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Deep reinforcement learning‑based 
pairwise DNA sequence 
alignment method compatible 
with embedded edge devices
Aryan Lall * & Siddharth Tallur *

Sequence alignment is an essential component of bioinformatics, for identifying regions of similarity 
that may indicate functional, structural, or evolutionary relationships between the sequences. 
Genome-based diagnostics relying on DNA sequencing have benefited hugely from the boom in 
computing power in recent decades, particularly due to cloud-computing and the rise of graphics 
processing units (GPUs) and other advanced computing platforms for running advanced algorithms. 
Translating the success of such breakthroughs in diagnostics to affordable solutions for low-cost 
healthcare requires development of algorithms that can operate on the edge instead of in the cloud, 
using low-cost and low-power electronic systems such as microcontrollers and field programmable 
gate arrays (FPGAs). In this work, we present EdgeAlign, a deep reinforcement learning based method 
for performing pairwise DNA sequence alignment on stand-alone edge devices. EdgeAlign uses deep 
reinforcement learning to train a deep Q-network (DQN) agent for performing sequence alignment 
on fixed length sub-sequences, using a sliding window that is scanned over the length of the entire 
sequence. The hardware resource-consumption for implementing this scheme is thus independent 
of the lengths of the sequences to be aligned, and is further optimized using a novel AutoML based 
method for neural network model size reduction. Unlike other algorithms for sequence alignment 
reported in literature, the model demonstrated in this work is highly compact and deployed on 
two edge devices (NVIDIA Jetson Nano Developer Kit and Digilent Arty A7-100T, containing Xilinx 
XC7A35T Artix-7 FPGA) for demonstration of alignment for sequences from the publicly available 
Influenza sequences at the National Center for Biotechnology Information (NCBI) Virus Data Hub.

Genomic medicine has the potential to make disease detection more efficient and cost-effective1. Genetics will be 
crucial not just in determining the cause of a disease, but also in determining how a person responds to various 
treatments. Nanopore sequencing is a unique, scalable technology that enables direct, real-time analysis of long 
DNA or RNA fragments. Oxford Nanopore Technologies MinION2 is one such portable nanopore sequencing 
device that can be easily operated in the field with features including monitoring of run progress and selective 
sequencing. Data collected through such devices are typically stored and analysed on the cloud, or desktop-grade 
servers in well-equipped laboratories. To truly harness the potential of genome-based diagnostics for affordable 
healthcare solutions, that do not rely on expensive cloud storage and connectivity (e.g. for resource-constrained 
communities in low and middle income countries), it is necessary to develop efficient methods for analysing the 
data and delivering insights with automated and easy-to-implement workflows integrated with portable edge-
devices. One such data analysis requirement is DNA sequence alignment, an essential component of bioinformat-
ics and computational genomics for comparing two or more sequences, in order to identify regions of similarity 
that may be a consequence of functional, structural or evolutionary relationships between the sequences.

Several heuristic methods and algorithms have been proposed for the sequence alignment problem, of which 
the Needleman–Wunsch (NW) algorithm3 is one of the earliest and most commonly used method for pairwise 
sequence alignment. However, the computational complexity of such a dynamic programming-based alignment 
approach is proportional to the product of the lengths of the two DNA sequences, and is therefore challenging 
to be implemented on hardware devices with limited memory and computation blocks. In a multiple sequence 
alignment (MSA) problem, several sequences are aligned simultaneously. Clustal W4 is a well-known tool for 
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MSA. It uses the progressive alignment method and determines the best alignment by matching sequences that 
are most similar first, then moving on to sequences that are least similar. Several implementations have also 
been proposed for improving this sequence alignment method including a few multi-thread based implementa-
tions on graphics processing units (GPUs)5–7 for improving the throughput. Pairwise alignment is commonly 
performed using various tools such as banded alignment, BLAST, MUMmer8–10 etc. along with various cloud 
processing solutions11. BLAST12 is the most commonly used tool, which is also available to be downloaded and 
run on a local computer, or an edge-computing platform running an operating system such as NVIDIA Jetson 
Nano. BLAST is also often used as part of other algorithms that require approximate sequence matching. The 
algorithm emphasises more on speed and in most cases, it cannot guarantee optimal alignment of the query and 
base sequences. Moreover, regions with low-complexity sequences can create problems in sequence similarity 
searching by causing artificial hits, and are not appropriate for analysing with BLAST. Such sequences are usually 
determined and masked out in BLAST using DustMasker13 and separately analysed visually.

