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Non‑invasive monitoring of T cell 
differentiation through Raman 
spectroscopy
Nicolas Pavillon 1* & Nicholas I. Smith 1,2*

The monitoring of dynamic cellular behaviors remains a technical challenge for most established 
techniques used nowadays for single‑cell analysis, as most of them are either destructive, or rely on 
labels that can affect the long‑term functions of cells. We employ here label‑free optical techniques to 
non‑invasively monitor the changes that occur in murine naive T cells upon activation and subsequent 
differentiation into effector cells. Based on spontaneous Raman single‑cell spectra, we develop 
statistical models that allow the detection of activation, and employ non‑linear projection methods 
to delineate the changes occurring over a several day period spanning early differentiation. We show 
that these label‑free results have very high correlation with known surface markers of activation and 
differentiation, while also providing spectral models that allow the identification of the underlying 
molecular species that are representative of the biological process under study.

Measurement techniques in biology are always subject to trade-offs between maximizing their specificity and 
spatio-temporal resolution, minimizing their invasiveness, while at the same time ensuring a sufficient through-
put, both in terms of data rate and sample amount for statistical significance. In the context of single-cell data 
acquisition, the well-established technique of fluorescence-activated cell sorting (FACS) has provided numerous 
invaluable results thanks to its high specificity, based on fluorescent dyes and very high  throughput1. Recent 
commercial instruments can reach several million cells per minute, multiplexed with up to a dozen fluorescent 
 signals2, owing to the commercial availability of a wide range of functionalized dyes. The coupling with advanced 
fluidics has also enabled high-throughput physical separation of different cellular phenotypes, which is standardly 
used in current wet lab protocols.

This approach is, however, reaching its limits in terms of multiplexing, as the amount of dyes that can be 
measured is limited by the bandwidth available for detection, and the spectral overlap between emission widths 
of each fluorescent dye, which require increasingly complex compensation procedures. Solutions circumventing 
these issues have recently been proposed through various technical means, such as intensity-based fluorescent 
barcoding with advanced compensation  procedures3, or the use of narrower emitters, including quantum  dots4 
or Raman  tags5. Nevertheless, positive isolation—implying that the target population is stained—can cause 
multiple issues, especially in the context of clinical applications. Negative isolation is also possible, but due to 
the complexity of the isolation cocktails, it is limited to purification of highly standard cell populations, making 
this approach not suitable for targeted applications.

Another technique that is becoming highly prominent in the field is single-cell sequencing, which allows 
extremely high specificity through a wide range of measured  parameters6,7. The technique however requires 
balancing the inner variability of the samples, in terms of individual expression, with the high cost per sample, 
which also limits the overall throughput. Contrarily to optical methods, these techniques are also destructive, 
which makes the study of dynamic behaviors challenging.

We show here how a purely optical label-free method, namely Raman micro-spectroscopy, can be used to 
study subtle cellular changes in a non-invasive  way8, and specifically study the activation and differentiation 
of live T cells. This technique provides a highly multivariate signal that is very suitable for combination with 
machine learning methods for advanced  analysis9. Since the signals are label-free, originating from endogenous 
contrast, it can be challenging to reach high specificity. Nevertheless, such approaches have recently been suc-
cessfully used for high-throughput cell  screening10,11, and applied to study the immune response of lymphocytes, 
either based on an imaging approach with a relatively low amount of  samples12, or a method relying on averaging 
the signal within a single  cell13, applied on T cell  lines14. A comprehensive study of the in vitro effects of various 
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inflammatory drugs on immune cells has recently been  reported15. Raman spectroscopy has also been employed 
ex vivo to measure the response of T cells upon LPS-induced  inflammation16.

We show here how label-free high-throughput single-cell Raman measurements can reach specificity high 
enough to be used to study in vitro T cell differentiation, and to decouple the effects of activation and differ-
entiation. We first demonstrate how our measurements correlate with standard marker expression, where the 
measurements display clear temporal patterns. We then study the effects of T cell activation, to show how it can 
be separated from the influence of differentiation, where each process can be identified by different dynamics 
and response. Finally, we further validate our results by comparing our signals with the ones from effector cells 
differentiated in vivo, and develop models that match the long-term temporal behaviors of differentiation.

