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New evidence on the rural poverty 
and energy choice relationship
Salvatore Di Falco 1* & Gary Lynam 2

We combine a global micro level dataset that includes 17 different rural Sub-Saharan countries 
with satellite information about precipitation during the growing season to estimate the impact of 
economic conditions on energy choice. Differently from the existing literature, we aim to causally 
estimate the impact of household welfare variation on the likelihood of choosing a specific energy 
source. It is found, consistent with theory, that increases in income do determine an increase in the 
likelihood of using relatively cleaner and more efficient sources of fuel. We find, however, that this 
impact is quantitatively very small. Results hold conditional on assets, wealth and a large battery of 
controls and fixed effects. Policy implications are developed.

Around 3 billion people in the world are “energy poor”, meaning they rely upon harmful fuel sources like 
biomass-generated fire for their cooking and heating. The reduction of the pervasive use of wood-based com-
bustibles implies two particularly important environmental and health objectives. First, less pressure on forests 
for the provision of energy sources. Second, less detrimental effects of indoor pollution as the use of these fuel 
sources have negative impacts on health through the inhalation of fine particles. These particles result in over 
2.8 million premature deaths worldwide1,2. Transition to clean and affordable energy sources is a fundamental 
objective of sustainable development (Sustainable Development Goal no 7).

Economic forces can play an important role in facilitating energy choice and potential transition. A common 
conjecture is that the choice of a more efficient and clean energy source is a direct, or at least a natural, conse-
quence of an increase in living standards. Energy source choices, as they reflect different levels of environmental 
quality, can be considered a luxury good. Increases in income, among other things, implies greater control over 
resources and more awareness of the effect of energy choice3,4. This conjecture is behind the widely studied energy 
ladder hypothesis5–10. In the developing and emerging world that means going from traditional inefficient sources 
(fuel wood, charcoal, kerosene etc.) to more efficient modern sources (liquid gas, electricity), once higher levels 
of income are attained. This paper tests this hypothesis by presenting evidence from households in 17 rural Sub-
Saharan countries. Differently from the existing literature using multi-country datasets, our aim is to causally 
estimate the impact of income changes on energy choice11–14. To this end we use random variation in rainfall 
during the growing season of the main harvested crops. In rural environments, rainfall variations during this 
period provide a clean source of variation (also called natural experiment15) that is not systematically related to 
other variables. For instance, households experiencing less than average rainfall will obtain lower harvests and 
thus income. Using random variation in rainfall during the growing season, therefore allows us to make causal 
inference and circumvent the critical issue of accurate income measurement in developing countries. Our study 
focuses on such an environment, as we only use observations of rural farm households in the Demographic 
Health Survey (DHS). Table 1 shows that 80% of the sample relies on rural assets such as agricultural land for 
their living. Given the very low levels of irrigation, the welfare of these farm households heavily depends on the 
rainfall they obtain during the growing season.

We then use a multinomial logit to estimate the causal impact of random household income variation on 
the likelihood of moving up the energy ladder. To further address omitted variables concerns, a large battery of 
controls is added. These include household’s assets, wealth, education, and other socio-economic characteristics 
of the household head as well as access to electricity and infrastructure. A set of time and geographic fixed effects 
is also included to control for sources of unobservable heterogeneity that are space and time invariant.

