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Symplectic encoders 
for physics‑constrained variational 
dynamics inference
Kiran Bacsa 1,2*, Zhilu Lai 1,2,4,5, Wei Liu 1,3, Michael Todd 6 & Eleni Chatzi 2

We propose a new variational autoencoder (VAE) with physical constraints capable of learning 
the dynamics of Multiple Degree of Freedom (MDOF) dynamic systems. Standard variational 
autoencoders place greater emphasis on compression than interpretability regarding the learned 
latent space. We propose a new type of encoder, based on the recently developed Hamiltonian Neural 
Networks, to impose symplectic constraints on the inferred a posteriori distribution. In addition to 
delivering robust trajectory predictions under noisy conditions, our model is capable of learning an 
energy‑preserving latent representation of the system. This offers new perspectives for the application 
of physics‑informed neural networks on engineering problems linked to dynamics.

List of symbols
t:  time index variable associated to a data sample.
T:  time horizon, i.e., maximum value of the time index variable.
τ:  arbitrary time index variable.
h:  discrete integration time step constant.
n:  number of integration steps for a forward integration scheme.
x:  observable random variable.
F:  dimension of observed random variable.
z:  latent random variable.
G:  dimension of latent random variable.
V:  generative model for the mean latent variable.
W:  generative model for the mean observed variable.
S:  generative model for the standard deviation latent variable.
R:  generative model for the standard deviation observed variable.
h:  hidden layer variable of a neural network.
θ:  parameters of VAE decoder.
φ:  parameters of VAE encoder.
ψ:  parameters for arbitrary model.
�:  number of parameters for arbitrary model.
β:  parameters for model of the mean latent variable.
δ:  parameters for model of the standard deviation latent variable.
η:  parameters for model of the mean observed variable.
κ:  parameters for model of the standard deviation observed variable.
p:  true probabilistic distribution.
q:  approximate probabilistic distribution.
DKL:  Kullback-Leibner divergence.
J:  loss function.
�:  function approximating the flow of an ODE.
H:  Hamiltonian of a dynamical system.
L:  Lagrangian for Lagrangian multiplier method.
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L:  continuous Lagrangian of a dynamical system.
Ld:  discrete Lagrangian of a dynamical system.
q:  standard position vector of a dynamical system.
p:  standard momentum vector of a dynamical system.
α:  standard angle vector of a pendulum system.
l:  standard length vector of a pendulum system.
u:  continuous state-space function a dynamical system.
g:  arbitrary quadrature.
�:  Lagrange multiplier.
T:  kinetic energy of a dynamic system.
U:  potential energy of a dynamical system.
M:  mass matrix of a dynamical system.
C:  dissipation matrix of a dynamical system.
K:  potential function of a dynamical system.
Kl:  linear spring potential matrix of a dynamical system.
Kd:  nonlinear spring potential matrix of a dynamical system.
I:  identity matrix.
0:  zero matrix.
D:  forced excitation function of a dynamical system.
D:  forcing matrix of a dynamical system.
ωmax:  function that returns the maximum eigenvalue of the input.
γ:  amplitude of forced excitation of a dynamical system.
f:  frequency of forced excitation of a dynamical system.
G:  gravitational constant.
N :  normal probability distribution.
U:  uniform probability distribution.
µ:  mean of an arbitrary distribution.
σ:  standard deviation of an arbitrary distribution.
LE:  number of layers for the emission neural network.
NE:  width of layers for the emission neural network.
NT:  width of layers for the transmission neural network.
LRNN:  number of layers for the recurrent neural network in the encoder.
LP:  number of layers for the energy neural network.
NP:  width of layers for the energy neural network.