Results
The results of this article were generated using a custom multimodal platform designed to acquire single-cell 
Raman spectra at high-throughput, parts of which were reported previously to assess the immune cellular 
responses of macrophage  cells11,17. To ensure high repeatability during the measurements performed across 
multiple days, the system was fully automated to allow data acquisition across multiple fields of view without any 
manual intervention (see Supplementary Fig. S1 and “Materials and methods” for details), yielding an acquisition 
rate in the order of 1000 cells/h, mostly limited by the exposure time of Raman spectra acquisition.

To monitor the early response induced by T cell activation and subsequent differentiation, naive murine 
CD4 and CD8 cells are cultured with artificial antigen-presenting cells (aAPCs) that bind to the T cell receptor 
(TCR) and provide primary and co-stimulatory signals. Cells are then measured separately every day with a 
daily throughput of 2000–2500 cells per phenotype where they are activated and differentiate into pre-effector 
cells over several days, as illustrated in Fig. 1A. Furthermore, to validate the protocol, cells cultured in parallel 
and treated identically, are used to measure the expression of surface markers that represent T cell activation 
(CD25/CD69) and differentiation (CD62L/CD44). Cellular Raman spectra are endogenous signals that originate 
from molecules located within cells, while the numerical aperture and spectrometer slit effectively suppress out 
of focus signals, together implying that surface markers do not directly contribute to that signal. On the other 

Figure 1.  Early T cell differentiation monitored with Raman spectroscopy. (A) Experimental protocol, where 
murine T cells are stimulated with artificial APCs and measured everyday during 5 days. (B) Average single-
cell Raman spectra (approximately 2000 cells per day and per type), showing that only small changes can be 
observed during the onset of activation. (C) Median fluorescence intensity signal derived from the expression 
of surface markers of CD4 cells over time, representative of T cell activation and differentiation. (D) UMAP 
decomposition of Raman data, where the gradual evolution of the signal upon activation can be readily 
observed. Differences between phenotypes (CD4/CD8) are also clearly visible. All results are representative of 
at least 3 experiments. (E) Quantification of the daily signal changes with the Mahalanobis-like distance. Curves 
are the average of 3 experiments, error bars indicate standard deviation.
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hand, considering that cell processes usually involve a cascade of molecules, the ones occurring in the cytoplasm 
and nucleus can be considered as upstream, and measured in the Raman signals, while surfaces markers are 
downstream indicators of related processes.

As Raman spectra are often complex and, as stated above, generated by all intracellular molecules, we employ 
dimensionality reduction methods to analyze our measurements. We focus on unsupervised methods in order 
to study the inherent trends and separations between groups that are present in our data without introducing a 
priori information in the models. We employ essentially principal component analysis (PCA), a well-established 
method to decompose multivariate data based on its variance, and uniform manifold approximation and projec-
tion (UMAP), a more recent method based on non-linear dimension reduction that has displayed great perfor-
mance to emphasize local structure in  data18. We then also generate classification models based on regularized 
logistic regression, which we identified as a very reliable method for cellular Raman  data19.

Raman indicators can monitor early T cell differentiation. Simple inspection of the average Raman 
signal per day (see Fig. 1B) shows that spectral differences between days are relatively small, and are essentially 
smaller than the cell-to-cell variation. There are nevertheless some tendencies that can be observed, such as 
the increase in overall signal, especially in the C–H stretching region after day 2, which can be attributed to 
the augmentation of cell size that occurs upon activation. This increase is concomitant with the peak of CD25 
expression, as shown in Fig. 1C, where the median fluorescence intensity (MFI) is displayed for different surface 
markers of CD4 cells, representative of cell activation and differentiation (the daily FACS plots from which the 
MFI are derived are displayed in Supplementary Fig. S2). The expression across the 5 days of stimulation is com-
pared with naive cells (corresponding to day 0) and in vivo effector cells, which are characterized by  CD62L−/
CD44+ expression in the case of CD4 cells.

