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Energy management system 
in smart buildings based coalition 
game theory with fog platform 
and smart meter infrastructure
Mohammed A. Saeed 1,2, Abdelfattah A. Eladl 1, Bilal Naji Alhasnawi 3, Saad Motahhir 4, 
Anand Nayyar 5, Mohd Asif Shah 6,7,8* & Bishoy E. Sedhom 1*

This paper proposes a central energy management system (EMS) in smart buildings. It is based on 
the coalition method for optimal energy sharing between smart buildings. Game theory is applied to 
obtain an optimal allocation of the building’s surplus energy on the deficient energy buildings using 
the Shapley value, which enables the unequal energy distribution based on the energy demand. 
The main objective is reducing energy waste while preserving the generation/demand balance. The 
fog platform with memory storage is applied, which handles all the measured data from the smart 
buildings through Wi-Fi-based communication protocol and performs the EMS program. The smart 
meter links the smart buildings with the fog-based EMS central unit. Two scenarios are implemented 
based on the difference between total deficient and surplus energy. Coalition game theory is applied 
for optimal surplus energy allocation on deficient buildings when the total energy surplus is lower than 
the total energy deficient. Also, there is a one-to-one relationship between the surplus and deficient 
building; if the surplus energy is larger than the deficit, the extra surplus energy is stored for further 
usage. The proposed EMS is applied and tested using a smart city with 10 buildings in the MATLAB 
program. A comparison between the result obtained with and without applying the proposed method 
is performed. The performance of the fog platform is introduced based on the run and delay time and 
the memory size usage. The results show the effectiveness of the proposed EMS in a smart building.

Many scientists agree that global warming poses the greatest threat to humanity. The United Nations Intergov-
ernmental Panel on Climate Change has issued a warning despite the Paris Agreement. The world is not doing 
nearly enough to meet the goal of keeping the temperature increase below 1.5 °C1. There needs to be significant 
involvement from the building industry. On a global scale, it uses up more than a third of all energy produced, 
thirty percent of all greenhouse gases released, and forty percent of all natural  materials2. The United States 
Energy Information Administration reported that commercial and residential buildings rely heavily on electri-
cal appliances, lighting, heating, ventilation, and air conditioning (HVAC), making electricity the largest energy 
consumer in the building  environment3. Reducing energy usage and the accompanying problems requires an 
in-depth comprehension of the building sector’s energy consumption and environmental impact.

From this point, smart grids can manage energy generation, transmission, and distribution in real-time. 
It provides two-way communication between stakeholders, improving energy production, distribution, and 
 consumption4. Information regarding energy usage in real-time is of the utmost importance to attain the energy 
conservation objective. This information allows for more accurate planning of how much energy will be used at 
various times throughout the day. It is also incredibly helpful for energy conservation and cost reduction to use 
alternative energy sources, such as renewable sources within buildings. Internet of things (IoT) is the modern 
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term that emerged due to the tremendous development in smart grid technologies. When smart grids are com-
bined with IoT, the result is a system that is extremely dynamic and highly efficient in energy distribution and 
consumption. This system exchanges information by using sensors and other functions that are functionally 
analogous to improve efficiency and functionality while consuming less  energy5. The concept of smart grids 
began to be applied to new horizons, especially for electrical energy in buildings, to show the term smart build-
ings. Different smart energy devices and data analysis software are used to keep track of the environment and the 
energy consumption habits of building occupants to optimize building energy performance through automatic 
control that is central to the smart building technology  paradigm6.

Multiple strategies have been developed to reduce energy usage in intelligent environments. Frequently, 
these challenges are phrased as optimization problems with objectives such as lowering the system’s cost while 
ensuring the value of power flow constraints. Four main building energy management architectures are already 
in use. (A) Statistical models, (B) Architectures based on cloud computing, (C) Architectures based on smart 
meters, and (D) Architecture based on fog computing.

Training statistical models can forecast the energy consumption of different buildings. These methods are 
based on the predictions made by the trained models, which can be used to evaluate the actual effect of energy 
conservation measures, locate and solve problems, and incentivize people to reduce their energy use. Symbolic 
aggregate approximation (SAX) classifies the data of a building in several time windows, each of which displays 
a straightforward representation of a complicated, large dataset. The authors  in7 offer a modification to the 
standard SAX method in which they use regression models to construct a time matrix for different energy val-
ues. Then, separate the aberrant changes, which can aid in detecting energy-related irregularities, allowing for 
early intervention to prevent building accidents. The authors  in8 used generalized additive statistical modeling 
to predict gas consumption for two building datasets from two continents. Experiments were carried out on two 
distinct buildings; however, the quantity of findings from building one is restricted.  In9, case-based reasoning 
and SCADA are applied to a society based on multi-agent systems (MAS). All of a building’s energy use can be 
modeled by the MAS, thanks to the information it collects from various agents.