A popular class of methods that find application in system identification and control theory are Gaussian State-
Space Models (GSSM), which include the broadly established Bayesian  Filters1,2. This approach consists in model-
ling the relationship between the inputs, outputs and inner variables of a dynamic system by a set of differential 
equations acting on a latent state space; which comprises the so called process model. Noise contamination is 
assumed both on the process equations, which essentially represent the equations of motion, as well as the meas-
urement equation, which pertains to the observed dynamic outputs. The assumed noise processes are typically 
modelled as zero-mean Gaussian distributions. GSSMs, such as the Kalman  filter3, are particularly effective in 
decomposing a time series into trends and cycles. However, these models require known structures of the dif-
ferential (process) and algebraic (observation) equations that govern the dynamical system. Such information 
is often not available a-priori for most complex problems, particularly for those tied to the domain of structural 
dynamics, where the precise properties (stiffness, restoring force) of the underlying system are often uncertain, or 
of unknown  form4. Applying GSSMs for such problems thus requires approximations at the cost of accuracy, often 
relaxed by resorting to joint state-parameter identification problems, where the model structure is assumed to be 
defined a  priori5. Over the years, various data-driven system-identifications techniques have been implemented 
to correct this lack of prior knowledge so as to extend GSSMs to more complex  systems6–8.

On a parallel front, new machine learning algorithms, such as the Evidence Lower Bound Optimization 
(ELBO)9 through SGVB (Stochastic Gradient Variational Bayes)10, have allowed generative models, such as 
Variational Autoencoders (VAE), to combine deep learning with stochastic modelling. In recent years, VAEs 
have been extended to process sequential data for Gaussian processes by introducing a temporal constraint on 
the dynamics of the latent  space11. This approach to sequential modelling offers greater flexibility than more 
conventional state-space models, primarily since VAEs are more apt to learn non-linear dynamics. Models such 
as Stochastic Recurrent Networks (STORN)11 or Deep Markov Models (DMMs)12, which are further referred 
to as DVAEs (Dynamic Variational Autoencoders)13, have achieved promising results in speech analysis, music 
synthesis and medical diagnosis prediction. We note that DVAEs are an unsupervised learning scheme, since 
the learning of the latent variable is conditioned without directly being connected to the data, in stark contrast 
with supervised learning methods for dynamical systems such as Nonlinear Autoregressive with Exogenous 
input models (NARX).

Similar to other deep learning methods, DVAEs do not learn interpretable latent spaces, since they are biased 
towards learning compressed representations. This poses a problem for multiple objective tasks, common in 
Robotics, Control, Structural Health Monitoring (SHM) and Prognostic Health Management (PHM) applica-
tions, where in addition to adequate response predictions, we seek to also extract meaningful information on the 
dynamics of the  system14. To address this issue, we propose to add extra assumptions on the inference network. 
Our proposed approach adopts a Neural ODE (NODE)15 as the a posteriori model for a DVAE; we essentially add 



3

Vol.:(0123456789)

Scientific Reports |         (2023) 13:2643  | https://doi.org/10.1038/s41598-023-29186-8

www.nature.com/scientificreports/

the prior information on the distributions being generated via underlying differential equations. Furthermore, 
we parametrize the integration of our ODE using a symplectic integrator. For a symplectic integrator, the for-
ward integration step splits the phase-space into its displacement and momentum subspaces and updates these 
subspaces based on Hamiltonian constraints. This imposes an area-preserving property in the phase space on the 
trajectories of the observed MDOF system. For our systems, we will assume that phase-preservation and energy-
conservation properties are  equivalent16. We thus postulate that our model is able to performed unsupervised 
statistical learning with energy constraints.

Other recent  papers17,18 have also explored the idea of symplecticity in time-series analysis. We outline our 
own contribution as follows:

• We propose a novel framework that combines DMMs with physics-informed machine learning in the form of 
a NODE. This allows us to explore the use of physics-informed neural networks for statistical unsupervised 
learning.

• We introduce a symplectic constraint on the learned latent space by using Hamiltonian Neural Networks 
(HNN) for a posteriori distribution learning.

• We show that our model is able to learn latent quantities, such as energy, in addition to being a state-space 
observer.

• We study the use of a modified symplectic integrator for cases where the dynamical system’s energy is not 
constant, such as dissipative and forced systems. We note that we only deal with systems whose Hamiltonian 
is separable when expressed in Cartesian coordinates.

We note that our the present method does not aim to replace current SHM system identification methods. 
Rather we focus on demonstrating that deep learning methods can be biased with apriori physical knowledge 
for an improved performance. Using small linear systems as a starting point, we incrementally prove the efficacy 
of our method on more and more complex, i.e. higher nonlinearity and DOF, systems.