To analyze the evolution of the intracellular content monitored by Raman, we consider the UMAP plots 
derived from all the data measured across 5 days, and displayed separately for each cell type in Fig. 1D, where 
the gradual changes can be readily identified in an approximately circular clockwise pattern. Interestingly, both 
phenotypes follow a very similar path, where they rapidly separate from naive cells upon activation, and cre-
ate various local clusters upon early differentiation by day 4, which is closely correlated with the overall CD25 
expression, which peaks by day 2 before slowly decreasing.

While UMAP is a very powerful tool that allows the study of the local data structure, its non-linearity can 
make interpretation difficult. We therefore also study the global structure in the PCA space, and computed the 
Mahalanobis-like distance of each day cluster to the naive state (see Fig. 1E), which shows that, as in UMAP, 
activated cells rapidly separate from naive ones, with the distance increasing by day 4, instead of getting closer, 
showing that the circular pattern of UMAP is not representative of global tendencies. Again, it is interesting to 
note that both CD4 and CD8 cells follow the same overall temporal behavior.

Activation yields significant changes in Raman spectra. In order to separately study the effects of T 
cell activation and early differentiation, we measured naive CD4 cells stimulated during 24 h with either aAPCs, 
or a cocktail of PMA/ionomycin known to bypass the TCR stimulation to activate multiple intracellular signal-
ing pathways that provides a very potent  stimulation20. We validated the cellular response at a population level 
by measuring the IL-2 secretion culture medium (see Supplementary Fig. S3). We then generated a multinomial 
supervised model that can classify activation as well as the stimulation methods (2500 samples per class for 
training). As displayed in the receiver operating characteristic (ROC) curves of Fig. 2A, generated by testing the 
model with 20% of the data, activation can be detected with very high accuracy (92.4%), although it is much 
more challenging to identify the type of stimulation, with a discrimination between aAPC and PMA/ionomycin 
treated groups of only approximately 70% accuracy. While this demonstrates the sensitivity of Raman to detect 
cellular activation, it also shows that the measured changes are mostly intracellular, as the TCR stimulation 
induced by aAPCs generates relatively small changes in the spectrum compared to the purely intracellular sign-
aling induced by PMA/ionomycin.

To further analyze the effect of activation, we consider the PCA decomposition of the data, where most of 
the variance induced by the effects of stimulation is located in PC2, as shown in Fig. 2B. Cells stimulated with 
PMA/ionomycin display higher scores than TCR stimulation, which is consistent with the external validation 
of IL-2 secretion which is also larger in that case, indicating a stronger activation at a population level (see Sup-
plementary Fig. S3), which suggests that the derived markers are correlated with the intensity of the activation 
response. The main molecular changes involved in the case of activation are represented by the loading vector of 
this component, as shown in Fig. 2C. The vector mostly indicates a loss of signal from DNA/RNA with several 
peaks representative of nucleic acids (792, 1376  cm−121,22) and backbone (1097  cm−123), whereas the few positive 
peaks indicate an increase of amino-acids (877, 1127  cm−124,25) and protein structure (1405  cm−126) upon stimu-
lation, which is in agreement with recent results reported for PMA  stimulation15. It is also possible to identify 
strong contributions from  CH2 stretching, either symmetrical (2852  cm−1) or asymmetrical (2949  cm−1)27. On 
the other hand, there is surprisingly only little agreement between these results and what has been previously 
 reported12,14, perhaps due to the difference in cell type; DO11.10 TCR transgenic mice in Ref.12, Jurkat cell line 
in Ref.14, compared to C57BL/6N wild type mice used in our study. We also note a significantly larger sample 
size employed here.

CD4 and CD8 cells follow a similar path towards differentiation, but are getting gradually sep‑
arated. The UMAP plots displayed in Fig. 1D showed that cells (both CD4 and CD8) follow a general trajec-
tory upon activation, but the details are hard to visualize due to the large amount of data points in the plot. The 
results separated by days are displayed in Fig. 3A, where the large changes that occur can be readily identified. At 
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Figure 2.  Detection of T cell activation. Cells activated through chemical means or TCR stimulation are 
compared to resting (unstimulated) cells. (N = 2500 per class for training) (A) ROC curve of classification 
performance. (B) Single-cell populations distribution along the PCA scores of PC2, which contains most of the 
variance related to activation. (C) Loading vector of PC2.