To overcome limitations of conventional alignment methods, a few reinforcement learning (RL) based tech-
niques have recently been proposed in literature. Mircea et al.14 presented one of the first RL implementations 
for solving the DNA sequence alignment using Markov decision process (MDP). Jafari et al.15 introduced deep 
Q-Network (DQN) and an actor-critic algorithm in their work. The DQN model architecture was based on long 
short-term memory (LSTM) network which involves sequential computation to process the DNA sequence as a 
1D data series. Song et al.16 provided a comprehensive deep RL based solution for pairwise sequence alignment, 
employing various pre-processing techniques such as Clustal, MUMmer, etc. to improve the alignment results, 
and highlighted the influence of various system parameters such as learning rate, window size, etc. on the model 
accuracy. Ramakrishnan et al.17 utilised asynchronous advantage actor critic (A3C) framework for MSA. They 
used a convolutional neural network (CNN) based architecture for their actor-critic model. However, this model 
is too complex to be applied to practical datasets with dozens of sequences and hundreds of molecules. Joeres 
et al.18 offered a comprehensive analysis of the performance of different RL algorithms for MSA, and observed 
that RL algorithms are typically much slower as compared to traditional solutions. However, all of these RL 
implementations either used very large models, which are challenging to implement on resource-constrained 
hardware, or or employed neural networks such as LSTMs, that are slower and currently not supported by 
machine learning frameworks for microcontrollers such as TensorFlow Lite19. In this work, we present EdgeAlign, 
a compact deep RL model for pairwise sequence alignment deployed on embedded edge device platforms such as 
the NVIDIA Jetson Nano Developer Kit and Digilent Arty A7-100T, containing Xilinx XC7A35T Artix-7 FPGA. 
The RL agent is modelled as a dueling DQN architecture, the number of parameters in which are optimised 
using a technique presented in this work for neural network model size reduction using AutoML20 for deep RL 
applications. The results are benchmarked on sequences from the publicly available Influenza sequences at the 
National Center for Biotechnology Information (NCBI) Virus Data Hub. EdgeAlign implementation source 
code is freely available on GitHub21.

Methods
Pairwise sequence alignment using deep reinforcement learning.  Deep RL is a very popular topic 
among machine learning enthusiasts and researchers, with varied range of applications such as robotics, auton-
omous driving, navigation, human-like behavior in AI, system modeling, etc.22. Unlike supervised learning, 
where the feedback provided to an agent (model) is correct set of actions for performing a task (classification), 
RL employs an agent to learn in an interactive environment by trial and error, using feedback from its own 
actions and experiences in form of rewards and punishments as signals for positive and negative behaviour, 
respectively. RL also differs from unsupervised learning in terms of the goals of the model. The goal of an RL 
model is to devise a suitable action model that maximises the cumulative reward of the agent for a wide range 
of test cases, while the goal in unsupervised learning is to find similarities and differences (anomalies) between 
data points. Most conventional RL algorithms are based on a tabular approach for choosing the best actions by 
observing the current environment or states. However, in many practical decision-making scenarios, the states 
are high-dimensional and often difficult to be modelled by traditional RL algorithms. On the other hand, deep 
neural networks are known to be excellent function approximators23, and therefore more suitable for modelling 
complex systems.