Related work
Introduced by Kingma and  Welling9 and Rezende et al.10, the VAE is one of the most popular approaches in 
stochastic unsupervised learning. The main function of the VAE is to learn a low-rank latent space that encodes 
noisy observations from a dataset. During the learning phase, the inference of the latent space from the data is 
referred to as the encoding, in contrast to decoding, which is the generation of future samples from the latent 
space. Hence the term autoencoder, since the decoder’s distribution should reproduce that of the encoder’s. A 
summary of the inner workings of the VAE is provided in Fig. 1. VAEs have been extended to noisy time-series 
autoencoding in a novel group of models referred to as Dynamic Variational Autoencoders (DVAE)13. This time-
dependency can be modelled in different ways. Bayer and  Osendorfer11 introduced STORN, where the decoding 
takes into account the previous states of the model in addition to the current state. Krishnan et al.19 included the 
idea of a Markov property on the latent space in their Deep Kalman filter (DKF). Similarly to a Kalman filter, the 
latent space, updated during the encoding, is the result of a combination of the VAE inference and its state at the 
previous step. Chung et al.20 combined both these ideas (temporal relationship for both encoding and decoding) 
in their Variational Recurrent Neural Networks (VRNN). In our work, we will mainly refer to the Deep Markov 
 Model12. This model is similar to the DKF, with added gating functions on the latent space update.

Recurrent Neural Networks and their variants, such as Long Short-Term Memory (LSTM)  Networks21 form 
the most widespread deep learning algorithm for time-series analysis. Therefore, many of the previously cited 
DVAEs rely on RNNs as their basic feature extractors. While efficient at finding time-based correlations in the 
data, it is not possible to add any prior knowledge of the dynamics of the data to an RNN. Chen et al.15 intro-
duced the Neural ODE (NODE), a Residual Neural Network (ResNet)22 repurposed to learn the flow of the 
dynamics of an observed system. Each layer of the neural network parametrizes the forward step integration of 
the underlying differential equation.

Figure 1.  VAE: The data is first passed through an encoder network to output the mean and variance of the 
latent distribution of the data. Then we sample from this distribution to obtain a candidate latent space. This 
candidate latent space is then mapped back to an approximation of the original data using a decoder network.
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Further works in NODEs by Rubanova et al.23 have shown that such learning schemes can also be applied to 
latent variables, i.e., in lifted spaces that have a different dimension from the original observed dataset.

Starting with Raissi et al.24, deep learning has also found success in physical modelling. Physics-informed 
Neural Networks (PINN) have achieved state-of-the-art results in fluid  mechanics25 and  aerodynamics26. In 
the case of structural dynamics, several classical architectures such as  CNNs27,  LSTMs28,29, as well as Neural 
 ODEs30, have achieved state-of-the-art performance for structure identification and modelling. Wei et al.31 have 
shown that the stochastic nature of VAEs and their subvariants such as the Deep Markov  Model12 can be used to 
model uncertain dynamics. Further works on generative models have shown their efficacy when applied to fluid 
dynamic problems. Zabaras and  Geneva32 trained a physics-constrained variational model to predict turbulent 
flows governed by Navier-Stockes equations. Rasul et al.33 designed an autoregressive deep learning model, where 
the data distribution is represented by a conditioned normalizing flow. Their model demonstrate state-of-the-art 
performance when predicting the dynamics of a flow through a system of pipes.

Hamiltonian Neural Networks (HNN)34 are a subset of PINNs that parametrize an explicit formulation of 
the Hamiltonian of the system being observed. This introduces the notion of energy conservation of the latent 
space. Saemundsson et al.35 opted instead to parametrize the integration of the dynamic system. Such integra-
tors for Hamiltonian systems are known as symplectic integrators. They allow the update of the latent space to 
be phase-preserving, a notion close to energy  conservation16.

We note that we are not the first to make the connection between symplectic integration and NODEs. Other 
 works17,18,36,37 have already explored the idea of learning symplectic flows with modified NODEs. We note in 
particular the UniCORNN proposed by Rusch and Mishra, which show that the introduction of Hamiltonian 
constraints in RNNS increases the learning stability by mitigating the exploding/vanishing gradient problem. 
This is achieved by computing the second order derivative of each hidden layer of the RNN with symplectic con-
straints. Our main contributions lies in the incorporation of symplectic flows to the encoder of DVAEs, mainly 
the DMM. Furthermore, we extend our model to learn the dynamics of non-autonomous systems.

