure time-to-
event distribution58–60. This mixture cure distribution was implemented by assuming that 23 percent of patients 
were long-term survivors (we use the term ‘long-term survivor fraction’ to refer to the cured fraction in the 
mixture distribution). The long-term survivor fraction was based on the published five-year survival probability 
from the Keynote-001 trial56. We randomly assigned a subgroup of patients to the long-term survivors. These 
were no longer at risk for lung cancer death after treatment but died from background mortality instead. Patients 
not pertaining to the group of long-term survivors (moderate survivors) are subjected to the event-specific haz-
ards of the parMSSM with adjusted HR. The input HR (inHR) for immunotherapy in the subgroup of moderate 
survivor patients required calibration to ensure that the overall HR for all patients receiving immunotherapy 
compared to chemotherapy (outHR) was equal to what was observed in RCTs (ESM Table A4).

In addition, a deterministic sensitivity analysis (DSA) was performed to assess the impact of assuming a 
mixture cure time-to-event distribution as well as the impact of the assumed long-term survivor fraction. DSA 
was performed by assuming different values for the long-term survivor fraction. Assuming a zero percent long-
term survivor fraction is equivalent to using a standard time-to-event distribution (here, Gompertz distribution). 
Value of the long-term survivor fraction were varied between 14 and 34% (corresponding to the 95% confidence 
interval [95% CI] of the five-year survival rate in Keynote-00156) in steps of 5%.

Validation of the microsimulation model.  The microsimulation model was validated according to the 
ISPOR-SMDM guideline61.

Internal validity of the microsimulation model.  We compared the simulated patient attributes and survival time 
under the non-personalized treatment strategy with those observed in the template dataset. Model output was 
based on simulating 1000 runs, each with the same sample size as the template dataset (2196 patients). The 
comparison was performed visually and quantitatively. We visualized the distribution of patients’ attributes and 
parameters of the regression models. For associations among baseline attributes, we computed the percentage 
of simulated runs having a bivariate testing p-value smaller than 0.05 and compared it to the observed p-value 
in the template dataset.

For survival times, we visualized the distribution of simulated survival probabilities at 1 to 60 months for first-
line, second-line, third-line PFS and OS and compared them with the survival probabilities from the template 
dataset. Finally, we evaluated the proportion of simulated medians and means of PFS and OS times that were 
contained within the respective 95% CIs of the observed medians and means in the template dataset.

External validity of the microsimulation model.  The adapted model for the simulation of a personalized treat-
ment strategy was externally validated. To perform external validation, we simulated the personalized strategy 
with 300,000 patients and compared the modelled PFS and OS curves with those of real-world PFS and OS 
curves. Validated subgroups are described in Sect. “Validation datasets”.

It should be noted that model validation and model building were iterative processes. When validation indi-
cated that the model results were undesirable, the model was adjusted and re-validated again. Where appropriate, 
we have reported the model results of pre- and post-validation adjustment.

Ethical statement.  All methods were carried out in accordance with relevant guidelines and regulations. 
The original data collection (Santeon registry 2008–2014) was approved by the Santeon institutional review 
board, and informed consent was waived (SDB219-008). Data were provided to the authors in a de-identified 
fashion. The study was performed in accordance with the ethical standards of the institutional and national 
research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical 
standards.

Results
Time to event estimates.  For treated patients in the template data, the median time from DIAG to L1T 
was 1.00 month (95% CI 0.92–1.05), and it was significantly shorter for females than for males. For BSC patients, 
the median time from DIAG to death was 2.27 months (95% CI 2.14–2.46), and it was significantly shorter for 
patients with bad or unknown PS compared to good PS and for females compared to males.

The hazard from L1T to L2T was significantly lower for females and decreased with increasing age at diag-
nosis, while the hazard from L1T to death was significantly higher for bad PS than for good PS. For patients in 
L2T, their hazard to L3T was significantly lower for females than for males and decreased with increasing age at 
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diagnosis. The hazard from L2T to death was significantly higher for patients treated with carboplatin doublets in 
first-line than for patients who received cisplatin doublets and was lower for females than for males. The results 
of the parametric survival analyses for all time-to-event models are given in ESM Table A7.