Fortunately, cloud computing, which is an on-demand, intermittent computing architecture, is emerging 
as a viable means of overcoming the aforementioned problems. For energy management in smart buildings, it 
is an essential resource for the full management of building-related information. It is a natural fit for building 
energy management in cases where most parameters are in real-time. Most cloud-based solutions aim to reduce 
energy use on the consumer end, but producers can reap savings by monitoring consumer habits and adjusting 
the output accordingly.

Swarm intelligence is integrated into fog nodes to evaluate the energy consumption of a smart house with 
 sensors10. This device keeps constant tabs on how much power individual home appliances use, alerting the owner 
whenever something unexpected occurs. The authors provide comprehensive simulation results to prove that 
their method is effective and timely. Authors  in11 use graph theory and clustering to characterize the temperature 
ranges within a building. To manage these extreme temperatures, an IoT slicing technique has been developed. 
With inputs from the building’s control room temperatures, the application applies game theory to ascertain 
the status of each IoT node and make necessary adjustments. While the authors make several intriguing sug-
gestions for regulating temperatures, they fail to provide the extensive experimental findings necessary to verify 
the algorithm’s effectiveness. The authors  in12 employ smart meters to keep tabs on several different Tunghai 
University buildings and then run all of that data via the renowned Hadoop system on a cluster of computers in 
real-time. Hadoop also uses distributed storage, which increases data capacity, to store sensory data. Authors  in13 
provided an automated cloud-based method that generates an intelligent structure pattern that can be utilized on 
several buildings. Still, no actual data indicates that the proposed strategy can also optimize energy on multiple 
buildings. To make a building "smart," the authors  in14 choose a modest approach and automate just one wall 
plug. Over time, various outlet-related statistics are collected and made available to users via an Android app 
that queries a cloud database.

Fog computing is an overlay on the cloud computing infrastructure that improves upon its core competencies 
by adding layers of protection, redundancy, and scalability for data transmission and  storage15. The authors  in16 
also use a fuzzy-fog model, with the fog layer as a bridge between the cloud and the edge layers. Fuzzy logic is 
used at the fog layer to process the data acquired from the sensors via the edge layer. To further demonstrate the 
efficacy of their fuzzy-fog architecture concerning energy savings, the authors run comprehensive simulations 
using both a virtual and an actual smart house. They reported that the fog-based concept must be tested on mul-
tiple residences or an entire building, which could dramatically alter the energy efficiency values attained by the 
proposed method. Authors  in17 design a fog-based game-theory strategy in which smart homes coordinate their 
energy consumption schedules to reduce everyone’s energy bills. Introducing the fog layer, which is faster than 
cloud computing, allows for more efficient scheduling of energy resources. The authors  in18 expanded the stand-
ard TCP/IP paradigm by adding two new layers: a fog-computing layer and a cloud-computing layer. Because of 
the reduced latency and real-time processing that these layers provide, a smart home can adapt to its residents’ 
needs in various ways. Sensors are installed in the fog computing layer to centralize data collection at the periph-
ery. Big data that is too large to process locally is sent to the cloud computing layer. Using temperature, power, 
and motion sensors data, the authors simulated the proposed algorithm on a smart meter at Alborg University.

Different meter designs are suggested for consumers and power distributors.  In19, the authors design a modu-
lar smart meter framework for estimating the power needs of tiny buildings. Modifications were made to the 
open system interconnection layer model to illustrate the Zigbee connection between end users, service provid-
ers, and the cloud. The data collected by the meter is then used to illustrate how people typically manage their 
energy consumption. The authors  in20 built a smart meter based on fuzzy logic to reduce the money customers 
spend on electricity while increasing their security level. LCD monitor, buttons, a power supply, and serial port 
modules are incorporated into the design, along with a Wi-Fi connection. To regulate the users’ energy usage and 
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production, the developed hardware incorporates fuzzy rules into its design. The results illustrate the difference 
in the average daily load with and without incorporating the suggested meter. The authors  in21 used K-means 
clustering to arrange the buildings following their power usage; nevertheless, the smart meter is just used for 
its name, and no actual discussion or detail is offered. Table 1 summarizes all the above techniques, explaining 
the pros and cons of each one.