Figure 3.  Cellular evolution over 5 days upon activation. (A) UMAP plots of T cells stimulated across several 
days, displayed separated by day. (B) Parallel measurements of the expression of surface markers for activation 
(CD25/CD69) and early differentiation (CD44/CD62L) separated per day, with cell types, and corresponding 
FACS panel showing activation/differentiation. The results are representative of at least three experiments.
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day 0, cells are contained in a fairly localized region in the upper-right corner of the projection, and both phe-
notypes are mostly overlapped, without much difference between them. As shown in the corresponding FACS 
plots (see Fig. 3B), cells are resting (i.e. non-activated, characterized by  CD25−/CD69−) and are in a naive state 
(characterized by  CD62L+/CD44−), as expected by the purification procedure.

Upon activation, cells follow a downward trend (day 1), and reach the extreme lower-left corner of the projec-
tion plots by day 2, which corresponds to the peak of activation, with high expression of both CD25 and CD69 
(see Fig. 1C). It is interesting to note that a small percentage of cells (< 10%) remains in a resting state, which is 
also visible in the UMAP plots as the small cluster located in the upper-right corner. Interestingly, resting CD4 
and CD8 cells are in different locations at day 2, implying a difference in the spectral signature of activation for 
the two phenotypes. CD4 and CD8 cells are separated during the activation period, and CD8 cells appear to be 
following a faster path than CD4 ones, which would be consistent with reports that CD8 cells differentiate more 
 quickly28. Each phenotype is also rather homogeneously distributed, which is consistent with the distribution 
in CD62L/CD44 expression plots.

After day 2, CD4 also reach the extreme lower-left of the UMAP plots (day 3), and by early differentiation (day 
4), cells are starting to concentrate in small sub-clusters, and both phenotypes are completely separated. At this 
point, cells are not expressing CD69 anymore, which is representative of early activation. CD25 is also slightly 
decreasing, and sub-populations can be identified in differentiation markers, with most cells being  CD62L+/
CD44+, as in day 2, but another  CD62Lmid/CD44+ population starts to appear, in particular in CD4 cells. This is 
consistent with the emergence of a pre-effector population, which is characterized by high CD44 expression, and 
the identification of two main sub-populations, i.e. ‘central memory’ (CM) cells that are  CD62L+, and ‘effector 
memory’ (EM)  CD62L−  cells29, where CD4 effectors are mostly composed of EM cells, consistent with in vivo 
conditions, as discussed below.

To confirm that the observed changes are indeed due to biological effects, we also measured Jurkat cells over 
5 days without stimulation, and performed UMAP decomposition, as previously. As shown in Supplementary 
Fig. S4, while some structure can be identified, the cell distribution over different days is mostly homogeneous, 
without any identifiable temporal pattern, showing that no external effect is inducing the trends observed for 
cellular activation.

The results are also highly reproducible, as shown by the plots of different experiments (see Supplementary 
Fig. S5), where independent decompositions lead to similar distributions, and where all the temporal trends 
discussed above can be identified too. Finally, we performed an experiment where the surface marker expression 
was measured every day to confirm the trends identified in Fig. 3B (see Supplementary Fig. S2). It is possible to 
see that most expression profiles are rather continuous as also illustrated by their MFI in Fig. 1C. We do observe 
that CD62L drops abruptly on day 1, however this is an effect known to occur upon early  activation30. Levels on 
later days (day 6, see Supplementary Fig. S2) also show that measurements performed later are not necessarily 
relevant for biological interpretation, as activation levels further drop, which is a known effect of in vitro stimu-
lation, where re-stimulation is often required. We could also observe that cell viability significantly decreased 
after day 5, especially in the case of CD8 cells.

