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Detection of oral squamous cell 
carcinoma in clinical photographs 
using a vision transformer
Tabea Flügge 1,3*, Robert Gaudin 1, Antonis Sabatakakis 1, Daniel Tröltzsch 1, Max Heiland 1, 
Niels van Nistelrooij 2 & Shankeeth Vinayahalingam 2

Oral squamous cell carcinoma (OSCC) is amongst the most common malignancies, with an estimated 
incidence of 377,000 and 177,000 deaths worldwide. The interval between the onset of symptoms 
and the start of adequate treatment is directly related to tumor stage and 5-year-survival rates of 
patients. Early detection is therefore crucial for efficient cancer therapy. This study aims to detect 
OSCC on clinical photographs (CP) automatically. 1406 CP(s) were manually annotated and labeled 
as a reference. A deep-learning approach based on Swin-Transformer was trained and validated on 
1265 CP(s). Subsequently, the trained algorithm was applied to a test set consisting of 141 CP(s). 
The classification accuracy and the area-under-the-curve (AUC) were calculated. The proposed 
method achieved a classification accuracy of 0.986 and an AUC of 0.99 for classifying OSCC on clinical 
photographs. Deep learning-based assistance of clinicians may raise the rate of early detection of oral 
cancer and hence the survival rate and quality of life of patients.

Oral squamous cell carcinoma (OSCC) is among the most common malignancies worldwide, with a reported 
incidence of 377,713 and 117,757 deaths in 20201. The five-year survival rate is over 80% in the early stages, 
decreasing to < 30% for advanced disease. More than 60% of the OSCCs are diagnosed at an advanced stage 
with high morbidity and mortality2–4. The incidence and mortality rates underline the importance of oral cancer 
screening programs to improve early detection and therapeutic success5–7.

Although the golden standard is pathologically proven, early detection can be achieved visually as OSCCs 
start superficially from squamous cell metaplasia. Nonetheless, the diagnostic accuracy of primary health care 
professionals is limited, with a sensitivity of 57.8% and a specificity of between 31 and 53%8,9. The lack of adequate 
training, substantial heterogeneity, and the lack of experience impede an effective diagnosis by primary health 
care professionals6,10. An automated assistance system may improve the diagnostic accuracy, allowing a more 
reliable and accurate assessment of the oral cavity, especially in the hands of less experienced professionals.

With advancements in artificial intelligence, deep learning algorithms have been adopted in computer-aided 
detection and diagnosis (CAD). Mainly convolutional neural networks (CNN) have emerged as the state-of-
the-art approach to medical image analysis. CNN’s utilize convolutional kernels with small perceptual fields 
to extract features via weight sharing and local connectivity11. Recently, transformers have been introduced as 
an alternative approach to CNNs. Transformers are based on an attention mechanism that efficiently estimates 
each pixel-pair interplay12.

In oral and maxillofacial surgery, few studies have explored the capability of CNNs to automatically clas-
sify OSCC on clinical photographs. These studies addressed the classification and detection of oral potentially 
malignant diseases13 and oral cancer lesions5,14,15 using YOLOv5, ResNet-152, DensNet-161, Inception-v4 and 
EfficientNet-b4, respectively.

However, none of the studies has explored the accuracy of vision transformers for classifying OSCC. This 
study aims to develop an automated oral cancer screening system using vision transformers as a fundamental 
basis for a timely and accurate referral system.
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Material and methods
Data.  In the present study, 1406 clinical photographs (CPs) were randomly collected from the Department 
of Oral and Maxillofacial Surgery, Charité - Universitätsmedizin Berlin, Germany (mean age of 60.8 years, age 
range of 15–90 years). The photographs were acquired with single lens reflex (SLR) cameras with varying light 
exposures. The image resolution was a minimum of 72 dpi. CPs with masked lesions or foreign bodies (e.g., 
mirrors or tongue depressors) were excluded from further analyses as described in a previous study16. All image 
data were anonymized and de-identified before analysis. Informed consent for the analysis of data was obtained 
from all patients or their guardians in case of age below 18 years. This study has been conducted in accordance 
with the code of ethics of the World Medical Association (Declaration of Helsinki). The approval of this study 
was granted by the Institutional Review Board, the Ethics Committee of Charité – Universitätsmedizin Berlin 
(EA2/089/22).

Data classification.  Different clinicians verified all CPs based on electronic medical records (EMR). CPs 
with OSCCs needed to be biopsy-proven. All CPs were subsequently reviewed and revised by three clinicians 
(RG, DT, TF). The three reviewers have at least five years of clinical experience. Each clinician was instructed and 
calibrated in the verification task using a standardized protocol before the selection and reviewing process. The 
final dataset consisted of 703 CPs of OSCC and 703 CPs of normal oral mucosae (Table 1).