In this paper, an EMS for smart buildings is proposed. It depends on the coalition method for the optimal 
distribution of the surplus energy in the smart building on the deficient energy buildings. Shapley-based game 
theory is applied to obtain an optimal distribution of the surplus energy to the deficient energy buildings based 
on the required energy demand, achieving minimum energy waste and ensuring the generation-demand bal-
ance. The central management system is proposed for the one building based on cloud computing as it provides 
better scalability, centralized management, and easy-to-use and high performance. However, for the whole smart 
city, fog computing is applied, whereas it provides better scalability for handling large, distributed data sets. A 
communication channel-based Wi-Fi protocol transfers data and information between the smart buildings and 
the central EMS unit. A fog platform with storage capabilities is used for data handling and processing. A smart 
meter is applied to link the smart buildings with the central EMS unit. Two scenarios are implemented regarding 
the difference between the total energy surplus and deficiency. The first scenario is applying the coalition game 
theory for the optimal surplus energy allocation on the deficient energy buildings when the total energy surplus 
is lower than the amount of the total energy deficient. However, suppose the total energy surplus exceeds the 
required energy deficiency. In that case, the one-to-one relationship between the buildings with available energy 
surplus and others with energy-deficient is performed. The extra surplus energy is stored for further usage. The 
proposed method is verified using a hypothetical smart city including 10 smart buildings in MATLAB program. 
The results of each scenario are obtained, and a comparison between the result with/without applying the pro-
posed method is introduced. Also, the performance of the fog platform is evaluated according to the run time, 
delay time, and memory size.

The rest of the work is organized as follows; section “Problem statement” presents the problem statement, 
and the full description and modeling for the proposed system are explained in section “Problem description 
and system modeling”. Game theory for collation strategy is explained in section “Game theory for collation 
strategy”. In section “Results and discussion”, the results of the simulation and the discussion are covered. The 
last part is the conclusion, which may be found in section “Conclusions and future scope”.

Table 1.  A Summary of energy management techniques in smart buildings-based solution.

References Year EMS method Advantages Disadvantages

7 2018 Symbolic Aggregate Approximation (SAX) The information is gathered from two distinct 
locations Results only include electrical energy demand

8 2018 Generalized Additive Modeling Real-world data sets served as the inspiration for 
the implementation

Although two buildings were used in the simula-
tions, the number of data from building one is 
restricted

9 2019 Case-Based Reasoning SCADA system allows flexibility for real-time 
access to data, as well as archiving

By increasing the agents’ number, there is a pos-
sibility that its performance will suffer

10 2020 PSO + FOG computing The PSO technique decreases task waiting time, 
latency, and network bandwidth

It is possible to experiment with different param-
eters, such as total electrical demand

11 2019 Graph theory + IoT
Less computational time due to fast organizing 
data as it can quickly locate the shortest path and 
the nodes’ neighbors

Poor display of results

12 2020 Hadoop is used to connect to the cloud
Hadoop’s distributed architecture for processing 
and storing data allows for the rapid processing of 
massive datasets

Kerberos authentication raises severe concerns 
about the absence of storage and network-level 
encryption

13 2020
Readings taken both indoors and outside are sent 
to the cloud for subsequent analysis and decision-
making on energy efficiency

Generalized model may apply to any building in 
Europe Security threat in the cloud

14 2019 Smart plug data is analyzed in the cloud The cloud can track energy consumption in real-
time through the smart plug They did not specify the building type under study

16 2020 Fuzzy Fog Model User data can be evaluated locally, ensuring the 
data’s privacy

Data transmission bandwidth can be prohibitively 
expensive

17 2019 Game Theory Fog Model The proposed framework for assessing decision-
making in such circumstances as are encountered

Every participant is required to be aware of the 
other participants’ cost functions

18 2019 Cloud Fog TCP/IP Model The data can be processed at the data source that is 
geographically located closest to the user

Costs and efforts are incurred when registering a 
domain name

19 2019 Open System Interconnection–based smart meter 
design The layer interfaces are consistent The used communication technology supports one-

way communication without acknowledgment

20 2020 Fuzzy logic for minimum pricing energy cost Lower hardware requirements The used hardware may suffer from measurement 
errors

21 2020 K-means clustering groups energy-using buildings
The k-means clustering algorithm is both quick 
and economical in terms of the amount of comput-
ing it requires

If the input data is of varying sizes, it nevertheless 
generates clusters of the same size
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Problem statement
One of the main goals of an EMS is to meet energy demand effectively and efficiently. It is necessary to regulate 
energy dispatch and systematically analyze power quality for a well-functioning energy system. The purpose of 
the EMS is to produce and distribute electrical energy in accordance with demand, preventing energy shortage/
surplus during periods of less/large demanded power than generated power (off-peak/on-peak hours). Surplus 
energy is in some way stored using energy storage devices; nevertheless, power shortage is always a concern 
and cannot be stored. As a result, it is preferable to provide energy after predicting the available generation and 
 demand22. Authors  in23 suggested a load prediction system, and there is a disparity between expected and con-
sumed energy. However, energy demand is always stochastic, the main cause of the imbalance between power 
supply and demand. As either a result, electricity is wasted and scarce. Work  in24 suggested an SMGs framework 
to handle such a situation, where the EMS, after acquiring more energy from other sources, fills the demand for 
the deficit loads. Moreover, some buildings may purchase energy in bulk and cannot consume all energy within 
a time duration. The EMS can handle this issue by coordinating among the buildings where excess energy may 
be dispersed among power-deficient buildings through coordination. This is cost-effective for buildings with 
insufficient electricity and lessens the utility’s burden.