To further study the changes occurring upon activation and early differentiation, we also quantitatively 
observed the score evolution of the first 12 components of the PCA decomposition (see Supplementary Fig. S6). 
It is possible to see that most scores have very clear temporal trends that match behaviors identified in the MFI 
of surface markers, again showing the correlation between the cellular response as measured by the endogenous 
Raman signal and the activation/differentiation state as measured by surface markers. Several scores for example 
reach an extreme value at day 2, the peak of activation, and maintain extreme levels (see PC1, 2, 3, 5, 6), while 
others reach extreme values at day 1 or 2, and return to basal levels afterwards (see PC4, 8, 11, 12). However, the 
complex behavior of each component, which is linked to a loading vector that contains multiple bands related 
to different molecular species (as in Fig. 2C), makes the derivation of quantitative tendencies challenging. These 
results also show the degree of reproducibility provided by our approach, as the displayed values are averages 
over several weekly experiments.

Ex vivo effector cells are mostly closer to naive than in vitro stimulated cells. To further con-
firm how our previous results could be related to changes occurring in the case of cells differentiated in vivo, we 
separately retrieved naive and effector cells from CD4 populations by fluorescent sorting, according to the gates 
indicated in Fig. 4A. As fluorescent dyes can greatly disturb Raman signals, we first checked that the selected 
dyes had no influence on the cellular spectra. Raman measurement of control cells compared with cells stained 
with each individual dye did not show any significant difference and spectral differences were well below the 
standard deviation of cell-to-cell variations, with differences being within only a few percent of the whole signal 
(see Supplementary Fig. S7).

We first analyzed the Raman spectra to assess the level of differences that are present between naive and effec-
tor cells. While there was no substantial separation between the two populations in unsupervised decomposi-
tion such as PCA, it was possible to generate models that can accurately separate the two types with over 90% 
accuracy, as shown by the ROC curves (see Fig. 4B), demonstrating that there are substantial spectral differences 
between the two populations.

The spectral data from sorted cells was then projected onto the UMAP derived in Fig. 3A to compare the 
ex vivo cells with the ones previously stimulated in vitro (see Fig. 4C). As expected, naive cells extracted from 
both methods (negative MACS depletion and fluorescent sorting, respectively) are projected onto the same 
region. Similarly, effector cells appear to be mostly located in the same region as naive cells, which would indicate 
that the separation that is observed with in vitro stimulation is primarily due to activation, as ex vivo effector 
resting cells are not located in the same region (bottom-left). However, it is interesting to note that the cell 
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distribution is very close to the CD4 cells differentiated at day 4 (see Fig. 3A), where the two largest clusters are 
located at identical places as effector cells, as shown in Supplementary Fig. S8, where the main sub-population 
are highlighted with their corresponding Raman spectra. Interestingly, differences such as the larger overall 
spectral intensities in the case of activated cells can be identified, as previously.

Linear models allow the derivation of molecular indicators of differentiation. While the analy-
sis presented above shows the ability of single-cell Raman measurements to detect the small changes occurring 
upon T cell activation, it is not possible to derive molecular insights from the UMAP decomposition due to its 
high nonlinearity. Similarly, classification models as used in Fig. 2 or Fig. 4B are not suited to study non-binary 
cases which occur in gradual biological transitions. For this reason, we also use a partial least square (PLS) model 
where we employ a response that matches the distance that was previously measured between days (see Fig. 1E), 
where it gradually increases in the first 2 days before reaching a plateau, as displayed in Fig. 5A. This makes it 
possible to find a multivariate vector that provides scores matching the behavior occurring during activation, 
which can also be used for analysis.

The resulting model fits the defined response well, as shown in Fig. 5B, where the scores are in good agreement 
with the response, although some batch effects can be identified, in particular on day 2 and 4. This can also be 
explained by the fact that both CD4 and CD8 cells are included in the model, while it was previously identified 
that the two phenotypes were especially separated on those days (see Fig. 3A).

The resulting loading vector, which represents the linear response that creates scores matching the increas-
ing distance between cellular populations upon activation, is shown in Fig. 5C. The vector is quite complex and 
contains a large amount of features, which is expected as it originates from a more advanced model. Nevertheless, 
the first striking point is that it very different from the PCA loading vector shown in Fig. 2C that represented 
activation, showing that other phenomena are involved. The interpretation is however quite difficult due to the 
complexity of the vector, which can make band assignments complicated, with the risk of over-interpreting some 
of the peaks observed. Furthermore, the projection is here performed on the whole data average, while it has 
been shown that multiple sub-populations are present, with distinct spectral profiles.