For the pairwise sequence alignment problem addressed in this paper, we have employed a deep Q-network 
(DQN) agent to estimate the scoring strategy for taking appropriate action in a given state. The DQN architecture 
explicitly separates the representation of state values and state-dependent action advantages via two separate 
streams. We have also used a dueling neural network architecture which consists of two streams that represent 
the value and advantage functions, while sharing a common convolutional feature-learning module24. The two 
streams are combined via a special aggregating layer to produce an estimate of the state (s)-action (a) value 
function Q(s, a). The key motivation behind this architecture is that it is not necessary to know the value of each 
action at every step; only the most advantageous action needs to be determined. The DNA sequences to be aligned 
were represented as 3D images, which were processed by the network. Each type of nucleotide (A, C, G, T) was 
converted to a 3× 3 pixel square with CMYK color representation. To separate the left, right, top, and bottom 
ends of the sub-sequences, 3× 3 empty pixels were padded. During training, the nucleotide representation was 
converted into RGB format for dimensionality reduction and ease of visualisation. The agent operates upon a 
finite-sized window i.e. subset of the sequences to be aligned, and takes appropriate action (forward, insertion 
or deletion) for the first nucleotide in each sub-sequence based on the information contained in the window. 
Each action incurs a suitable reward or penalty, as discussed below. The window was accordingly updated and 
slid over the length of the entire sequence, and the process was repeated to complete the alignment task. Since 
the window size is fixed, the number of computations, and therefore hardware resources required, are fixed for 
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any sub-alignment task. This is highly advantageous for larger sequences, as they can be processed using finite 
pool of resources.

Figure 1a illustrates the dataflow in EdgeAlign algorithm. Analysis of data in a window (of size W) starts 
from a prescribed starting point of both sequences, and the window is slid till it reaches the end of either of 
the sequences. x and y represent the current nucleotide indices for the first (Seq1) and second (Seq2) sequence, 
respectively. Figure 1b illustrates how the RL environment/state is formed and updated based on the predicted 
action. Figure 1c shows the 3 possible discrete actions of the RL agent in the pairwise sequence alignment 
problem. In case of forward action, the agent simply shifts the window to the right by one position for both the 
sequences, corresponding to finding a a match at the current index. The ultimate result could be either a true 
nucleotide match e.g. (i, iii, vii) or a mis-match e.g. (iv), however, the agent simply decided to go forward. In 
case of insertion, the agent inserts a gap in the second sequence e.g. (ii) and shifts the window to the right by 
one position for the first sequence, thus corresponding to insertion of an extra nucleotide in the first sequence 
and a gap in the second sequence. Similarly, in case of deletion, the agent inserts a gap in the first sequence e.g. 
(v) and shifts the window to the right by one position for the second sequence. These 3 actions will correspond 
to 3 different Q-values at the output of the deep Q-network.

Alignment score and reward policy.  EdgeAlign aligns two given sequences in such a way that we obtain 
maximum number of matches between the sequences. However, alignments with too many gaps or mismatches 
are not desirable. A commonly used metric to characterise the quality of the alignment is the BLAST alignment 
score. This rule-based metric assigns a numerical score to any alignment, with a higher score indicating better 
alignment. This alignment score is computed by assigning a value to each aligned pair of nucleotides and then 
adding these values over the length of the sequence. For nucleotide alignments, the default BLAST options25 
use a reward of + 1 for each match and a penalty of − 3 for each mismatch. The creation or opening of a gap in 
an alignment results in a negative gap-opening penalty of − 5 , with each extension of an existing gap incurring 
a lesser penalty of − 2 . The BLAST alignment score should also influence the reward system used for training 
the agent, since the alignment results from the RL tool would be evaluated using this scoring mechanism. In 
EdgeAlign implementation, the rewards (i.e. penalties) for mismatch (− 0.6) , gap opening (− 1) , and gap exten-