The normal tissue dataset comprised photographs of the oral cavity without premalignant oral mucosal 
lesions or oral cancer. A further selection of the dataset to exclude possible anatomical variations or inflamma-
tory conditions of the gingiva or mucosa was not performed.

The OSCC training dataset contained images of various tumor stages, including Tis (1%), T1 (28.9%), T2 
(27.2%), T3 (16.3%), T4 (21.6%) and unknown tumor stages (5%). The locations were tongue (36.9%), floor 
of mouth (29.6%), maxilla (3.2%), mandible (15.8%), buccal mucosa (13.6%), palate (0.7%) and oropharynx 
(0.3%). The test and validation data sets contained a comparable distribution of tumor stages and locations with 
a maximum deviation of 10% from the training dataset.

Table 1.   Baseline characteristics of the malignant pathologies. Multiple locations of extended lesions possible 
(*).

Entity Number of images Percentage

OSCC 638 90.7

Verrucous SCC 23 3.3

Sarcomatoid SCC 4 0.6

Carcinoma in situ 13 1.9

OSCC (clinical) 25 3.5

Gender

 Male 436 62

 Female 267 38

Location*

 Tongue 258 36.91

 Floor of mouth 208 29.64

 Maxilla 22 3.17

 Mandible 111 15.75

 Buccal mucosa 95 13.61

 Palate 7 0.65

 Oropharynx 2 0.28

Staging

 Tis 7 1.06

 T1 203 28.9

 T2 191 27.2

 T3 115 16.3

 T4 152 21.6

 T unknown 35 5.0

Grading

 G1 102 14.5

 G2 386 55

 G3 143 20.3

 G4 3 0.5

 G unknown 69 9.7
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The model.  The Swin-Transformer was used in this study17. This transformer is characterized by its shift of 
the window partition between consecutive self-attention layers. The shifted windows connect with preceding 
layers’ window, increasing the modelling power efficiently. The employed model is shown in Fig. 1.

Model training.  The annotated were randomly divided into 3 sets of CPs, 1124 for training, 141 for valida-
tion and 141 for testing. The validation set was used to evaluate the model performance during training, while 
the hold-out test set was used to evaluate the model performance after training.

The Swin-Transformer was pre-trained on the ImageNet dataset and optimized using a stochastic gradient 
descent with a learning rate of 5 × 10–3, a momentum of 0.9 and a weight decay of 1 × 10–4. No gradient clipping 
was applied. The model was implemented in PyTorch 1.11.0 and trained on a 12 GB NVIDIA TITAN V GPU. 
Model training was previously described in a study on caries detection radiographs16.

Statistical analysis.  The transformer predictions on the test set were compared to the histopathological 
ground truth. Classification metrics are reported as follows for the test set: accuracy = TP+TN

TP+TN+FP+FN
 , positive 

predictive value = TP

TP+FP
 , F1-score = 2TP

2TP+FP+FN
 , sensitivity = TP

TP+FN
 , specificity = TN

TN+FP
 , negative predic-

tive value = TN

TN+FN
 . TP, TN, FP, and FN denote true positives, true negatives, false positives, and false negatives, 

respectively. Furthermore, the area-under-the-curve-receiver-operating-characteristics-curve (AUC) and con-
fusion matrix are presented. Gradient-weighted Class Activation Mapping (Grad-CAM), a class-discriminative 
localization technique was applied, to generate visual explanations highlighting the important regions on CPs for 
classifying OSCC. Statistical analysis was performed as in a previous study16.

Results
Table 2 summarizes the classification performance of the Swin-Transformer on the test set, including the accu-
racy, positive predictive value, sensitivity, specificity and negative predictive value. The classification accuracy 
was 98,6%. The model achieved an AUC of 0.99 (Fig. 2). The confusion matrix is presented in Fig. 3.

The class activation heatmaps (CAM) of OSCC and normal oral mucosae are illustrated in Figs. 4 and 5. 
These heatmaps visualize the discriminative regions used by the Swin-Transformer for the classification. Opti-
cal inspection indicates a more centered and focused region of interest for OSCC. For normal mucosa, either a 
blank heatmap without any focus or a widely distributed focus was noticed.

Discussion
Oral squamous cell carcinoma is a common malignancy with overall high mortality and morbidity2–4. The lack of 
experience and training of primary health care professionals leads to diagnostic delays and consequently to more 
extensive surgical procedures with more extended hospitalization and lower survival rates18–20. An automated 
assistance system for the clinician may increase the diagnostic accuracy while reducing the observer dependency. 