Modelled progression‑free and overall survival time.  The results of the microsimulation model 
for the non-personalized and personalized treatment strategies are given in Table 1. Out of 300,000 simulated 
patients, 65 percent received BSC. The mean OS for BSC was 5.0 months irrespective of treatment strategy. For 
treated patients (35%), the mean OS was 11.2 months and 58.0 months for the non-personalized strategy and 
the personalized strategy, respectively.

For treated patients in the personalized strategy, 14 percent received first-line targeted therapy, while 86 
percent received immunotherapy. The mean OS was 28.9 months and 61.9 months for targeted therapy and for 
immunotherapy, respectively. The molecular subgroups with the highest mean OS were patients with an ALK 
mutations who were treated with alectinib (mean OS of 91.4 months, i.e. 7.6 years). This was followed by patients 

Table 1.   Modelled median and mean PFS and OS in months (n = 300,000). Biomarker, molecular biomarker; 
1L treat, first-line systemic treatment; n, number of simulated patients; PFS, progression-free survival; OS, 
overall survival; BSC, best-supportive care; PDCT, platinum-based doublet chemotherapy; Dabraf & Tramet, 
combination of dabrafenib with trametinib; Pembro, pembrolizumab; EGFRclassic, epidermal growth factor 
receptor (exon 19 deletions and exon 21 L858R point mutations); EGFRnon-clasic, epidermal growth factor 
receptor (non-classic activating EGFR mutations, resistance mutations, and other mutations); ALK, anaplastic 
lymphoma kinase gene rearrangements; ROS1, genetic aberrations of ROS proto-oncogene 1; BRAF, B-Raf 
proto-oncogene; NTRK(1,2,3), neurotrophic receptor tyrosine kinase 1; PD-L1, high programmed death ligand 1 
expression; Long-term, long-term survivors fraction; Moderate, moderate survivors fraction. a Best-supportive 
care group was kept constant in both strategies. b It is assumed that first-line treatment benefits wear-out after 
15 months. c Percentage within subgroups of personalized strategy were calculated out of the total number of 
patients treated (denominator 104,300).

Biomarker 1L Treat n (%)

PFS OS

Median Mean Median Mean

Best-supportive carea

 N/A BSC 195,700 (65.2) – – 2.2 5.0

Non-personalized strategy

 ALL Treated PDCT 104,300 (34.8) 5.4 9.4 6.8 11.2

Personalized strategy

 ALL Treated – 104,300 (34.8) 11.2 55.4 13.6 57.2

Targeted therapy (TT)