Many more functionalities are included in the aforementioned EMS. Its installation individually becomes 
troublesome regarding flexibility, scalability, and cost. Furthermore, the products have tight guidelines for manag-
ing, controlling, and processing the number of linked devices. Moreover, even if consumers wish to access part 
of the features, they must pay for the entire  package25.

Different energy management strategies are proposed based on centralized and distributed algorithms. Dis-
tributed algorithms are designed to be run on a network of interconnected devices rather than on a single, central 
computer. This makes them well-suited for studying energy management in smart buildings, which often involve 
a large number of devices and sensors distributed across a building or campus. Distributed algorithms and 
peer-to-peer (P2P) mechanisms in energy trading can provide several advantages, including decentralization of 
energy trading, improved security, increased transparency, reduced transaction costs, enhanced flexibility and 
resilience, and enabled the prosumers to produce electricity using renewable energy  sources26–28. However, there 
are many challenges using distributed algorithms and peer-to-peer mechanisms, such as complexity in design 
and implementation, inadequate response, vulnerability to security threats, lack of control, and some nodes 
may have more resources or influence than others, leading to inequality and potential issues with  fairness26–30. 
The fog server or a fog computing device is located at the network’s edge, closer to the devices or sensors that 
generate data. A fog server is used to facilitate communication and coordination between different nodes in 
the network. The main advantages of fog computing include latency reduction, increased scalability, improved 
security, cost reduction, handling large amounts of data, improved the quality of service (QoS), and enabling 
IoT  applications31,32. However, whether a fog server is suitable for this purpose would depend on the specific 
requirements and constraints of the peer-to-peer trading system. Factors such as the volume and complexity 
of the trading data, the need for real-time processing, and the security and privacy requirements of the system 
would all need to be considered when determining the most appropriate computing architecture for the system.

Problem description and system modeling
This section addresses the model for sharing energy between customers using coordination for a surplus or 
power shortage of buildings. Figure 1 provides a structured description of the suggested system model, data 
exchange, and energy transfer. This model is made up of a smart building with number of buildings (Nb) , which 
is connected to local SMG (i.e., power suppliers) via fog. The fog is embedded with an energy control center 
used as a platform to handle energy management matters. The energy service provider collects data on the 
present load customers are utilizing and their demand for the upcoming term. In the same way, it shares basic 
data like the price of electricity and generated energy limits through the fog. Inside the building, the service 
provider guarantees that electricity from the SMG is delivered to the buildings. The communication medium 
among buildings and fog could be Bluetooth, Ethernet, Wireless, etc., based on the specifications of data transfer 
protocols. A Wi-Fi-embedded smart meter acts as a communication channel between buildings and proposed 
game theory-based EMS placed in fog.

SMGs gather energy consumption data and plan for the day’s power generation. Additionally, it maintains 
a balance between power demand and generation by directly demand side management (DSM) or extra gen-
eration. The EMS will gather data from users who need extra energy and those who have surplus energy and 
make decisions based on that knowledge. Coordination is enabled between the N−

b  buildings with a shortage of 
energy and N+

b  energy surplus buildings. Moreover, a coalition of N−
b  shortage energy buildings will be formed 

to distribute the shortage power unevenly in accordance with demand, enabling service providers to balance 
power generation and demand and prevent energy waste.

The controller will collect data from customers who need more demand than his generated power from his 
renewable resources by taking energy from other customers with extra energy. So, customers should coordinate 
with each other to make the balance between the N+

b  customers who have extra generated energy and N−
b  cus-

tomers who have extra load demand and minus energy.
Based on the game theory and to enhance EMS by minimizing the power wasted and rescuing electricity cost, 

the coordination problem is modeled as a social network issue. A three-tuple is used in a game of coalition crea-
tion (ℵ,ϑ , ξ) , where ℵ =

{

1, 2, . . . ,N−
b

}

 is a group of N−
b  players that attempt to cooperate to strengthen their 

positions in the games (i.e., ℵ = BE−
N−
b

 , where BE− is the building with a shortage of energy), ϑ = 2N
−
b → ℜ is 

a characteristic function that specifies subsets of players and is depicted as a real number to each coalition S , 
where S ⊆ ℵ is the overall payoff (surplus energy) that each coalition has achieved. ξ is a vector that depicts the 
payoffs received by players from the value ϑ.
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In this work, each energy shortage building BE−j  is treated as a player, and it searches for another energy 
deficient BE−k  (i.e., j, k ∈ ℵ and j  = k ) to form a coalition to maximize the payoff in terms of extra power for 
itself and other players. Two groups make up this coalition, the donors (contributors BEN+

b
 ) and the acceptors 

( BE−
N−
b

 ). The total surplus electricity ( BE+Total ) is the total available payoff by N+
b  buildings that have extra gener-

ated power (BE+i ) which is given as:

By distributing BE+Total among the buildings have an energy shortage BE−
N−
b

 according to the nature of loads 
and price of energy, which leads to reducing the wasted electricity (WE) . As a result, the difference between total 
distributed energy ( DisETotal ) for N−

b  customers and BE+Total can be minimum. The objectives under discussion 
are expressed mathematically as follows:

Subject to

where

(1)BE+Total =
∑N+

b

i=1
BE+i

Minimize(WE)

(2)min(�BE+Total ,�DisETotal)

(3)DisETotal =

N−
SE

∑

i=1

DisEi

Fog Server
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Total Generated 
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Figure 1.  Model of SEM with fog computing and smart metering strategy.
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where �BE+Total is the total change in surplus electricity and �DisETotal is the total change in distributed energy. 
BE+Total is represented as WE . As previously stated, the BE+Total is distributed among BE−

N−
b

 based on their energy 

demand 
(

LDN−
b

)

 . The total power shortage for N−
b  customers is expressed as:

where LDTotal is the total shortage power of all loads which maybe more than, less than, or equal to BE+
Total

.The 
difference (DT ) between total surplus power 

(

BE+Total
)

 and total shortage power (LDTotal) can be expressed as:

where

It is crucial to note that the suggested approach is cost-effective for both SMGs and consumers. When a sud-
den load demand increases, service providers must supply extra energy, and customers must pay an additional 
bill. On the other side, if some buildings reduce their run-time demands without being aware of the extra power 
generated, there is a chance that they would waste electricity. Several scenarios may be implemented to share 
the excess energy among the units with insufficient energy.

In this study, two scenarios are taken into account. In scenario 1, collaboration among buildings with excess 
power and those with insufficient power is achieved through coalitions. Two groups are established, one includ-
ing the energy-surplus buildings and the other containing the energy-deficient units. The entire extra energy is 
distributed among the buildings with a power shortage after being coordinated. The remaining extra energy is 
neither produced nor stored in this scenario. In contrast, no coalition is needed to create coordination between 
a power surplus and a deficient power building in scenario 2. Additionally, extra energy is stored and will be 
produced if necessary. The following is a complete overview of these two scenarios:

Scenario 1. It formed a coalition with coordination between customers who need extra demand and other 
customers who have extra generation. The surplus energy is distributed to the power-shortage buildings after 
coordination. Extra energy is not generated or saved in this scenario. BE+Total is distributed through all of the 
BE− by making a coalition in the case if LDTotal > BE+Total . Here each BE− receives a payoff based on the load 
demand of consumers, i.e., if BE−a  demand is greater than BE−b  then BE−a  give extra power in this scenario (i.e., 
BE+i = LDj ). This is represented mathematically as:

where a, b ∈ N−
b  and a  = b . In this case, the EMS permits the coalition of energy-shortage buildings daily.

Scenario 2. When LDTotal ≤ BE+Total , the EMS checks the condition; if a building has an extra energy BE+i  
equals any LDj , regardless of the needs of other buildings, the EMS establishes the coordination between these 
two buildings. Additionally, extra energy is stored and will be used if necessary. However, if necessary, it will 
permit the coalition among the BE−l  (i.e., l  = j ) as stated in (6). This is represented mathematically as:

where i ∈ N+
b  , j ∈ N−

b  , a, b ∈ N−
SE and a  = b . Additionally, in this case, the EMS will allow building coordination 

before the start of the day.

Game theory for collation strategy
Fog computing and game theory are implemented together in the proposed energy management system as they 
have several  advantages33,34. Fog computing enables real-time data processing at the network’s edge, which can 
be used to make decisions about energy management in actual time. An equilibrium that maximizes the overall 
efficiency of the energy system can be found by using game theory to model the interactions between the various 
players in the energy system. Also, by simulating the interactions between various energy sources and ensuring 
a steady supply of energy, fog computing and game theory can be used to increase the energy system’s resilience. 
Finally, combining game theory and fog computing can lower the costs related to energy management. The game 
theory minimizes wasted energy ( WE ) while preserving a balance between supply and demand. For collation 
game (ℵ,ϑ , ξ) , the payoff of each building (player) j will be estimated based on the Shapley value  rule35. This for 
each BE−j  identifies as ( ξ

(

f
)

j
 ) and is determined as:

(4)LDTotal =
∑N−

b

i=1
LDi

(5)DT = BE+Total − LDTotal

DT =







< 0, if BE+Total < LDTotal

= 0, if BE+Total < LDTotal

> 0, if BE+Total < LDTotal

(6)
{

DisEa < DisEb, if BE
−
a < BE−b

DisEa ≥ DisEb, if BE
−
a ≥ BE−b

(7)