Figure 4.  Comparison of cells differentiated in vitro and ex vivo effector cells. (A) CD62L/CD44 expression 
of  CD4+ cell populations, with the gates employed for sorting naive and effector cells. (B) ROC curves of 
classification performance between naive and effector cells (N = 4000 for each class for training, test performed 
on 20% of the data). (C) Density plot of naive and effector cells retrieved by fluorescent cell sorting projected on 
the UMAP derived from cells displayed in Fig. 3A. Original naive CD4 cells retrieved by magnetic sorting (day 
0, see Fig. 3A) are also displayed for comparison.

Figure 5.  PLS model representing early differentiation. (A) Distance between cellular sub-populations, 
measured as a Mahalanobis-like distance and assigned matching response. (B) Single-cell scores derived from 
the PLS model, displaying the same increasing values as distances. (C) Resulting loading vector of the model, 
where peaks are representative of the activation and early differentiation.
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Discussion
Optical spectroscopy has the ability to retrieve signals that are very rich in information, as illustrated by the 
results above, where changes occurring during cellular differentiation can be identified and used to monitor live 
cells. The power of such an approach becomes particularly visible when large numbers of cells are measured, 
which ensure high reliability of the statistical methods used to analyze the data and to perform predictions on 
new data sets. This can, however, be challenging to implement as it can be achieved realistically only with fully 
automated systems that are not commercially available at this stage.

There is a duality in how spectroscopic measurements can be used, being composed of a multitude of sin-
gle bands that average together to create a complex and continuous signal representing the contribution of all 
molecules contained within the excitation volume. It can be exploited purely as a highly multivariate signal, to 
generate accurate models for classification, and to allow the identification of intricate behaviors with the use 
of nonlinear methods such as UMAP. Conversely, single bands can be used directly to interpret the molecular 
mechanisms of the phenomenon under investigation. While this aspect is used extensively in chemistry, where 
precise molecular changes can be studied, individual peak identification can be very challenging with spectra 
from biological samples, where many molecular species are co-located, superimposing their contributions. Nev-
ertheless, even with challenging samples it is still possible to study specific band relevance by using the vectors 
resulting from multivariate analysis, as obtained here through PCA, logistic regression or PLS.

While the information content in the vibrational spectrum is very high, its specificity for functional studies 
can be limited. As illustrated by the UMAP plots in this article, small cellular changes can be readily analyzed, 
but the degree of separation is far less clear than what is classically obtained for example in the case of RNA-seq 
analysis, where phenotypes can typically be identified through standard cluster  analysis31. However, one key 
advantage of optical methods is non-invasiveness, which allows for parallel analysis with complementary meth-
ods, which was not directly used in this study. It is possible for example to pair the label-free measurements at 
single-cell level with functional analyses based on immuno-fluorescence17.

The multivariate analysis and diverse ways of analyzing the data make it possible to first study relatively strong 
responses such as T cell activation, where very accurate detection models can be generated. Thanks to the clarity 
of the model, it is also possible to delineate the underlying molecular changes occurring upon activation, and 
identify a dose–response behavior depending on the strength of the stimulation.

More complex responses such as differentiation are more difficult to analyze, partly because of their longer 
dynamics. The use of non-linear algorithms coupled with larger data sets allows the identification of the day-
to-day differences. While it is not possible to identify specific molecular species in that case, there are still 
clear specific changes with a dependence on the phenotype. There is also a very strong correlation between the 
label-free results and the expression of surface markers known to represent T cell activation and differentiation, 
demonstrating a strong consistency with expected known biological behaviors. This is especially interesting con-
sidering that, as stated above, the Raman signals themselves are not expected to be directly related to these surface 
markers, but rather are allowing identification of subtle cell states by way of other endogenous molecular changes.

In addition to these general trends, this approach is also specific enough to separate the effects of activation 
and differentiation, as shown by comparing the population distributions of stimulated cells with ex vivo effector 
cells, where clear differences between naive and effector cells can be identified with very accurate classification, 
and highly consistent results are obtained between ex vivo effector cells and in vitro pre-effector ones.