 ALL TT – 14,860 (14.3)c 14.7 25.5 16.8 28.9

  EGFRclassic
b EGFR-TKI 7380 (7.1) 14.4 15.9 16.2 20.3

  EGFRnon-classic
b Afatinib 1060 (1.0) 14.9 16.4 16.2 18.2

  ALK Alectinib 2100 (2.0) 40.6 88.7 44.0 91.4

  ROS1b Crizotinib 1970 (1.9) 13.3 14.9 14.8 16.6

  BRAFb Dabraf & Tramet 2190 (2.1) 8.5 12.2 10.9 15.1

  NTRK(1, 2, 3)
b Larotrectinib 160 (0.2) 7.6 10.2 8.8 11.7

Immunotherapy (IT) 23% long-term survivor fraction

 ALL IT – 89,430 (85.7) 10.5 60.5 12.8 61.9

 PD-L1 ≥ 50%

Pembrolizumab 5670 (5.4) 10.9 62.4 13.1 63.8

Long-term 1310 218 227 218 227

Moderate 4360 7.0 12.7 8.6 14.4

 PD-L1 ≥ 50%

Pembro & PDCT 17,000 (16.3) 17.1 65.1 19.3 66.5

Long-term 3940 209 219 209 219

Moderate 13,060 10.9 18.7 12.8 20.6

 PD-L1 1–49%

Pembro & PDCT 66,760 (64.0) 9.3 59.1 11.5 60.5

Long-term 15,350 209 222 209 222

Moderate 51,410 6.0 10.6 7.5 12.4

Deterministic sensitivity analysis of the mixture cure distribution for IT

 0% long-term survivor fraction

  ALL IT – 89,430 (85.7) 11.4 19.5 13.4 21.4

  PD-L1 ≥ 50% Pembrolizumab 5670 (5.4) 11.5 19.2 13.6 21.1

  PD-L1 ≥ 50% Pembro & PDCT 17,000 (16.3) 16.6 26.0 18.9 27.9

  PD-L1 1–49% Pembro & PDCT 66,760 (64.0) 10.4 17.9 12.3 19.8
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with PD-L1 ≥ 50% who were treated with a combination of pembrolizumab plus chemotherapy (mean OS of 
66.5 months, i.e. 5.5 years).

Internal validation of microsimulation model.  Patients’ baseline attributes as well as the parameters 
of the baseline regression models from 1000 runs of the microsimulation model were distributed well around 
corresponding values from the template dataset (ESM Figs. A1 and A2). Likewise, the modelled bivariate asso-
ciations were in agreement with the results from the template dataset (ESM Table A2 and Fig A1).

The distribution of the PFS and OS probabilities at specific time points of 1000 simulation runs for the 
non-personalized strategy are given in Fig. 3a–e. Except for the tails of the distributions, simulated PFS and OS 
probabilities from the first-line, second-line and third line were distributed around the observed values largely 
overlapping the respective 95% CI. Likewise, the simulated medians, restricted means and proportion of patients 
who progressed to L2T and L3T matched acceptably well with the observed 95% CI (ESM Fig. A3).

External validation.  The validation results for the EGFRclassic subgroup who were treated with first-line TKI 
(gefitinib or erlotinib) are given in Fig. 4. When the first-line TKI benefit was restricted to 15 months, the mod-
elled PFS and OS curves matched well to the real-world curves of the Santeon registry 2008–2014 cohort. Simi-
larly, the modelled OS curve matched well with the real-world curve of the Santeon registry 2015–2018 cohort. 
Modelled median PFS of 14.4 months was contained within the 95% CI of the median PFS from the Santeon 
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Figure 3.   Jitter plot comparing modelled and observed progression-free survival (PFS) and overall survival 
(OS) probabilities. (a and b), PFS and OS from the start of first-line treatment (1L); (c) and (d), PFS and OS 
from the start of second-line treatment (2L); (e), OS from the start of third-line treatment (3L). The red dots 
(modelled) refer to the simulated values for a non-personalized treatment strategy where simulated patients are 
treated with a first-line platinum-based chemotherapy as in the template dataset. The black dots with 95% C.I 
indicate the point estimates and 95% confidence intervals of observed probabilities from the template dataset 
(Santeon registry 2008–2014).
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registry 2008–2014 (i.e., 12.5, 95% CI 9.8–18.3 months). Similarly, the modelled median OS of 16.2 months was 
contained within the 95% CI of the median OS from the Santeon registry 2008–2014 and the Santeon registry 
2015–2018, that is, 17 months (95% CI 10.3–22.2) and 15.5 months (95% CI 11.6–19.1), respectively. It should 
be noted that when the first-line TKI benefit was assumed to last until progression, the modelled median PFS 
and OS were not affected, but the long-term PFS and OS were overestimated compared to what was observed 
(ESM Fig. A4).