DisEj = BE+i , if BE
−
j = BE+i

DisEa < DisEb, if BE
−
a < BE−b

DisEa ≥ DisEb, if BE
−
a ≥ BE−b
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Each building j participating in the game is treated as a player for the sake of energy management, and the 
overall profit is used as the BE+Total . Formally, the distribution of BE+Total according to (5) is expressed as follows:

where at the end of the case LDTotal > BE+Total , the EDisTotal will be less than LDTotal and EDisTotal =
∑N−

b
j=1 ξ(ϑ)j

Algorithm for Scenario 1. The power is delivered according to demand for the condition LDTotal ≤ BE+Total . 
However, in the case of LDTotal > BE+Total , an effective and immediate implementation mechanism is required to 
aid in the equitable distribution of BE+Total among BE−

N−
b

 . Fair in the sense that more energy will be delivered to a 
building if it needs more than the average amount.

Algorithm for Scenario 2. For the requirement LDTotal ≤ BE+Total , the EMS achieves coordination for the 
buildings by establishing one-to-one relations between BE+i  and BE−j  , in this case BE+i  equals LDj . This connec-
tion is formed by adjusting basic social network behavior, in which a person coordinates with others based on 
their needs. Otherwise, if BE−l > 0 , a coalition of power shortage among buildings is formed, and surplus energy 
is distributed based on (8). The proposed EMS algorithm flowchart for smart buildings is shown in Fig. 2.

(8)ξ(ϑ)j =
∑

S⊆ℵ\{j}

|S|!(ℵ − |S| − 1)!

ℵ!
(ϑ(S ∪ {j} − ϑ(S)).

(9)DisEj =

{

LDi , if LDTotal ≤ BE+Total
ξ(ϑ)j , if LDTotal > BE+Total
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Figure 2.  The flowchart for the proposed EMS algorithm in SMGs.
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Coalition game theory has some  advantages36–38, such as enabling the simulation of complex interactions 
between groups of players, which is helpful when there are disparate motivations or goals among the players. 
Coalition game theory can shed light on how decisions are made in groups and how these decisions affect the 
overall result of a game by observing the behavior of player groups. It can be used to find stable solutions, such as 
the bargaining set or the core, that can be used to forecast how players will act in groups. Coalition game theory 
can be used to examine the power relationships between various groups of players and comprehend how these 
relationships affect how a game turns out. Finally, it can be used to model, examine, and design the circumstances 
in which cooperation is possible.

Results and discussion
The simulation is done for the above scenarios; the results are discussed in this section. For the sake of the simu-
lation, a smart city of ten buildings is under consideration. Furthermore, we do all management calculations on 
the fog, allowing us to coordinate between extra and shortage energy buildings. As well as make a coalition for 
buildings that have a shortage of energy. The system’s real-time data has been taken  from39, which provides the 
pattern of load demand in a day during the different seasons of the year. This facilitates data collection on the 
average electrical load profile consumed by users. This data is obtained and updated every minute; 48 h time 
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Figure 3.  The generated power and energy consumption for coordination and without coordination.
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slots are seen in Fig. 3. The proposed EMS aims to reduce wasted energy by establishing coordination among 
customers with surplus energy and a shortage in energy. A smart meter will link all of the participant’s devices 
to the EMS located on fog at 11:55 p.m., gathering data at the start of the day.

Results analysis for Scenario 1. In this scenario, consider the consumed energy as the produced energy 
due to the service provider forecasting the load demand energy. However, as illustrated in Fig. 4, the customers’ 
energy demands are stochastic and subject to change at any moment of the day. Some users could need more 
energy, while others would desire a lower load profile than they had the day before.

Figure 3 depicts the generated and utilized electrical power for 10 buildings with coordination (WC) and 
without coordination (WOC). As shown in Fig. 3, if the buildings do not coordinate with each other, the energy 
generated may be wasted even if just one building lowers its power usage. At the same time, some buildings 
can suffer when they need additional energy. The difference between the energy produced and utilized at 10:00 
p.m. is 10 kW for WC and 17 kW for WOC. Additionally, Fig. 5 displays the excess energy used by the build-
ings (deficit energy WOC), surplus energy WOC, satisfied demand (shortage energy WC), and surplus energy 
WC through various periods. The hourly details of these energies are presented in Table 2. The second column 
represents the amount of extra energy in some buildings, and the third column shows the amount of covered 
energy from this extra energy distributed to buildings that need energy. The fourth and fifth columns show the 
amount of energy deficit or surplus after EMS.

Figure 5 shows the building’s extra energy requirement and excess energy. However, the difference in the 
case of WOC is about 12 kW. In addition, over various periods, excess energy is needed for the buildings with 
less energy. Figure 5 shows the building’s extra energy requirement, and the excess energy (with and without 
coordination), extra energy without coordination, fulfilled (demand minus energy with coordination), and extra 
energy with coordination are depicted in Fig. 5.