Figure 1.   (a) Overview of EdgeAlign algorithm, operated on two sequences (Seq1 and Seq2). x and y denote 
the current nucleotide indices for the first and second sequence, respectively, and W denotes the size of the 
window which is slid over the sequences, starting from the current nucleotide indexes. The next action is 
predicted using a deep neural network-based RL agent. (b) The deep Q network RL agent operates upon sub-
sequences in the current window (environment) and chooses a suitable action using the RL agent, earning 
a reward (or penalty) accordingly. Once the reward and action are determined, the agent moves on to the 
next window, which is updated based on the current action. The overall sequence alignment is performed by 
repeating these sub-alignments, until the agent reaches the end of either of the sequences. (c) The EdgeAlign 
RL agent can choose among the possible actions: forward (F), insertion (I), and deletion (D) to maximise the 
obtained rewards in an alignment task.
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sion (− 0.4) were down-scaled and chosen to be in the range of (− 1, 1) . The reward for a match was chosen to 
be + 1 in order to introduce a bias towards obtaining more matches. As an example alignment shown in Fig. 1c, 
there are 3 nucleotide matches (i, iii, vii), 1 mis-match (iv), 2 gap openings (ii, v) and 1 gap extension (vi). Thus, 
the total alignment score is the cumulative sum of the individual rewards, which in this case comes out to be 
(3× 1)+ (1× (− 0.6))+ (2× (− 1))+ (1× (− 0.4)) = 0.

Preprocessing.  EdgeAlign utilises a sliding window-based approach to employ RL for performing sequence 
alignment, and is therefore a sequential method wherein any decision or action once implemented for the sub-
sequences in a window, cannot be modified or undone as the window slides forward. Thus, the quality of the 
solution (i.e. alignment score) is greatly dependent on the starting position in each sequence, because the align-
ment procedure is performed only in one direction. We can remove such variability by applying pre-processing 
techniques used in conventional alignment methods (Clustal Omega and the MUMmer), such as the longest-
common substring (LCS)16. EdgeAlign uses this technique to find the longest substring which is common to 
both sequences. Using this longest-common substring (LCS) as the starting point, the alignment task is split into 
two sub-alignment jobs. For all sub-sequences to the left of LCS, the alignment task is performed in the back-
ward direction. On the other hand, for all sub-sequences to the right of LCS, the alignment task is performed in 
the forward direction. The aligned sub-sequences from both sub-alignment jobs are stitched back to the LCS, 
to obtain the overall alignment solution. Figure 2 illustrates the LCS preprocessing method. The computational 
time complexity of the LCS algorithm for two sequences of length m and n respectively, is O(mn). Thus, it may 
not be feasible to use this method when working with very large sequences (e.g. human genomes). In such cases, 
it may be advisable to bypass this preprocessing step and only proceed with the forward alignment.

Network architecture and training.  The DQN agent was modelled using a CNN with a dueling net-
work architecture. By representing the sequences as images, the task of determining reward and action for sub-
alignment within a window is posed as an image classification problem. CNN is the most widely used network 
architecture for image classification tasks due to advantages it affords in terms of dimensionality reduction, fea-
ture sharing, and pattern finding. Using the dueling method, the RL agent learns the scores of the states (value) 
and actions separately, thus helping improve the stability and convergence of the learning process. Figure 3 and 
Table 1 show the detailed network architecture and the model parameters, respectively. We used 4 convolutional 
block layers with ReLU output activation for identifying the features in the input image, each with an increas-
ing number of filters and granularity. Since we require a fixed size and flattened output at the end of the CNN 
operations, the filter shape of the last convolutional layer depends on the window size. The last layer of the model 
has 4 output neurons with linear activation corresponding to the state value and advantage values for 3 different 

Figure 2.   Illustration of longest common substring (LCS) preprocessing method. LCS provides the starting 
point for the alignment process. The forward and backward sub-alignment results are combined together to 
obtain the final alignment result.

Figure 3.   Illustration of network architecture ( W = window size). The filter shape at each step is represented by 
the dimension of the corresponding convolution block. Input to the network is an RGB image.
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actions. The value and advantage outputs are aggregated to yield the Q-values. In the implementation presented 
here, a single fully-connected layer (FC2) is used for computing both the value and advantage outputs. We could 
also design different networks for handling the value and advantage output streams separately, or introduce 
more fully-connected layers for computing the output of each stream in a branched manner. However, this 
would result in an increase in the number of parameters in the model, and therefore greater resource consump-
tion and inference time. For demonstrating the feasibility of our method, we have limited our study to a single 
fully-connected layer at the output.