Moreover, we remark that we are not the first to introduce the idea of Hamiltonian dynamics for VAEs. Wolf 
et al.38 showed that Hamiltonian Markov Chain Monte-Carlo (MCMC) can be introduced for the sampling of 
the posterior. Hamiltonian MCMC is an alternative sampling method to the Metropolis-Hastings algorithm 
used in the original work on VAEs. In the case of Metropolis-Hastings, samples are accepted or rejected based 
on a threshold calculated using the target distributions density function (or a proxy function proportional to 
said density, as it is the case in Variational Inference). In the case of Hamiltonian MCMC, the target distribu-
tion is interpreted as a position vector, and an auxiliary momentum distribution is added. A new sample is 
generated by integrating the position and momentum distributions forward in time along energy-preserving 
trajectories with a random momentum value. The new sample is accepted or rejected based on the same thresh-
olding scheme of the Metropolis-Hastings algorithm. The added benefit of the Hamiltonian MCMC is that it 
enables the sampling of distant states that are still highly probable due to the energy-preserving properties of 
the Hamiltonian integration scheme. This reduces the correlation between two subsequent samples and allows 
for a better global convergence of the sampling algorithm. Wolf et al.38 showed that using Hamiltonian MCMC 
improved the global convergence for the approximation of the posterior distribution. Caterini et al.39 mention 
that Wolf et al.’s estimation method is not amenable to the reparameterization trick, an essential step towards 
training neural networks for variational inference. Instead, they use Hamiltonian Importance  Sampling40, an 
annealed version of Hamiltonian MCMC to enforce compatibility with the training of a Hamiltonian VAE. 
Wang and  Delinguette41 introduced Quasi-symplectic Langevin VAEs, a similar model to the Hamiltonian VAE 
that replaces the Hamiltonian dynamics with Langevin dynamics according to Langevin’s stochastic differential 
equation which describes the motion of a particle in a fluid.

Methodology
Deep Markov model. The variational autoencoder (VAE). As previously mentioned, the VAE is a sto-
chastic version of an autoencoder. An autoencoder is a DNN trained to match the predicted output to its original 
input ( x ≈ x̂ ) for x ∈ R

F . The autoencoder is parametrized by two neural networks. First, the encoder DNN 
maps the input vector x to its latent representation z with z ∈ R

G and G ≤ F . The decoder DNN then inverts 
the previous transformation by mapping the latent variable z back to the original input x . The  VAE9 extends the 
concept of an autoencoder to stochastic latent variables. The encoder is used to infer the Probability Density 
Function (PDF) of the latent variable z for the data vector x . Within the context of Bayesian inference, the PDF 
of the decoder for x is:

with θ the parameters of the generative model, and where pθ (z) is the prior distribution of the latent variable. In 
most cases it is assumed to be a unit Gaussian, i.e. z ∼ N (0L, IL).

This latent variable is sampled from its inferred PDF and then passed through the decoder to generate a new 
datapoint x̂ . For the VAE, the PDF of z is assumed to be Gaussian. Th assumption hold for most applications of the 
VAE. However, for datasets with non-gaussian distributions, the latent space can be deformed a non-gaussian dis-
tribution using Neural Autoregressive  Flows42, i.e., a series of invertable, smooth and trainable transformations.

DVAE and ELBO. Our DVAE model reuses the DMM structure from Krishnan et  al.12. The choice of this 
model is motivated by the unsupervised training for the discovery of the latent space that encodes the temporal 
dynamics of the data. In addition, the latent space of the DMM has an enforced Markov property, i.e. the model 
assumes that the current state of the latent space can be inferred from its previous state; an assumptions that 

(1)p(x, z) = pθ (x|z)pθ (z)



5

Vol.:(0123456789)

Scientific Reports |         (2023) 13:2643  | https://doi.org/10.1038/s41598-023-29186-8

www.nature.com/scientificreports/

holds true for linear mechanical systems. In the remainder of the paper, we will adhere to the formalism from 
Girin et al.13 so that our proposed model can be easily compared to other DVAEs.