Figure 6 depicts the total effect on power consumption with and without the coalition. A total of 2865.7 kW 
of energy is generated; however, if a coalition is not formed among the buildings, 227.45 kW of electricity is 
wasted. As demonstrated in Fig. 3, 86.43 kW of power is squandered when a coalition is formed. Furthermore, 
Fig. 7 shows that buildings are affected by WOC because 141 kW more electricity is required than usual at vari-
ous intervals. However, the 18.85 kW slack in WC buildings is insignificant. In the scenario where generation 
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Figure 4.  The electricity load profile of 10 buildings over the month.
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is more than demand, as shown in Fig. 7, energy might be wasted. Consumers of electricity may also suffer if 
the utility forbids them to use the energy beyond a set threshold and the consumer needs more power. Our 
suggested plan successfully uses a coalition to balance generation and demand while combining the additional 
demand in emergencies.

Table 2.  Hourly extra, demanded, surplus, and shortage energy.

Hour Extra demand Demand full filled Surplus energy Shortage energy

1 0.0 0.0 0.0 0.0

2 6.6 6.6 1.6 0.0

3 3.3 3.3 9.5 0.0

4 2.8 2.8 7.2 0.0

5 0.0 0.0 0.0 0.0

6 0.0 0.0 0.0 0.0

7 5.1 4.6 0.0 0.5

8 0.0 0.0 0.0 0.0

9 0.0 0.0 0.0 0.0

10 0.0 0.0 0.0 0.0

11 0.0 0.0 0.0 0.0

12 3.0 3.0 1.5 0.0

13 0.9 0.9 1.3 0.0

14 0.0 0.0 0.0 0.0

15 0.7 0.7 2.0 0.0

16 4.6 4.6 2.9 0.0

17 0.0 0.0 0.0 0.0

18 5.2 5.2 9.4 0.0

19 0.9 0.9 10.5 0.0

20 0.5 0.5 8.0 0.0

21 16.2 13.7 0.0 2.6

22 0.0 0.0 0.0 0.0

23 8.3 5.1 0.0 3.2

24 0.0 0.0 0.0 0.0

25 0.0 0.0 0.0 0.0

26 0.0 0.0 0.0 0.0

27 0.0 0.0 0.0 0.0

28 0.0 0.0 0.0 0.0

29 0.0 0.0 0.0 0.0

30 10.1 8.2 0.0 1.9

31 3.3 3.3 3.7 0.0

32 0.0 0.0 0.0 0.0

33 4.2 4.2 3.2 0.0

34 7.7 7.7 2.5 0.0

35 0.0 0.0 0.0 0.0

36 8.0 5.5 0.0 2.4

37 1.1 1.1 3.2 0.0

38 0.0 0.0 0.0 0.0

39 0.0 0.0 0.0 0.0

40 0.0 0.0 0.0 0.0

41 3.6 3.6 6.7 0.0

42 7.7 7.7 15.1 0.0

43 0.0 0.0 0.0 0.0

44 0.0 0.0 0.0 0.0

45 0.0 0.0 0.0 0.0

46 12.0 12.0 6.1 0.0

47 0.0 0.0 0.0 0.0

48 0.0 0.0 0.0 0.0
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Figure 8.  Demand and surplus generated power for a month.



13

Vol.:(0123456789)

Scientific Reports |         (2023) 13:2023  | https://doi.org/10.1038/s41598-023-29209-4

www.nature.com/scientificreports/

Results analysis for Scenario 2. Algorithm 2 will make decisions based on demand and excess energy. 
Surplus energy may be produced from the local MG if necessary; moreover, surplus energy is stored, as seen 
in Fig. 8. This excess energy stored can be used later. While in scenario 1, even after coalition energy is spent, 
surplus energy is not produced nor stored as a result. Figure 9 shows a noticeable change in the energy profile 
after a coalition of surplus energy buildings and their cooperation with a group of energy shortage units. Fig-
ure 10 shows a detailed representation depiction of power shortage and surplus buildings. As shown in Table 3, 
the negative numbers in this graph reflect an energy deficit, while the positive ones represent an energy surplus. 
The deficient energy in this scenario is the additional demanded energy that decreased to a minimum value 
when coordinating with the coalition is established. As demonstrated in Fig. 8, the likelihood of wasted energy 
increases if coordination is not created. Also, the probability of energy waste will increase if coordination is not 
created. Figure 11 shows the difference between the fed daily load and the unfed demand. The positive direction 
represents the energy consumed by the 10 buildings, while the negative direction in this figure reflects an energy 
shortage.

According to real-time data shown in Figs. 3 and 4, it is easy to imagine that the load profile of each customer 
has a unique energy requirement. It is conceivable that the load profile of the customers varies daily. Addition-
ally, it is determined from the outcomes of scenarios 1 and 2 that a maximum amount of energy may be lost if 
energy usage is not adequately monitored. A suitable medium is needed to monitor and make choices quickly 
and with the least delay.