Data sources and variables
The dataset was generated by combining USAID’s Demographic Health Survey (DHS) country level household 
surveys with publicly available satellite information on precipitation accessed through the Google Earth Engine 
tool. The DHS survey information contains a set of data from representative national household surveys. Several 
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years between 2006 and 2016 are available for each country, resulting in a pooled cross-section of 460,780 
household observations (see Table A1). Filtering for rural households (defined as households residing in the 
countryside, as opposed to urban households that live in cities and towns), we are left with 310,707 observa-
tions across 17 sub-Saharan Africa countries: Burkina Faso, Burundi, Ethiopia, Ghana, Kenya, Lesotho, Liberia, 
Madagascar, Mali, Malawi, Mozambique, Namibia, Nigeria, Rwanda, Senegal, Sierra Leone, and Zimbabwe. 
The survey records the primary source of energy used for cooking by the household in each round. These are: 
biomass (e.g., crop residue, dung, fuel wood), charcoal, kerosene, liquid petroleum gas (LPG), and electricity. 
Each source represents a rung in the energy ladder, from the least efficient and most detrimental to household 
health and the environment, to the most efficient and clean. To build our key dependent variable, we organize and 
categorize these fuels into three distinct rungs of the ladder (as in Van der Kroon et al.10). The first rung includes 
the traditional fuel sources (biomass), the second includes the transitional sources (charcoal and kerosene), and 
the third encompasses the modern sources such as LPG and electricity. The DHS survey also records a large set 
of relevant controls. These include household assets (if the household owns any land or livestock), household 
wealth, the number of household members, the age of the household head, and the household head’s level of 
education. We expand the list of controls by including two important variables at a higher level of aggregation. 
First, we include a control for the extent of access to electricity at the country level (the percentage of population 
with electricity access). Second, we include a control for soil quality as this capture the level of natural capital 
available to the household.

As previously mentioned, we use random variation in rainfall during the growing season as a measure of 
income variation at the household level. The GPS points of household clusters were used in conjunction with 
the Google Earth Engine tool to calculate relevant precipitation data for the corresponding year of the country 
survey. All the geographic data extractions used these publicly available cluster locations provided by the DHS 
Program surveyors. The GPS location of each cluster centre is recorded during either the fieldwork or listing stage 
of the survey process. Geo-masking methods are then used to ensure the confidentiality of the DHS respondents, 
displacing the cluster centres from their true locations by up to 10 kms. Therefore, we take this distance as the 
diameter of the circular area we calculate our geospatial data in, with the cluster GPS point as its centre. All 
geospatial data are calculated as annual means and are lagged 1 year prior to the DHS survey interview dates. 
The one exception for this is the main variable of interest, precipitation, which is calculated across the average 
planting/sowing month to the average harvest month for the main staple crops (cereals) in each country. The 
cereal crop calendar is presented in the Appendix.

We obtained the amount of rainfall (mm during the growing season) and calculated a set of precipitation 
anomaly dummy variables. We first computed a precipitation anomaly as the standardized difference between 
the observed level of rainfall during the growing season minus its long-term average (20-year seasonal precipita-
tion average). This anomaly variable thus allows us to measure how much (in terms of standard deviation) the 
rainfall during the growing season is different from the long-term seasonal mean (20 years). These values were 
then converted into 4 categories: extreme drought (less than 2 standard deviations), mild drought (between less 

Table 1.   Variables definition and descriptive statistics.

Variable name Description Mean Sd Min Max

Household owns farmland 1—owns farmland, 0—otherwise 0.8 0 1

Household owns livestock 1—owns livestock, 0—otherwise 0.7 0 1

# Household members Count of full-time members in household 5.07 3.16 1 66

Household head age The age of the household head 45.62 16.49 11 97

Household head education Highest achievement of education of household head: none, (in)complete primary, (in)complete 
secondary and tertiary 3.88 4.39 0 24

Wealth index

The wealth index is calculated using data on a household’s ownership of selected assets, such 
as electrical appliances; materials used for housing construction; and types of water access and 
sanitation facilities. Generated with a statistical procedure known as principal components 
analysis, the wealth index places individual households on a continuous scale of relative wealth. 
DHS separates all interviewed households into five wealth quintiles

Precipitation seasonal mean The wet seasonal precipitation-mean of the cluster (100 mm)—derived from the Climate Haz-
ards Group InfraRed Precipitation with Station data (CHIRPS)16 10.40 6.43 0.009 42.82

Precipitation seasonal anomaly The cluster standard deviation of the wet seasonal precipitation-mean from the 20-year seasonal 
precipitation mean (1997–2017) − 0.15 1.05 − 3.57 3.03

Precipitation seasonal anomaly category type

Taking − 0.5 to 0.5 standard deviations (sd) to be the normal precipitation seasonal anomaly, 
four categories are defined as follows:
     Extreme drought (more than − 2 sd from the 20-year mean)
     Severe drought (between − 2 and − 0.5 sd from the 20-year mean)
     Severe flooding (between 0.5 and 2 sd from the 20-year mean)
     Extreme flooding (more than 2 sd from the 20-year mean)