The nature of the pairwise sequence alignment problem makes it easy to generate artificial DNA sequence 
data with controllably introduced mutations for training the RL agent. These sequences must be generated using 
a definite rule and should be able to mimic various mutations such as SNP (single nucleotide polymorphism), 
insertions and deletions (InDels). For this purpose, we generated various random sequences, and their cor-
responding paired sequence through introducing mutations using JC69 model to create SNP mutations26, and 
Zipfian distribution-based InDel length model for generating InDels27. This functionality was implemented 
using Python as this allowed us to easily integrate the sequence generator with our RL environment. We used 
Keras-RL28 as the RL framework for training the dueling DQN agent, implemented using Dueling DQNAgent 
from the Keras-RL framework with a Greedy policy for determining suitable actions. Figure 4 shows increasing 
trend in number of matches with increasing epochs, obtained by the RL agent for 2 different window sizes (50 
and 70) during a training session for sequences of length 1500.

Model size reduction using AutoML.  It is important that the model size for pairwise sequence align-
ment using EdgeAlign be minimal, so that the trained model could be implemented on an edge device. For a 
window size of 50, the implementation described in the previous section (Table 1) comprises of approximately 
1.36 M parameters, and is therefore not suitable for edge implementation. Pruning and quantisation are com-
monly employed methods for performing model compression29,30. However, it is often cumbersome to evaluate 
the importance of each neuron in the network for pruning, and usually requires manual fine-tuning. Another 
method for model compression is knowledge distillation31, wherein a pre-defined smaller network is trained 
using a fully-trained larger network as ground truth. This approach is similar to transfer learning, and requires 
setting up a fully-trained network. Quantisation is a well-known approach for compressing a model, by repre-
senting the model parameters using 8-bit integers instead of floating point numbers. This provides large sav-
ings in memory footprint for storing the model parameters, albeit with deteriorated model performance due to 
reduction of numeric precision and resolution. In pairwise sequence alignment, this is undesirable, because the 

Table 1.   Network architecture ( W = window size). ⌈∗⌉ denotes the ceiling function.

Layer Input size Filter shape Stride Padding

Conv1 3(W + 2)× 12× 3 9× 9× 32 3× 3 Same

Conv2 (W + 2)× 4× 32 6× 6× 64 3× 3 Same

Conv3 ⌈(W + 2)/3⌉ × 2× 64 3× 3× 64 1× 1 Same

Conv4 ⌈(W + 2)/3⌉ × 2× 64 ⌈(W + 2)/3⌉ × 2× 512 1× 1 Valid

FC1 512 128 – –

FC2 128 4 – –

Figure 4.   Increasing trend observed for the number of matches obtained by the EdgeAlign RL agent during 
training for window sizes of 50 and 70.
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alignment is performed in a sequential and unidirectional manner, and therefore errors in each alignment task 
for sub-sequences accumulate and degrade the overall model performance.

For a given labelled dataset, neural architecture search (NAS)32, is a suitable technique for automating the 
design of neural network architectures within a desired set of constraints e.g. maximum allowed model size, 
number of operations, latency etc. NAS only requires the search-space constraints to be specified, and a labelled 
dataset to be provided to the NAS tool for generating an optimal model that provides best performance under the 
user-specified constraints on that dataset. In this paper, we have utilised the power of NAS using AutoKeras, an 
open-source tool for performing the model size reduction. AutoKeras is an open-source AutoML system based 
on the Keras framework33. It provides a simple and effective approach for automatically finding top-performing 
models for a wide range of predictive modelling tasks, including tabular or structured classification and regres-
sion datasets.