Figure 5 and ESM Table A8 show the validation results for the PD-L1 ≥ 50% subgroup who were treated with 
first-line pembrolizumab monotherapy. Figure 5 shows that the modelled PFS and OS curves match well with 
the real-world curve of Santeon registry 2015–2018 (the median lies within the 95% C.I of Santeon registry 
2015–2018). Beyond 12 months, the model seems a bit optimistic with respect to PFS but matches well with the 
OS. Furthermore, the modelled 24-month and 36-month OS rates were close to the US real-world survival rates21 
(ESM Table A8). The 60-month (5-year) survival rate was the same as that of Keynote-00156, which was 23%.

The DSA results for the assumption of a mixture cure time-to-event distribution and the value of the long-
term survivor fraction are given in Table 1 and ESM Fig. A5. ESM Fig. A5 shows that the long-term survivor 
fraction mainly impacts the long-term PFS and OS. The OS proportion at five years ranged from 16 to 31% when 
the long-term survivor fraction was varied between 14 and 34%. When a standard time-to-event distribution 
was assumed (i.e., 0 percent long-term survivor fraction) in patients with PD-L1 ≥ 50% who were treated with 
pembrolizumab, the median OS was increased by 0.5 months, while the mean OS decreased by 42.7 months 
(3.6 years, Table 1). The large impact on mean OS was due to the long survival time in the long-term survivor 
subgroup, which had a mean OS of 222 months (18.5 years), while the moderate survivor subgroup had a mean 
OS of 14.4 months (1.2 years) (Table 1).

Similar findings were obtained for validation of the group of patients who were treated with a combination 
of pembrolizumab plus chemotherapy and had either PD-L1 ≥ 50% or PD-L1 1–49%. For validation of these two 
subgroups, we used published US real-world estimates17,21 (ESM Table A8).

Discussion
We developed a patient-level microsimulation model to simulate treatment trajectories of patients with advanced 
(inoperable) non-squamous NSCLC in the Netherlands. All patients are simulated from diagnosis to death and 
undergo at most three treatment lines. The model can be used to carry out a range of HTA evaluations in the 
treatment of non-squamous NSCLC, such as health-economic evaluation, budget impact assessment, or the 
evaluation of clinical guidelines. It has been argued that multiuse models will improve efficiency and consistency 
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Figure 4.   Comparison of modelled and real-world progression-free survival (a) and overall survival (b) curves 
for patients with epidermal growth factor receptor (EGFR) mutations and treated with a first-line EGFR tyrosine 
kinase inhibitors (EGFR-TKIs). EGFR-TKI were gefitinib or erlotinib; C.I, confidence interval; RW, Real-world; 
1L, first-line systemic treatment. *The real-world data of 52 patients diagnosed and treated between 2008 and 
2014 in Santeon hospitals42. **The reconstructed (digitized) real-world overall survival (OS) data of 147 patients 
treated between 2015 and 2018 in Santeon hospitals. The OS data were digitized from the curve published by 
Cramer-van der Welle et al., 202119. Progression-free survival (PFS) data was not available. ***Modelled data 
was simulated assuming the hazard ratios of 0.43 and 0.36 for gefitinib and erlotinib compared to chemotherapy, 
respectively39, and hazard ratio of 0.82 for prognostic value of EGFR positive compared to EGFR negative40. 
EGFR-TKI benefit was assumed to wear out after 15 months.
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in decision making62. In the near future, we plan to use the model to perform an early cost-effectiveness analysis 
(CEA) of using whole-genome sequencing in the treatment decision of NSCLC patients treated with immuno-
therapy in the Netherlands.

Internal validation as well as external validation for specific subgroups was demonstrated. External valida-
tion was demonstrated for the subgroups of patients with an EGFRclassic mutation treated with first-line TKI and 
patients with PD-L1 ≥ 50% treated with immunotherapy. External validation was performed comparing the 
results of a personalized treatment strategy against the real-world PFS and OS data.