Year temperature mean The yearly temperature mean of the cluster (Celsius)—derived from the MOD11A1 V6 
satellite17 30.77 4.060 17.36 49.47

Soil moisture
The soil moisture (in the layer of 0–100 cm depth) mean of the cluster (kg/m2)—derived from 
the GLDAS-2 satellite using the 4-soil layer Noah model18. This is a measure of the quantity of 
water moisture in kilograms per square metre of a depth of 100 cm

210.3 55.37 53.27 400.3

Country electricity access (% of pop) The percentage of the country’s population that has access to the electricity grid, as given by The 
World Bank database—accessed June 2019
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than 2 standard deviations and 0.5), mild to severe flooding (more than 0.5 standard and less than 2), extreme 
flooding (torrential wet season with more than 2 standard deviations). This approach allowed us to analyse the 
seasonal extremes which let us investigate if there are any negative effects on the primary fuel choice. The defini-
tions of the variables used in the analysis and the summary statistics are reported in the Table 1.

Model
In order to model the household primary fuel choices, several multinomial logit (MNL) regressions were carried 
out19. MNL is a standard technique used in quantitative studies on energy transition which assumes households 
have a preference of energy type that maximises their perceived indirect utility function (more details are pro-
vided in A3). This allows one to assess how a given driver (income in this study) affects the choice of energy for 
a particular use conditional on a set of controls such as household head age, education, number of household 
members and so on11. The dependent variable is defined over three fuel type categories for their main source of 
cooking fuel, i.e. traditional, transitional and modern. For the ith household faced with the jth choice at time t, 
the utility function can be written as:

where, Xijt is a vector of explanatory variables for household i, in the region/country j at time t. β is a vector 
of unknown regression coefficients and εijt is the error term. More details on the method are reported in the 
Appendix. For simplicity of exposition, we let the matrix X represent the key rainfall variable, the controls, and 
the fixed effects.

Results
Table 2 reports the estimation results. The omitted baseline is the transitional category. Column (1) and (3) report 
the estimated marginal effects for the precipitation anomalies without controls. Columns (2) and (4) reports 
the marginal effects once all the controls are included. All specifications include time and country fixed effects 
(an alternative specification with regional fixed effects was excluded due to asymmetry in the variance matrix). 
Results are very consistent across specifications. Extreme drought and flooding have a positive impact on the 
probability that the household will utilise traditional biomass-based energy sources. Coherently with the energy 
ladder hypotheses, the same extreme variables have a negative impact on the probability to use modern energy 
sources. However, it should be noted that the magnitude of this effect is very small. Negative income shocks, 
such as extreme drought or flooding, increases the probability of going from transitional to traditional sources by 
less than 1%. Similarly, the same negative variation in income reduces the probability of choosing more modern 
energy sources by less than 1%. While the estimated income variations are associated with movement up or down 
the energy ladder consistent with the prior, the changes in probability seem very small. The results are robust to 
the inclusion of a large battery of controls. These include owning either farmland or livestock (which acts as a 
proxy for agricultural assets), soil moisture and temperature (which act as controls for agricultural production), 
a wealth index, education, and household size. Results are also robust to the inclusion of controls for access to 
electricity and vegetation conditions. We avoid making any interpretation of the controls’ coefficient estimates 
as these may pick up simple correlations.

As further robustness checks, we use alternative metrics for the precipitation during the growing season. 
First, we use precipitation mean and its quadratic term. Second, we use the log of the precipitation mean. Both 
parametric specifications allow to further test the hypotheses consider the potential non-linear nature of the 
relationship between income and fuel choices. Results are again consistent and are reported in the Tables 3 and 4.

Conclusions
This paper contributes to the energy transition literature by revisiting the energy ladder hypothesis. We expand on 
the existing literature in two dimensions. First, by analysing a large micro dataset that encompasses 17 countries. 
Second, by estimating the causal effect of rural income variations on fuel choice. The results show a weak impact 
of extreme precipitations on the choices of energy, only increasing the probability of choosing more traditional 
sources by approximately 1%. Given that precipitation captures the income variations derived from agricultural 

Uijt = β
′

Xijt + εijt

Table 2.   Multinomial logits outcomes. Marginal effects. Clustered standard errors in parentheses. ***p < 0.01, 
**p < 0.05, *p < 0.1.