The literature review reveals that the game theory technique is one of the most well-known coordinating 
methods. However, as the number of players grows, so does its complexity concerning time and space. Several 
occurrences may cause a bottleneck in the network. An EMS is utilized over fog computing to prevent such a 
scenario and maintain the system functioning efficiently.

Fog computing performance evaluation. For scenario 2, a program’s execution time, memory needs, 
and network response time are determined to validate and investigate the complexity of the application. Fig-
ures 12 and 13 provide a graphical depiction of the execution time and memory utilization. These numbers show 
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Figure 9.  Load demand pattern after make coordination between buildings.
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Figure 10.  Extra and shortage of energy throughout the month for each building.
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that program execution time and memory use increase as the number of buildings participating in the coalition 
rises. The minimum execution time for ten buildings is 2.40 s, and for 50 buildings, it is 230.60 s. Additionally, 
extra memory is needed to carry out the computation; as seen in Fig. 12, ten units require 524.24 MB of memory, 
while 50 buildings demand up to 1303 MB. This conversation demonstrates the urgent need for a quick compu-
tational medium close to the network to prevent energy supply delays. Figure 14 studies the network response 
time; it is obvious from this figure that the response time is lengthy relative to the data.

Table 3.  The surplus and shortage of energy of each building throughout the month.

Day/building 1 2 3 4 5 6 7 8 9 10

1 1665.1 − 535.6 − 1079.6 1365.5 − 537.9 1569.1 0.0 0.0 0.0 0.0

2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 − 124.1

4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

6 3519.0 2032.3 1402.9 4090.7 − 955.8 0.0 0.0 0.0 0.0 0.0

7 2158.2 2380.2 1652.3 0.0 0.0 0.0 − 1436.4 0.0 0.0 0.0

8 1036.4 − 563.0 0.0 0.0 0.0 0.0 − 3151.4 0.0 0.0 0.0

9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -2705.9

10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

11 687.4 2132.0 1198.3 3215.6 0.0 -183.6 0.0 0.0 0.0 0.0

12 1216.6 0.0 0.0 0.0 0.0 3197.1 1539.9 0.0 0.0 0.0

13 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

14 2987.7 83.0 0.0 3091.3 2105.5 502.1 811.7 2035.6 0.0 3331.0

15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 − 1010.8

16 1860.6 517.9 0.0 0.0 − 3292.5 0.0 0.0 0.0 0.0 0.0

17 506.0 220.4 1305.9 164.9 1461.0 3172.1 0.0 0.0 0.0 0.0

18 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -6.1

19 − 311.5 919.0 131.8 1901.8 1077.7 0.0 0.0 0.0 0.0 0.0

20 201.1 − 818.4 841.4 33.1 − 1636.0 0.0 0.0 0.0 0.0 0.0

21 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 − 1977.9

22 2915.3 − 391.8 0.0 − 338.9 0.0 0.0 0.0 0.0 0.0 0.0

23 2519.9 509.0 3126.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0

24 2146.0 − 457.7 466.0 − 1159.6 0.0 0.0 0.0 0.0 0.0 0.0

25 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

26 447.6 551.5 − 1860.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0

27 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

28 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 − 1064.4

29 0.0 2713.9 0.0 0.0 1633.5 0.0 0.0 1800.8 0.0 0.0

30 1592.6 1519.3 1496.2 0.0 0.0 0.0 − 1398.8 0.0 0.0 0.0
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Figure 11.  Total energy requirement for all buildings during the month.
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The results findings in Figs. 12 and 13 and 14 show how an application’s execution time and memory needs 
grow as the number of buildings rises. As a result, a platform is needed to eliminate service delays and have a 
fast reaction time, which may be achieved by putting the consumer application at the edge of the fog server. This 
server can decrease the delay of services and responds quickly.
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Figure 12.  The run-time on the fog server.
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Figure 13.  Memory space utilization on the fog server.
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Figure 14.  The data’s estimation of the network response delay time.
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Conclusions and future scope
This paper proposed an EMS for a smart building based on coalition game theory for optimal allocation of the 
energy surplus on the energy-deficient buildings. Central EMS with a fog platform is designed for data receiving, 
processing, and decision-making. Communication channel-based Wi-Fi protocol transfers data, information, 
and control signals between the smart buildings and the EMS central unit. A smart meter interlinks between 
the smart buildings and the central fog-based EMS unit. Two scenarios are implemented based on the differ-
ence between the total energy surplus and deficient using MATLAB program for a smart city including 10 smart 
buildings. The results show the proposed EMS’s ability to prevent up to 141 kW of electricity from being wasted 
daily. The future scope is applying the proposed method with considering the energy hub and the presence of 
load, generation, and communication uncertainties. Besides applying a control technique for packet loss reduc-
tion and enhancing the system security against any cyber-attacks.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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