As demonstrated above, optical spectroscopy can be a very powerful approach for single live cell analysis, 
especially when coupled with automation to reach high numbers for statistical relevance and dynamic analysis. 
The measurement, rich in endogenous features, can be used in various ways as it provides both a highly multivari-
ate signal for machine learning and quantitative variables for molecular interpretation. It is also specific enough 
to allow non-invasive identification of sub-clusters within homogeneous cellular populations.

Finally, we proposed at the end of our manuscript a method to attempt to reach molecular specificity in 
the case of highly complex behaviors, by employing PLS to model the surface marker expression and obtain 
a projection vector that can represent cellular differentiation. While the results obtained in this last part are 
highly preliminary, we believe that such approaches could further push the applicability of single-cell optical 
spectroscopy, by bridging the gap between the two usual fields of study that are usually employed in analytical 
chemistry, namely machine learning and molecular interpretation, to increase the specificity of these methods.

Materials and methods
Mice. C57BL/6N mice were purchased from Japan SLC and maintained under specific pathogen-free condi-
tions. This study followed ARRIVE guidelines on the use of experimental animals. All animal experiments were 
conducted with the approval of the Animal Research Committee of the Research Institute for Microbial Diseases 
in Osaka University, Japan (approval no H29-02-0), and in accordance with the guidelines of the Animal Care 
and Use Committee of Osaka University. Female mice aged between 8 and 12 weeks were used for all experi-
ments.

Cell preparations. Single cell suspensions of splenocytes are obtained by filtering spleens from typically 2 
mice through a 100 μm cell strainer with RPMI 1640 medium (Nacalai). Erythrocytes are eliminated through 
immersion in a RBC lysis buffer (Biolegend) on ice for 3 min, and naive CD4 and CD8 T cells are then purified 
with dedicated MACS kits (Miltenyi Biotec) used according to the manufacturer’s instruction with a manual 
separation column. Full CD4 populations (naive and effector) are retrieved with the same kit without employing 
CD44 microbeads.

For short (24 h) stimulations, T cells are suspended in a culture medium composed of RPMI 1640 supple-
mented with 10% fetal bovine serum (FBS, Gibco) and penicillin/streptomycin (Sigma-Aldrich) with 100 U/
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mL and 100 μg/mL, respectively. Cells are incubated in tissue-culture 96-well plates (Thermo Fisher, 100 μL per 
well) at a density of  106 cells/mL, at 37°C in a humidified atmosphere containing 5%  CO2. They are stimulated 
either with a cocktail of phorbol 12-myristate 13-acetate (PMA) and ionomycin (Sigma-Aldrich) at 10 ng/mL 
and 0.4 μM, respectively, or with CD3/CD28 activation beads (Gibco) prepared at a 1:1 density. Before further 
experiments (FACS or Raman measurements), beads are removed with a magnet (Thermo Fisher).

For long incubations (over 1 day), T cells are suspended in a culture medium prepared as above, but also 
supplemented with 55 μM of 2-mercaptoethanol (Sigma-Aldrich) and 6 ng/mL of recombinant murine IL-2 
(PeproTech). Stimulation is performed with CD3/CD28 beads prepared at a 1:1 density, and the medium is 
refreshed and cells split to maintain viability when deemed necessary, typically every 2 days.

Jurkat cells (Riken BioResource Center) are cultured in RPMI 1640, and are plated on 10 cm tissue-culture 
dishes (Thermo Fisher) at a density of 1–2 ×  105 cells/mL and passaged every 2–3 days. All experiments were 
performed with cells from passage 10 to 13.

Raman measurements. Cells are washed and resuspended at a density of 0.5–1 ×  106 cells/mL in phos-
phate buffered saline (PBS, Nacalai) supplemented with 2% FBS. They are then plated in 4-well micro-inserts 
(Ibidi) fixed on 35 mm quartz dishes (Matsunami). Raman measurements are performed with a system described 
 previously13,32 that was modified to fully automate measurements.