We consider a sequence of T observed random vectors of dimension F such as x1:T = {xt ∈ R
F}Tt=1 to which 

we associate a sequence of latent random vectors of dimension G such that z1:T = {zt ∈ R
G}Tt=1 . Both x1:T and 

z1:T are stochastic variables. The generative model of the DMM models the probability distributions of both 
these stochastic variables as follows:

where V and W are the respective mean models for the latent and observed variables, S and R are the respective 
variance models, and {β , δ} , {η, κ} are the parameter sets for each model, respectively. From now on, we will 
group β , δ , η , κ as the parameter set θ , describing the latent distribution model. Unlike conventional VAEs, we 
introduce a “Markov property”, i.e. time dependency on the latent variable zt . Furthermore, our model differs 
from that adopted by Krishnan et al.19 in two ways. First we consider the PDF of the observables to be a Gauss-
ian instead of Bernoulli distribution. We also remove the input dependency and only consider the systems from 
an output perspective. Our model is mainly applicable where the input of the system is unknown or difficult to 
measure. The generative model is shown on Fig. 2.

As per Kingma and  Welling9, the true posterior pθ (z|x) =
pθ (z)
pθ (x)

pθ (x|z) is intractable. Therefore, common 
optimization methods, such as expectation maximization cannot be used. The workaround by Kingma and 
 Welling9 can be summarized by approximating the posterior distribution with an auxiliary distribution qφ and 
optimizing the lower bound for the marginal likelihood, such as:

Where DKL is the Kullback-Leibner divergence. Both pθ and qφ can be parametrized by neural networks that 
can be optimized using Monte-Carlo estimates to compute the unbiased gradients of Eqφ(z|x)[log pθ (x|z)] . This 
process is known as Evidence Lower Bound Optimization (ELBO).

Training loss. Krishan et al.12 point out that, in the case of the inference model, the Markov property implies 
that all past information at time t is contained within zt−1 . The posterior can thus be factorized as:

This allows us modify the inference model as:

Finally, the loss used to optimize both the generative and inference model during the training phase follows 
from (4) and is given by:

(2)zt ∼ N
(

Vβ(zt−1), Sδ(zt−1)
)

(3)xt ∼ N
(

Wη(zt),Rκ (zt)
)

(4)log pθ (x) ≥ Eqφ(z|x)

[

log pθ (x|z)
]

− DKL(qφ(z|x) || pθ (z)

(5)pθ = pθ (z1|x1:T )

T
∏

t=2

pθ (zt |zt−1, xt:T )

(6)qφ(z, x1:T ) = qφ(z1|xt:T )

T
∏

t=2

qφ(zt |zt−1, xt:T )

Figure 2.  Illustration of the DMM generative process. The latent random variable zt a function of its previous 
instance zt−1 passed through the transmission model, enforcing a Markov property on the latent variable. At 
each time step, observations xt are generated by the emission model.
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The first term of the loss maximizes the likelihood pθ (xt |zt) , i.e., it enforces reconstruction accuracy by maximiz-
ing the likelyhood that the training data can be generated by the latent variable of the model. The second term is 
referred to as the information  gain43. This is because the Kullback-Leibner divergence allows us to minimize the 
difference between the approximate posterior distribution qφ(zt |zt−1, xt:T ) and the Markov transmission prior 
distribution pθ (zt |zt−1) and acts as a  regularizer9. Kingma and  Welling9 have shown that the joint learning of 
these two terms is equivalent to minizing the Kullback-Leibner divergence between the true and the approximate 
posterior distributions. The overall computation flow of the DMM is summarized in Fig. 3.

The computation of the ELBO of the DMM requires the direct sampling of qφ(zt |zt−1, xt:T ) to build the 
expectation. However, the posterior factorization given by Krishnan et al.12 in (5) and (6) allows us to employ the 
following “cascade trick” detailed in Girin et al.13 to approximate the intractable expectations in the loss function. 
The first expectation in this Variational Lower Bound expression can be developed as follows:

where f (zt) denotes an arbitrary function of zt . The second expectation of the Variational Lower bound can be 
developed by a similar procedure. Then each intractable expectation can be approximated using Monte Carlo 
estimates. This requires the sampling of qφ(zτ |zτ−1, xτ :T ) , iteratively for τ = 1 to t using the same reparametriza-
tion trick as in standard VAEs. Thus, the Variational Lower Bound becomes differentiable and can be optimized 
with gradient-descent-based techniques.