Figure 1.   Swin-transformer network.

Table 2.   The Accuracy, positive predictive value (PPV), F1-score, sensitivity, specificity and negative 
predictive value (NPV) for the detection of OSCC on CP.

Accuracy PPV F1-score Sensitivity Specificity NPV

0.9858 0.9857 0.9857 0.9857 0.9859 0.9859
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The vision transformer network introduced in this study is an accurate tool for the classification of OSCC based 
on clinical photographs that are most often acquired for documentation purposes.

In the past, diagnostic methods such as vital staining, autofluorescence and chemiluminescence, narrow 
band imaging, and optical spectroscopy have been introduced and documented with varying sensitivity and 
specificity21. Vital staining had a sensitivity of 92.3% but most studies did not report the specificity. For autofluo-
rescence, heterogeneous values of 50–100% for sensitivity and 12.5 and 75.5% for specificity were reported. Nar-
row band imaging showed high sensitivity between 84.62 and 93.93%, and specificity between 75.7 and 94.56%.

Different studies have recently applied CNNs to classify oral cancer from an oral photograph. Warin et al. 
reported a F1-score of 0.9875 and an AUC of 0.99 with DenseNet12113. Fu et al. achieved a similar F1-score 
(0.935–0.995) with a two-step approach15. In the first step, a Single Shot MultiBox Detector was applied to detect 
the region of interest. Subsequently, DenseNet assessed the pre-selected region of interest in the presence of 
OSCC. Welikala et al. achieved a significantly lower F1-score of 0.8707 with ResNet-10122. Shamim et al. com-
pared multiple CNNs (e.g. AlexNet, GoogleNet, Inceptionv3, ResNet50, SqueezeNet and VGG19) to classify 
tongue lesions and achieved F1-scores ranging from 0.9048 to 0.975623.

However, a direct comparison of these previous studies should be regarded with caution. The performance 
of the CNNs is highly dependent on the dataset, the hyperparameters and the architecture itself24. The number 
of training and test sets varied greatly in the previous studies, and the data representativeness was unclear. Fur-
thermore, clinical photographs were not standardized, and a high discrepancy was expected in perspective. For 
these reasons, the replication and validation of the previous results remain impracticable.

Figure 2.   Area-under-the-curve-receiver-operating-characteristics-curve. The ROC is created by plotting the 
true positive against the false positive rate at different thresholds.

Figure 3.   Confusion matrix illustrating the binary classification results.
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In the current study, the Swin-Transformer achieved a F1-score of 0.98 and an AUC of 0.99. The model had 
one false positive prediction and one false negative prediction, independent of location, staging or grading. 
Two key concepts are essential for high performance: hierarchical feature maps and shifted window attention. 
Firstly, hierarchical feature maps allow the intermediate tensors to be merged from layer to layer, reducing the 
spatial dimension (i.e. downsampling) of the feature maps effectively. In comparison to CNNs, patch merging 
is applied for downsampling instead of convolution operations. Secondly, the Swin-Transformer replaced the 
standard multi-head self-attention with a window and shifted window self-attention. The standard multi-head 
self-attention performs a global self-attention, resulting in a quadratic complexity. For this reason, the win-
dow self-attention computes attention only locally within specified windows. The shifted window self-attention 

Figure 4.   Class activation map for OSCC. The left column shows the CP of OSCC. The middle column 
represents the class activation map. The right column illustrates the overlay of CP and activation map.

Figure 5.   Class activation map for normal mucosa. The left column shows the CP of normal mucosa. The 
middle column represents the class activation map. The right column illustrates the overlay of CP and activation 
map.
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addresses global information loss using cross-window connections between different layers. These two modules 
reduce the quadratic complexity to linear complexity17.

Although a high performance was achieved using a transformer, there are limitations. The reported study is 
limited by its monocentric design resulting in a database consisting of the local population. The photographic 
images were acquired with high-quality cameras and did not regard clinical settings in which images may be 
acquired with cameras or mobile devices with lower image quality. The Swin-Transformer are strictly confined to 
the employed train- and test set and may perform worse in real-world scenarios. Prospective studies are required 
to evaluate the diagnostic accuracy of the Swin-Transformer in a clinical setting.

In conclusion, the Swin-Transformer forms a promising foundation for further developing automatic screen-
ing of OSCC on clinical photographs. Deep learning-based assistance of clinicians may raise the rate of early 
detection of oral cancer and hence the survival rate and quality of life of patients.

Data availability
The datasets analyzed in the current study are not publicly available due to data protection but are available from 
the corresponding author on reasonable request.
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