Variables

(1) (2) (3) (4)

Trad base Trad control Mod base Mod control

Extreme drought 0.0186*** (0.00475) 0.00565*** (0.00132) − 0.000616 (0.000827) − 2.22e−05** (1.13e−05)

Mild wet season drought 0.0107*** (0.00349) − 0.000368 (0.000980) − 0.00309*** (0.000695) − 1.58e−05 (9.86e−06)

Mild to severe flooding − 0.000185 (0.00397) 0.00160* (0.000952) 0.000560 (0.000869) − 2.10e−05* (1.14e−05)

Extreme flooding 0.0177*** (0.00620) 0.00558*** (0.00179) − 0.000835 (0.00101) − 3.21e−05* (1.67e−05)

Controls No Yes No Yes

Country + time fixed effects Yes Yes Yes Yes

Observations 304,010 263,349 304,010 263,349
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output, we can observe that the income channel predicted in the energy ladder theory is weak relative to the 
expected impact. These results highlight that increases in economic conditions need to go beyond economic 
growth to reach the Sustainable Development Goal 7 of achieving universal access to clean energy.

It should be stressed that our results are consistent with the energy stacking literature20,21, where household 
characteristics (such as education, available labour for collecting firewood and cultural preferences), as well as 
conditions external to households (local market prices and stable supplies, as well as national policy programmes/
economic performance) are more important factors in determining energy choices among rural households10. 
This literature also states that households do not arbitrarily switch from one fuel to another for all household 
needs, but instead stack energy sources for use in different tasks. As several studies support that households 
indeed stack their stove fuel choices, this implies policy interventions should target the adaption of the cleanest 
stack and consider the local context for successful and long-lasting transition, rather than promoting the use of 
single fuel-stove combinations that do not meet the targeted community’s needs22,23. However, to explore this 
further and thus better inform policy, national survey data needs to start focusing beyond primary fuel and look 
at energy stacks for household energy needs.

Data availability
The datasets used and analysed during the current study available from the corresponding author on reasonable 
request.

Received: 21 April 2022; Accepted: 1 February 2023

References
	 1.	 Jeuland, M., Pattanayak, S. K. & Bluffstone, R. The economics of household air pollution. Annu. Rev. Resour. Econ. 7, 81–108 (2015).
	 2.	 OECD/IEA. Energy Access Outlook: from Poverty to Prosperity, World Energy Outlook Special Report. (2017).
	 3.	 McCONNELL, K. E. Income and the demand for environmental quality. Environ. Dev. Econ. 2, 383–399 (1997).
	 4.	 Freeman, A. M. The Measurement of Environmental Values and Resources: Theory and Methods (Resources for the Future, 1993).
	 5.	 Leach, G. The energy transition. Energy Policy 20, 116–123 (1992).
	 6.	 Heltberg, R. Factors determining household fuel choice in Guatemala. Environ. Dev. Econ. 10, 337–361 (2005).
	 7.	 Hosier, R. H. & Dowd, J. Household fuel choice in Zimbabwe. Resour. Energy 9, 347–361 (1987).
	 8.	 Narasimha Rao, M. & Reddy, B. S. Variations in energy use by Indian households: An analysis of micro level data. Energy 32, 

143–153 (2007).
	 9.	 Kowsari, R. & Zerriffi, H. Three-dimensional energy profile. Energy Policy 39, 7505–7517 (2011).
	10.	 van der Kroon, B., Brouwer, R. & van Beukering, P. J. H. The energy ladder: Theoretical myth or empirical truth? Results from a 

meta-analysis. Renew. Sustain. Energy Rev. 20, 504–513 (2013).
	11.	 Heltberg, R. Fuel switching: Evidence from eight developing countries. Energy Econ. 26, 869–887 (2004).
	12.	 Goldemberg, J. World energy assessment. Energy and the challenge of sustainability. (2001).
	13.	 Knight, K. W. & Rosa, E. A. Household dynamics and fuelwood consumption in developing countries: A cross-national analysis. 