For the EGFRclassic subgroup treated with first-line EGFR-TKIs, the model overestimated long-term PFS and 
OS compared to the real-world data when we assumed EGFR-TKI benefit to last until progression. When we 
restricted the first-line EGFR-TKI benefit to up to 15 months, the modelled PFS and OS matched well with the 
real-world data. Because treatment resistance is known for earlier generations of targeted therapies52, we have 
extended the assumption of limited first-line targeted therapy benefit (up to 15 months) to all patients who 
received first-line targeted therapies. An exception was made for patients in the ALK subgroup who received a 
second-generation ALK inhibitor (alectinib) because the durability of the benefit of first-line alectinib has been 
demonstrated in updated results of the ALEX study63.

Immunotherapy is known to have a delayed treatment effect. Also, there is a subgroup of patients who have 
a better treatment response58,64–66. The mixture cure time-to-event distribution (mixture cure model) has been 
proposed and used as a modelling solution to improve long-term projections for immunotherapy58–60,67,68. We 
have shown that under the standard time-to-event distribution, the model resulted in a lower long-term OS 
estimate compared to the real-world OS estimates. In contrast, when a mixture cure time-to-event distribution 
was used, modelled long-term OS estimates were comparable to real-world estimates. Assuming a mixture cure 
model had almost no impact on median PFS and OS but dramatically increased mean PFS and OS. This increase 
was caused by the fact that the subgroup of long-term survivors was assumed to have the same mortality rate 
as the general Dutch population. This latter assumption remains to be validated. Nevertheless, recent updated 
RCT literature has shown that the subgroup of patients who completed 35 cycles of pembrolizumab (20 to 30 
percent of patients) had most treatment benefit with more than 80 percent five-year overall survival rates55,57.

HTA decision models for advanced (inoperable) non-squamous NSCLC have been developed previously10,13,15. 
These studies were mainly based on RCTs. We compared the findings of the base-case analysis of these three 
studies against the results of the personalized strategy of our proposed model. These studies were selected because 
they are similar to the proposed model in terms of modelling a Dutch perspective and/or used similar sources 
to incorporate the benefits of novel treatments.

The mean life years (mean OS) of the currently proposed model for the EGFR-TKI subgroup is four months 
lower than the mean life years reported by Holleman et al.10, that is, 20.3 months in the proposed model compared 
to 24 (25) months for gefitinib (erlotinib) treatment in Holleman et al. The difference can partly be explained by 
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Figure 5.   Comparison of modelled and real-world progression-free survival (a) and overall survival (b) 
curves for patients with high programmed death ligand 1 (PD-L1 ≥ 50%) expression and treated with first-
line pembrolizumab monotherapy. *Reconstructed (digitized) progression-free and overall survival data of 
83 patients diagnosed and treated between 2015 and 2018 in Santeon hospitals19. **The modelled data was 
simulated assuming a hazard ratio of 0.5 for pembrolizumab compared to chemotherapy38 and a long-term 
survivor fraction of 23 percent56. The black dot and interval bar (RCT 5-yr OS with 95% C.I) indicates a five-
year overall survival with 95% confidence interval from Keynote-00156.
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limiting the benefit of gefitinib (erlotinib) to 15 months to correct for treatment resistance, as also demonstrated 
in the real-world data. Meanwhile, for the ALK subgroup treated with alectinib, a durable treatment benefit was 
assumed, resulting in a mean number of life years twice as high in our proposed model compared to the mean 
life years reported by Simons et al.13 (Strategy A, online supplementary), that is, 91.4 months versus 45.6 months. 
The durability of the treatment benefit of alectinib in patients with an ALK mutation was supported by updated 
results of the ALEX study63.

For patients with PD-L1 ≥ 50% who were treated with pembrolizumab monotherapy, the proposed model 
with a 23% long-term survivor fraction56 had twice the mean life years (63.8 months) compared to the reported 
results by Chouaid et al.15 (34 months) as well as by Simons et al.13 (29 months). However, when a zero percent 
long-term survivor fraction was assumed, our proposed model had lower mean life years (21.1 months) com-
pared to Chouaid et al. and Simons et al. Similarly, for patients with PD-L1 ≥ 50% treated with a combination of 
pembrolizumab and chemotherapy, the mean life years were three times higher compared to Simons et al. when 
the long-term survivor fraction was assumed (66.5 months vs. 23 months) and approximately 4 months higher 
when the long-term survivor fraction was not assumed (27.9 months vs. 23 months).