Neural ODEs. Neural ODEs are a new type of DNN architecture designed for time-series analysis. Under 
the assumption that the dynamics of a system follows a set of differential ordinary equations, the model attempts 
to approximate the flow of the system.15 reuse the existing  ResNet22 architecture, where each neural network 
layer parametrizes a forward flow step.

This is equivalent to approximating a forward integration of the governing ODE using a single layer per-
ceptron. For an arbitrary hidden step ht at time t of the encoding process, for a nondescript forward time step 
discretization τ , the forward time step is updated with:

(7)

J(θ ,φ, x1:T ) =

T
∑

t=1

Eqφ(zt |x1:T )

[

log pθ (xt |zt)
]

−

T
∑

t=1

Eqφ(zt−1|x1:T )

[

DKL(qφ(zt |zt−1, xt:T ) || pθ (zt |zt−1))
]

(8)Eqφ(zt |x1:T )

[

f (zt)
]

= Eqφ(z1:t |x1:T )

[

f (zt)
]

= Eqφ(z1|x1:T )

[

Eqφ(z2|z1,x2:T )[. . . [Eqφ(zt |zt−1,xt:T )[f (zt)]]]
]

Figure 3.  Deep Markov Model: Similarly to the VAE, the data is mapped to a latent representation of the data 
via the encoder. However, the final latent state is estimated as a weighted average between it’s previous and 
inferred state. For the first estimated state, the weighted average is computed with a learned prior distribution. 
This resulting latent state zt is the one that is passed on to the decoder transition and emission models for an 
estimation of the data and the subsequent latent state.
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With the approximation using the parameter set ψ as the weights of our neural network :

The optimization for NODEs relies on the adjoint sensitivity method by Pontryagin et al.44. For a dataset 
generated by the underlying state-space function u(t) and a model � of parameters ψ of size � replicating the 
flow of u(t), the initial value problem (IVP) can be formulated as:

The model � is optimized by minimizing the loss J over the time horizon T. Here J is defined as:

Where g is an arbitrary quadrature computing the fitness between du(t)dt  and �(u, t,ψ) . In the case of NODEs, the 
model � is a neural network optimized through backpropagation. Backpropagation requires the computation of 
the gradients of the loss with respect to the parameters, i.e. :

The dudψ (t) term scales linearly with the number of parameters � . For a single parameter ψi , i ≤ � , the following 
IVP must be satisfied:

Thus every single additional parameter will result in an additional IVP that will need to be solved jointly with 
the initial IVP. This makes the implicit solving (Euler, Runge-Kutta, etc...) of the IVP unfeasible with models 
such as neural networks where � ≫ 1.

Pontryagin et al.’s44 adjoint sensitivity method proposes to solve the IVP using the Lagrange multiplier method 
over time with the model fitness as a constraint. The optimization Lagrangian L with multipliers � is thus given as:

The multipliers � are constrained such that the dudψ (t) are negated from the gradient of the Lagrangian. The com-
putation of � for all t is itself the result of a terminal value problem (TVP) given as:

Therefore during the computation of the Lagrangian, we only need to call our implicit solvers twice: once for the 
original IVP, and once for the multipliers’ TVP solving backwards in time. The remaining gradient terms ∂�

∂u  , ∂�
∂ψ

 , 
∂g
∂u , ∂g

∂ψ
 and ∂u0

∂ψ
 can be computed numerically using reverse automatic differentiation. The NODE’s optimization 

can be summarized by the following steps:

• Solve the IVP for the initial u(t).
• Compute �T (t = T).
• Solve the TVP for �(t).
• Compute gradients and perform backpropagration.