Popul. Environ. 33, 365–378 (2012).
	14.	 Burke, P. J. The national-level energy ladder and its carbon implications. Environ. Dev. Econ. 18, 484–503 (2013).
	15.	 Rosenzweig, M. R. & Wolpin, K. I. Natural, “Natural Experiments” in Economics. J. Econ. Lit. 38, 827–874 (2000).

Table 3.   Model estimated replacing drought indicator with seasonal rainfall. Clustered standard errors in 
parentheses ***p < 0.01, **p < 0.05, *p < 0.1.

Variables

(1) (2) (3) (4)

Trad base Trad control Mod base Mod control

Precipitation seasonal mean 
(100 mm) 0.000927 (0.00075) 0.00134*** (0.00028) − 0.000743*** (0.00014) − 1.37e−05*** (2.95e−06)

Precipitation seasonal mean 
quadratic − 0.00013*** (2.42e−05) − 4.73e−05*** (8.14e−06) 3.08e−05*** (4.60e−06) 3.92e−07*** (9.44e−08)

Controls No Yes No Yes

Country + time fixed effects Yes Yes Yes Yes

Observations 304,010 263,349 304,010 263,349

Table 4.   Model estimated replacing drought indicator with natural log of precipitation. Clustered standard 
errors in parentheses ***p < 0.01, **p < 0.05, *p < 0.1.

Variables

(1) (2) (3) (4)

Trad base Trad control Mod base Mod control

Log of precipitation seasonal mean − 0.0243*** (0.00313) 0.000719 (0.00110) − 0.00286*** (0.000389) − 4.65e−05*** (6.63e−06)

Controls No Yes No Yes

Country + time fixed effects Yes Yes Yes Yes

Observations 304,010 263,349 304,010 263,349



5

Vol.:(0123456789)

Scientific Reports |         (2023) 13:3320  | https://doi.org/10.1038/s41598-023-29285-6

www.nature.com/scientificreports/

	16.	 Funk, C. et al. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. 
Sci. Data 2, 150066. https://​doi.​org/​10.​1038/​sdata.​2015.​662015 (2019).

	17.	 Wan, Z., Hook, S. & Hulley, G. MOD11A1 MODIS/Terra Land Surface Temperature/Emissivity Daily L3 Global 1km SIN Grid 
V006. 2015, distributed by NASA EOSDIS Land Processes DAAC. (2019).

	18.	 Rodell, M. et al. The global land data assimilation system. Bull. Am. Meteorol. Soc. 85(3), 381–394 (2004).
	19.	 McFadden, D. Conditional Logit Analysis of Qualitative Choice Behaviour (Acad. Press, 1974).
	20.	 Masera, O. R., Saatkamp, B. D. & Kammen, D. M. From linear fuel switching to multiple cooking strategies: A critique and alterna-

tive to the energy ladder model. World Dev. 28, 2083–2103 (2000).
	21.	 Gebreegziabher, Z. et al. Fuel savings, cooking time and user satisfaction with improved biomass cookstoves: Evidence from 

controlled cooking tests in Ethiopia. Resour. Energy Econ. 52, 173–185 (2018).
	22.	 Shankar, A. et al. Everybody stacks: Lessons from household energy case studies to inform design principles for clean energy 

transitions. Energy Policy 141, 111468 (2020).
	23.	 Ruiz-Mercado, I. & Masera, O. Patterns of stove use in the context of fuel-device stacking: Rationale and implications. EcoHealth 

12, 42–56 (2015).

Author contributions
Both authors wrote the main manuscript, run the analysis, and reviewed the manuscript in equal parts.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​023-​29285-6.

Correspondence and requests for materials should be addressed to S.F.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2023

https://doi.org/10.1038/sdata.2015.662015
https://doi.org/10.1038/s41598-023-29285-6
https://doi.org/10.1038/s41598-023-29285-6
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	New evidence on the rural poverty and energy choice relationship
	Data sources and variables
	Model
	Results
	Conclusions
	References