The technique of AutoML is best suited for supervised learning applications with comprehensive, labelled 
datasets. On the other hand, RL frameworks rely on learning underlying rules in a training environment and do 
not require a labelled dataset. Moreover in the sequence alignment problem, the next pair of sub-sequences to be 
analysed (once the window is slid) will be decided by the current action predicted by the partially-trained model. 
Hence, the data is also influenced by the model, and it is therefore difficult to incorporate conventional NAS 
techniques for model size reduction in EdgeAlign. However, using the conventional deep-Q network presented 
in the previous section (e.g. model with window size of 50 and approximately 1.36 M parameters), it is possible 
to replicate the performance of this RL agent with a smaller model generated with AutoKeras. This is achieved by 
running the sequence alignment model on any given pair of input sequences and saving the intermediate states 
(window of sub-sequences) separately. Further, the pre-trained network is used to generate a labelled dataset, 
which consists of predicted actions corresponding to each of these input states. Next, we can feed this gener-
ated dataset to the AutoKeras framework for finding an optimal (i.e. reduced size) model architecture with far 
lesser number of parameters. In theory, this optimal model should be able to replicate the performance of the 
pre-trained network. This process can be summarised using the following equations:

where θ and θ ′ are the model parameters of the pre-trained and the reduced size model, respectively, s represents 
the input states, and f and f ′ represent the neural network functions for the pre-trained and the reduced size 
model, respectively. The actions predicted by the pre-trained network are used to assign labels, and used for train-
ing the network generated by AutoKeras. For reducing the input dimension, we also represented each individual 
nucleotide with a 2× 2 pixel square for the reduced size model. Using this technique, the pre-trained network 
for window size of 50 with approximately 1.36 M parameters was reduced to a network with approximately 98 
k parameters using AutoKeras. Our proposed technique is fully automated and does not require any manual 
fine-tuning or prior information regarding the reduced size model architecture, unlike quantisation or prun-
ing. The detailed network architecture of the reduced size model, benchmarking results and inference timing as 
compared to the pre-trained network are discussed in the next section.

Results and discussion
We evaluated the performance of EdgeAlign on publicly available Influenza sequences at the National Center for 
Biotechnology Information (NCBI) Virus Data Hub34. The NCBI online tool also provides the BLAST alignment 
result for a chosen pair of sequences. The objective is to compare the alignment score obtained by the NCBI 
online tool and EdgeAlign. For fair benchmarking, we analysed the following error metric (E) for a given pair 
of input sequences:

where R denotes the alignment score obtained using EdgeAlign, and G denotes the alignment score obtained 
using the NCBI online tool (ground truth). We evaluate the mean error for the target dataset (N pair of 
sequences): 1N

∑

i Ei . This evaluation was performed on a dataset comprising of 40 randomly chosen sequences, 
with 5 different window sizes. Further, we deployed the DQN network on the NVIDIA Jetson Nano Developer 
Kit and obtained the inference time required for predicting a single action. The NVIDIA Jetson Nano Developer 
Kit is a small (69× 45 mm), powerful computer with Jetson Nano 2 GB module (128 core NVIDIA Maxwell GPU, 
Quad-core Arm Cortex-A57 MPCore processor, 2 GB LPDDR4 Memory) that consumes less than 5 W power 
and is suitable for edge-computing applications. Table 2 and Fig. 5 summarise the benchmarking results on the 
NCBI Virus Data Hub dataset. As evident from the results, the mean error decreases with an increase in the 
window size. With a larger window, the agent can observe more sequences and take a more informed action. This 
increased awareness leads to better results as the chosen actions are more reliable for securing higher rewards over 
the length of the sequence. However, it also increases resource consumption and consequentially, the inference 
time. These trade-offs must be accounted for while choosing the window size and device for edge implementa-
tion. For this study, we performed model size reduction using AutoKeras for 2 different window sizes: 50 and 
70. Table 3 shows the resulting network architecture and the model parameters obtained for a window size of 
50. The benchmarking results on the NCBI Virus Data Hub influenza dataset and the inference time and mean 
error obtained from the optimised models are shown in Table 4.

(1)f (s, θ) ←→ AutoKeras ←→ f ′(s, θ ′)

(2)f (s, θ) ≈ f ′(s, θ ′), |θ ′| ≪ |θ |

(3)E =

{

0, R ≥ G
G−R
G R < G
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Table 2.   Benchmarking results of DQN networks on the NCBI Virus Data Hub influenza dataset.