The overall computation flow of the NODE is summarized in Fig. 4. Chen et al.15 and Rubanova et al.23 have 
shown that such a paradigm can further be applied with a generative approach; from a set of samples x , a latent 
variable space z can be learned. This variable can then be evolved into future time steps to generate future pre-
dictions. This is equivalent to the standard VAE setting where the latent space can be evolved forward in time to 
generate future data samples. Using a decoder with parameters θ and using the encoder parameters φ to replace 
ψ , the NODE in the VAE context is given by:

(9)ht+τ = ht +
dht

dτ

(10)
dht

dτ
= �(ht , τ ,φ)

(11)IVP:

{

du(t)
dt = �(u, t,ψ)

u(t = 0) = u0

(12)J(u,ψ) =

∫ T

0
g(u,ψ)dt

(13)
dJ

dψ
(u,ψ) =

∫ T

0

d

dψ
g(u,ψ)dt =

∫ T

0

∂g

∂ψ
(u,ψ)+

∂g

∂u
(u,ψ)

du

dψ
(t)dt

(14)IVP:

{

d
dψi

du(t)
dt = d

dψi
�(u, t,ψ)

d
dψi

u(t = 0) = d
dψi

u0

(15)L(u, �,ψ) = J(u,ψ)+

∫ T

0
�
T (t)(�(u, t,ψ)−

du(t)

dt
)dt

(16)TVP:

{

d�T (t)
dt = − ∂�

∂u (u, t,ψ)�T (t)

�
T (t = T) = − ∂J

∂u (u,ψ)

(17)zτ0 ∼ p(zτ0 )
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In their approach, the NODE was used to obtain a decoder capable of generating observations for an irregu-
larly sampled time-series. In contrast we make use of NODEs as en encoder for a better approximation of the a 
posteriori distribution.

Hamiltonian neural networks. An emerging field in Machine Learning is that of Physics-Informed Neu-
ral  Networks24. The intuition behind such networks is to add additional biases to Machine Learning models, 
such as conservation and invariance, to incorporate the physical laws that govern the observed system in the 
first place. Greynanus et al.34 made the observation that such laws can be described within the framework of 
Hamiltonian mechanics. At any arbitrary time step, the update of the position q and the momentum p for a 
Hamiltonian system described by the Hamiltonian function H can be given as:

Based on the Hamiltonian, we can derive a symplectic forward map for the position and momentum. A map-
ping in a 3D space is  symplectic45 if it induces volume preservation. The idea behind the method by Greydanus 
et al.34 is to parametrize the Hamiltonian by a neural network so as to embed the properties of symplecticity on 
the updates of the system. A similar method is that of Saemundsson et al.35. In this approach, the idea of sym-
plecticity is introduced through the Lagrangian perspective. Assuming the mass to be retrievable, we only need 
to parametrize the potential energy for the forward step, known as the velocity-verlet integrator, as explained 
later. We justify our assumptions from the fact that in practical applications, one can usually estimate the mass 
with much more accuracy than the spring constants of the dynamical system being studied. For an autonomous 
non-dissipative system, the Euler-Lagrange equations are given as follows:

with q denoting the vector of generalized coordinates, M the diagonal mass matrix and T , U denoting the kinetic 
and potential energy, respectively. The discrete time Lagrangian can be approximated, similarly to the Euler 
method, by integrating the equations of motion over an arbitrarily small time step h, i.e.:

Note that the above equation can be derived on the basis of the principle of least action (any real path is a sum 
of infinitesimal Lagrangian steps).

From this quadrature, we derive what are known as Variational Integrators (VI). VIs are an alternative to 
Euler-based methods for the numerical integration of Hamiltonian systems. VIs are known as symplectic inte-
grators, since they conserve the continuous time energy of the system in the discrete domain with a third order 
error. VIs have been shown to be more stable, even for larger time steps which are not feasible for implicit 
integration  methods45.

(18)zτ1 , zτ2 , ..., zτN = ODESolve(zτ0 ,�,φ, τ0, ..., τn)

(19)each xτi ∼ p(x|zτi , θ)

(20)
dq

dt
=

∂H

∂p

(21)
dp

dt
= −

∂H

∂q

(22)L(q, q̇) = T(q̇)− U(q) =
1

2
q̇TMq̇ − U(q)

(23)Ld(qt , qt+1, h) ≈

∫ t+h

t
L
(

q(τ ), q̇(τ )
)

dτ

Figure 4.  Neural ODE: For a dynamical system, we discretize a single step into n intervals of time τ . For 
each interval, we use a Multi Layer Perceptron (MLP) to approximate the forward derivative. Using a residual 
connection, we can approximate a forward integration for a time interval τ . We repeat this process n times for 
the full NODE.
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We derive our integrator as follows. We start by parametrizing the continuous Lagrangian with the parameter 
vector φ.