The differences between the currently proposed model and the three models mentioned above are partly due 
to different modeling strategies, that is, a microsimulation DES model versus Markov cohort models10,13 and a 
partitioned survival model15, as well as different modelling assumptions adopted in the proposed model, such 
as assuming the mixture cure time-to-event distribution for immunotherapy. However, this difference probably 
also partly due to the different underlying populations. For our proposed model, the real-world population was 
used instead of RCTs. To reproduce real-world PFS and OS curves under a personalized strategy, some model 
assumptions had to be made that were not implemented in the other models.

Our model has a number of strengths. First, the proposed model accounted for baseline patient heterogeneity 
by including patient characteristics such as performance status, gender, and age.

Second, in our model, we included patients who received best supportive care (BSC) after diagnosis. It is 
uncommon for HTA studies to include the BSC subgroup; nevertheless, BSCs remain the largest subgroup of 
advanced (inoperable) non-squamous NSCLC. In the Netherlands, approximately 50% of patients with advanced 
NSCLC do not start a first-line treatment19. Ignoring this subgroup when making projections of the long-term 
benefits, costs, and budget impact of personalized care for NSCLC in a specific setting may lead to a distorted 
result. In addition, the proportion of patients undergoing systemic treatment with life-prolonging intent may 
change over time as a result of improved toxicity profiles for certain personalized treatments, such as immu-
notherapies. The potential impact of including or ignoring BSC in the Netherlands can indirectly be identified 
from Cramer-van der Welle et al.18 and Cramer-van der Welle et al.19. In Cramer-van der Welle et al.18, the 
proportion of patients receiving BSC after diagnosis was 59% (out of 2989 patients diagnosed between 2008 and 
2014), while in Cramer-van der Welle et al.19, the proportion of patients with BSC dropped to 48% (out of 1950 
patients diagnosed between 2015 and 2018).

Third, the proposed model has the flexibility to allow different modelling assumptions to be evaluated using 
the same model by simply changing the model’s arguments. For example, the proposed model allows us to model 
both limited and durable treatment benefit assumptions for targeted therapies. Likewise, for immunotherapy, 
both the standard time-to-event distribution and the mixture cure time-to-event distribution can be assumed 
by specifying model arguments. Thus, the impact of such assumptions on life years and cost can be evaluated 
using one model.

Furthermore, the model is syntax based and programmed in the R computing language48. A syntax-based 
model increases transparency, reproducibility46 and flexibility. Thus, it can easily be adapted or extended to future 
data or future developments, if needed.

Our model has a number of limitations. First, we assumed no post-progression survival benefit of treatment. 
This means that a patient’s survival after first-line progression is independent of treatment regimens received 
during the first-line treatment. This assumption may under- or overestimate the estimated long-term survival 
benefit of novel treatments such as EGFR-TKIs and pembrolizumab. Nevertheless, there is limited evidence for 
the potential magnitude and direction of such benefit. In addition, we only accounted for a prognostic impact 
of the presence of an EGFRclassic

53 mutation and the presence of ALK gene rearrangements54. For the remaining 
molecular subgroups, we did not have evidence of their prognostic values. However, as the model is flexibly 
programmed, such prognostic impact can be included when evidence becomes available, and this also holds for 
a post-progression treatment benefit.

Second, there are currently no phase III RCTs of crizotinib for patients with a ROS1 mutation, the combina-
tion of dabrafenib and trametinib for patients with a BRAFv600E mutation, and larotrectinib for patients with an 
NTRK(1, 2, 3) mutation. In simulating a personalized treatment strategy for the subgroups ROS1, BRAFv600E, and 
NTRK(1, 2, 3), it was assumed that crizotinib in ROS1 has similar effectiveness as crizotinib in the ALK subgroup35, 
dabrafenib and trametinib were equally effective in NSCLC BRAFv600E as in melanoma BRAFval600

69, and laro-
trectinib in NTRK(1, 2, 3), it was assumed to have a PFS HR similar to that of the prognostic value of EGFRclassic

40. 
There were no data to validate the model outputs of these subgroups. In the future application of the model, a 
sensitivity analysis surrounding the treatment effectiveness in the mentioned subgroups will be necessary.