Window size Number of parameters Inference time (ms) Mean error (%)

30 906,116 15.67 19.19

40 1,102,724 16.96 16.18

50 1,364,868 18.36 15.01

60 1,561,476 21.33 13.12

70 1,758,084 25.77 12.47

Figure 5.   Benchmarking results on the NCBI Virus Data Hub influenza dataset.

Table 3.   Network architecture of the optimal AutoKeras model (window size: 50).

Layer Input size Filter shape Stride Padding

Conv1 100× 4× 3 3× 3× 32 1× 1 Same

Conv2 100× 4× 32 3× 3× 32 1× 1 Same

Max pooling 100× 4× 32 2× 2 2× 2 –

Conv3 50× 2× 32 3× 3× 64 1× 1 Same

Conv4 50× 2× 64 3× 3× 32 1× 1 Same

Max pooling 50× 2× 32 2× 2 2× 2 –

Flatten 25× 1× 32 – – –

FC1 800 64 – –

FC2 64 4 – –

Table 4.   Benchmarking results of pre-trained DQN and optimised model generated using AutoKeras on 
the NCBI Virus Data Hub influenza dataset. The computations were performed on the NVIDIA Jetson Nano 
Developer Kit with floating point precision.

Window size 50 70

Model Pre-trained DQN AutoKeras Pre-trained DQN AutoKeras

Number of parameters 1,364,739 98,628 1,758,084 119,108

Inference time (ms) 18.36 2.32 25.77 9.82

Mean error (%) 15.01 17.98 12.47 11.79
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The reduced size model generated with AutoKeras is suitable for edge deployment. We deployed and evaluated 
performance of the model with window size of 50 on some representative edge platforms. To evaluate perfor-
mance on a low-cost embedded platform with very limited resources, we chose the 32F746GDISCOVERY Dis-
covery kit containing the STMicroelectronics Arm Cortex-M7-core-based STM32F746NG microcontroller with 
1 MB of Flash memory and 340 kB of RAM. The AutoKeras generated model was exported as a TensorFlow Lite 
model (.tflite), and converted to a header file (.h) that can be processed by TensorFlow Lite for Microcontrollers 
framework19. During run-time, we first read both sequences from a host computer using an UART port. Next, 
we invoke the TesorFlow Lite model and perform sequence alignment on the edge device. Finally, we send the 
list of actions computed by the model back to the host computer via the same UART port. A pySerial (Python 
serial port extension) link was setup on the host computer interface to navigate this communication. Presently, 
TensorFlow Lite for Microcontrollers does not support fixed-point precision. Using 8-bit integer representation 
resulted in a model of size approximately 100 kB for window size 50. However, as expected the reduction of 
numeric precision resulted in large errors, with approximately 70% reduction in number of matches found as 
compared to the pre-trained DQN network. Therefore, it is necessary to use floating-point precision for repre-
senting the model, and hence a microcontroller device cannot be used as the edge platform.

We then evaluated the model performance on a more capable embedded system, namely a field program-
mable gate array (FPGA) device. For this purpose, we chose the Digilent Arty A7-100T, containing Xilinx 
XC7A35T Artix-7 FPGA. The program instructions and model data are stored in the onboard DDR3 memory, 
and the block RAM (BRAM) is reserved for implementing custom hardware accelerator IPs. We observed the 
inference time for predicting a single action with the AutoKeras model of window size 50 to be 2.05 s for 100 
MHz clock. The mean error on the FPGA remains same as before since all the computations were performed 
in floating-precision. To improve the performance, we implemented a CNN-layer accelerator to perform the 
convolution operation based on the row-stationary approach, inspired by the Eyeriss architecture35, which is 
an energy-efficient reconfigurable accelerator for deep convolutional neural networks. Such a design allows us 
to maximise parallelism and data reuse in the convolution operation. This IP was designed and implemented 
using the Xilinx Vivado HLS tool (version 2021.2), and was integrated with the on-chip MicroBlaze (32-bit RISC 
soft processor) core using the Xilinx Vivado tool. The reference code and detailed documentation for porting 
TensorFlow Lite model to MicroBlaze core is available on GitHub36. The corresponding TFLite kernels were also 
modified to invoke the custom IPs. This resulted in a speed-up factor of 2 X, and inference time of 1 s for 100 
MHz clock. While this is considerably slower than the low-cost GPU (NVIDIA Jetson Nano Developer Kit), the 
ability to deploy sequence alignment algorithms on embedded systems such as microcontrollers and FPGAs 
presented in this work enables the use of such platforms for low-cost bioinformatics applications. Table 5 shows 
the resource utilisation for the FPGA implementation, with and without the usage of custom accelerator IPs. For 
interested readers, a more detailed report about the hardware implementation and design of custom accelerators 
used in this work is provided on GitHub37.