Briefly, a 532 nm laser (Coherent) is used for excitation, by focusing it with a 60 × objective (Nikon, water 
immersion, 1.27 NA), yielding a power at the sample of 487.5 mW/μm2. The back-scattered light is collected by 
the objective, filtered with dichroic and notch filters (Semrock) before being injected into a 500 mm Czerny-
Turner spectrometer (Andor) with a 300 lp/mm grating that spreads the spectral information onto a scientific 
CMOS Orca 4.0 detector (Hamamatsu), yielding a spectral resolution of approximately 10  cm−1. The spectrum 
of one single cell is acquired with an exposure time of 3 s.

Cells are simultaneously imaged with an off-axis digital holography  system33 that delivers quantitative phase 
images (QPI) that are employed to selectively target cells in the field of view. They are excited with a Raman spot 
that is rapidly scanned within a region that covers approximately 60–90% of the cell body to retrieve a more 
representative single-cell spectrum, as previously  described13.

The system is employing a motorized stage to automatically move between regions in a sequential manner 
(see Supplementary Fig. S1). In each field of view, cells are detected by segmentation of the QPI signal with a 
deep-learning based  algorithm34 that ensures high reliability in detection of target cells for Raman measurements. 
The system is also periodically refocused by employing the digital propagation feature of QPI to compute a met-
ric based on the variance of the amplitude  image35 without requiring any sample movement during scanning.

Antibodies, flow cytometry and cell sorting. All antibodies were employed according to manufac-
turers’ instructions. Anti-mouse PE conjugated CD4 (GK1.5), APC conjugated CD25 (PC61.5), Super Bright 
600 conjugated CD62L (MEL-14), APC-e780 conjugated CD44 (IM7) were purchased from eBiosciences. Anti-
mouse PE-Cy7 conjugated CD8 (53–6.7), FITC conjugated CD69 (H1.2F3), BV711 conjugated CD62L (MEL-
14), BV421 conjugated CD44 (IM7) were purchased from Biolegend.

Cells are washed and resuspended at  106 cells/mL in staining buffer (Thermo Fisher) and incubated with all 
surface markers for 1 h on ice. Viability is assessed by adding 0.5 μg/mL of 7-AAD (Biolegend) at least 10 min 
before measurements. Cells are analyzed on an Attune NxT Cytometer (Thermo Fisher), and compensation is 
performed with OneComp beads (Thermo Fisher) stained with single dyes. Sorted cells are purified on a Sony 
SH800S. All data is analyzed with FlowJo v10 (TreeStar).

Data analysis. The original processing of Raman data is performed with scripts developed in the laboratory 
for Matlab (Mathworks). Spectra are first baseline corrected with cubic spline interpolation, and cosmic rays 
are removed through median filtering. The spectral range is then calibrated by interpolating spectra on a com-
mon grid based on a spectrum of pure ethanol measured each day. The silent region (1800–2700  cm−1) is then 
removed. If necessary, outliers (mostly composed of empty spectra) are manually removed by identifying them 
with PCA.

All processing is then performed with the R  program36. Principal component analysis is done with built-
in functions. Receiver operating characteristic (ROC) calculations, logistic regression, regularized with Lasso, 
uniform manifold approximation and projection (UMAP) and PLS are performed with the pROC37, glmnet38, 
uwot and mixOmics39 packages, respectively. UMAP is performed with a cosine distance metric, and applied 
on the first 25 principal components of the data. Other calculations are based on scripts developed internally.

Implementation details for Raman-based classification were given  previously19. Briefly, processed Raman 
spectra are used directly to train the models of regularized logistic regression, with the regularization parameter 
being selected with tenfold cross-validation to minimize the amount of variables while keeping the binomial 
deviance within one standard deviation compared to the average minimum. Test data is always independent data 
that was not seen by the model during training, and multinomial models are generated in a One-vs-Rest way.

The distance between sub-populations (clusters) is computed as a Mahalanobis-like distance defined as

where Xi is the mean value of the population i, and Si is its empirical covariance  matrix40.

(1)d2 ≡
(

Xi − Xj

)T(
Si + Sj

)

−1(

Xi − Xj

)

,
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Data availability
All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary 
Materials. The raw data and datasets acquired and generated during the current study are available from the 
corresponding author on reasonable request.
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