Third, we assumed that 23% of patients treated with first-line immunotherapy (pembrolizumab monotherapy 
or in combination with chemotherapy) were long-term survivors with survival matching the survival of the 
general population given age and sex (background mortality). Patients in the long-term survival group were not 
eligible for second-line treatment, and they died from other causes after first-line treatment. The long-term sur-
vivor fraction of 23% was based on patients attaining five-year survival in keynote-00156, which is supported by 
the long-term follow-up of keynote-02457. Pembrolizumab treatment is relatively new in clinical care; therefore, 
we have no real-world data to validate the fraction of long-term survivors nor their survival beyond 36 months. 
Through sensitivity analysis, the impact of the long-term survivor fraction was explored.
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Fourth, the real-world template dataset (Santeon registry 2008–2014) that formed the basis of our model had 
a cohort of patients diagnosed and treated prior to the era of personalized treatment. Thus, the template data 
set unfortunately did not contain molecular characteristics or the currently used novel treatments. To simulate 
a personalized strategy, we incorporated molecular information from the literature, as well as the impact of 
novel treatment compared to standard chemotherapy based on published RCTs. This constrained us to the use 
of parametric PH distributions (Exponential, Weibull, and Gompertz) to describe the transitions from the start 
of first-line treatment to death and necessitated the assumption that novel treatments have the same effect on 
competing transitions (i.e., time to subsequent treatment line or to death).

Fifth, we had limited data for external validation of the model. For the personalized strategy, only the sub-
group of patients with an EGFR mutation treated with TKIs and the subgroup of patients with PD-L1 ≥ 50% 
treated with pembrolizumab monotherapy were externally validated with Dutch real-world data19,42. For the 
non-personalized strategy, the model was not validated externally. The subgroup of patients treated with first-line 
chemotherapy in Santeon hospitals between 2015 and 201819 is not directly comparable to the simulated patients 
in the non-personalized strategy. The 2015–2018 dataset includes patients with both squamous and no-squamous 
histology and about a quarter of patients received subsequent immunotherapy (mainly nivolumab), while the 
simulated non-personalized strategy in our presented model simulates patients with non-squamous histology 
treated with chemotherapy in all treatment lines.

Last, in the presence of competing events, we have used cause-specific hazard functions to sample the time 
of each competing event separately and subsequently select the event that occurred first (in the HTA literature, 
this method is termed event-specific distribution (ESD)24). This choice was a deviation from the standard rec-
ommendation to jointly estimate the event time and select the event in a second step by using (multinomial) 
logistic regression24,70. In this situation, we preferred ESD because of its convenience in estimation in the pres-
ence of censoring. Additionally, if a novel treatment is believed to have a different impact on the hazard rate of 
two competing events, ESD can accommodate this by appropriately adjusting the HRs of particular transitions.

Conclusion
We developed a multi-application microsimulation model for advanced (inoperable) non-squamous NSCLC in 
the Netherlands using real-world data. The model was populated with real-world data from six large teaching 
hospitals in the Netherlands. The model was internally validated and externally validated for the EGFR subgroup 
of NSCLC patients and for patients with PD-L1 expression receiving immunotherapy. We can argue that, being 
based on real-world data, the presented model is suitable to project long-term outcomes and cost-effectiveness of 
novel diagnostic-treatment combinations in the Dutch setting and is consequently suited to inform Dutch policy 
makers. In the near future, the model will be used to perform an early CEA of using whole-genome sequencing 
in immunotherapy decision in NSCLC in the Netherlands.
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