A common feature of deep reinforcement learning-based implementations for sequence alignment reported 
in literature15,17,18, is that none of them are deployed on edge devices, and therefore relevant performance metrics 
such as inference time (per action) are not reported. The implementation reported by Jafari et al. uses a model 
with > 33 K parameters15, and Ramchalam et al. reported a model with > 0.19 M parameters17. Model size was 
not reported for the implementation shown by Joeres et al.18. All these implementations were based on multiple 
sequence alignment and used SP score (sum-of-pairs) as the alignment scoring metric. The pairwise sequence 
alignment implementation by Song et al.16 used a model with > 1.38 M parameters, with a simulation based 
inference timing of 14 ms. The alignment score was evaluated using Exact Matches metric. The EdgeAlign model 
uses BLAST score as the alignment score, and the model size of approximately 98 k parameters and inference 
time of 2.32 ms per action (AutoKeras with window size of 50, implemented on NVIDIA Jetson Nano Developer 
Kit) are better than the implementation reported by Song et al.16.

Conclusion
In summary, this work presents a method to develop compact deep RL models using AutoML for performing 
pairwise DNA sequence alignment on embedded edge devices. We has demonstrated a novel method based on 
AutoML for reducing model size for deep reinforcement learning, while preserving floating-point precision for 
greater accuracy. The models thus produced have an order of magnitude lesser number of trainable parameters 
compared to deep RL models designed using conventional DQN architecture, and the use of Keras-RL library 
further streamlines the design and training process and enables easy debugging of the code. EdgeAlign, the RL-
based sequence alignment tool presented in this work, is capable of processing sequences of arbitrary lengths 
with fixed resource utilisation, albeit with a trade-off in inference time for longer sequences. The performance 
results for EdgeAlign are benchmarked using the publicly available NCBI Virus Data Hub dataset to evaluate 
the trade-off between accuracy and throughput. Additional improvements may focus on further optimisation 

Table 5.   Resource utilisation for the Arty A7-100T FPGA implementation.

Resources in Arty A7-100T FPGA 36kbit BRAM DSP slices Flip-flop LUT

Maximum available 135 240 126,800 63,400

Without hardware acceleration 13 5 12,922 11,363

With hardware acceleration 51 89 29,012 25,513
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of the reward system and model architecture, to improve inference time and reduce resource utilisation. The 
window size could also be made adaptable to account for diversity in the input DNA sequences i.e., if the input 
sequences are less diverse, we could use a shorter window size. This parameter can be adjusted during run-time, 
based on live performance of the model. The AutoML based model size reduction technique can also be used in 
various other applications where inference time is a critical specification, such as visual applications including 
drone navigation, simultaneous localisation and mapping (SLAM), beamforming, etc.

Data availability
The sequences used for benchmarking EdgeAlign performance were obtained from the publicly available Influ-
enza sequences at the National Center for Biotechnology Information (NCBI) Virus Data Hub34. FASTA format 
files of the sequences analysed are available on GitHub21: https://​github.​com/​aryan​lall11/​EdgeA​lign/​tree/​master/​
Influ​enza.
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