A quadrature rule is applied to derive the discretized equivalent; here the trapezoidal rule is adopted:

We can then derive the velocity-Verlet integrator, as per Saemundsson et al.35 :

with pt = M−1
φ q̇t.

Saemundsson et al.35 then combine these symplectic steps into a single RNN to create a symplectic version of 
the NODE described above. This method was shown capable of retrieving the latent space for MDOF dynamical 
systems.

Symplectic DVAE. We combine all the models mentioned above into a symplectic DVAE. We do this by 
replacing the DMM’s RNN encoder with a NODE as per Fig. 5. It is noted here that we still use an RNN to aug-
ment the observations to the latent space’s dimension. Then, we pass these samples through the Neural ODE to 
predict the previous latent distribution; we pass the samples in reverse, since we wish to infer the posterior dis-
tribution. This process is summarized in Fig. 5. Furthermore, each layer of the NODE follows the Velocity-Verlet 
integration step. The full model architecture comprises the following neural networks :
• The emission neural network, an MLP with LE layers of NE width estimating the emission PDF p(xt |zt)
• The transmission neural network, a two layer MLP with a width of NT estimating the transmission PDF 

p(zt |zt−1)
• The RNN with LRNN layers for the computation of the approximate posterior q(zt |xt:T )
• The energy neural network; an MLP with LP layers of NP width estimating ∂Uφ(qt )

∂qt

Our methodology can be summarized as follows: we postulate that our data is a random variable generated by a 
latent physical process which motivates our use of Variational Inference to learn a generative model. We choose 
the DMM as our generative model to enforce a Markov property which holds true globally for linear systems and 
locally for nonlinear systems. We use a NODE as our inference network to which biases the model to learn the 
flow of a dynamical system governed by an ODE. We can enforce additional conditions on the type of ODE that 
is learned. In our work, we choose to enforce symplectic constraints on the forward integration step to imbue 
our model with energy-preserving properties.

Dissipative systems. The use of symplectic integration restricts us to the study of systems with constant 
total energy. However, the vast majority of systems with applications in industry are either non-autonomous, or 
dissipative, or both. In the context of this paper, we will focus on the latter. To incorporate the idea of dissipation 

(24)Lφ(q, q̇) = Tφ(q̇)− Uφ(q) =
1

2
q̇TMφ q̇ − Uφ(q)

(25)Ld
φ(qt , qt+1, h) =

h

2

(

Lφ

(

qt ,
(qt+1 − qt)

h

)

+ Lφ

(

qt+1,
(qt+1 − qt)

h

))

(26)qt+1 = qt + hM−1
φ q̇t −

h2

2
M−1

φ

∂Uφ(qt)

∂qt

(27)pt+1 = pt −
h

2

(

∂Uφ(qt)

∂qt
+

∂Uφ(qt+1)

∂qt+1

)

Figure 5.  RNN-NODE encoder: Observations at time t are augmented to the latent space dimension using a 
RNN network. We use an RNN instead of a regular neural network so as to pass long-term dependencies to the 
next time step. The lifted data is then passed through a NODE to simulate a forward integration to estimate the 
next latent step. The NODE is modified such that its estimated flow is symplectic.
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into our system, we implemented a presymplectic Verlet integrator following the recommendations of Franca 
et al.46. By augmenting the integrator state with an auxiliary time variable τt , we obtain the following updates for 
a single step:

(28)qt+1 = qt + hM−1
φ q̇t −

h2

2
M−1

φ

∂Uφ(τt , qt)

∂qt

(29)τt+1 = τt + h

(30)pt+1 = pt −
h

2

(

∂Uφ(τt , qt)

∂qt
+

∂Uφ(τt+1, qt+1)

∂qt+1

)

Figure 6.  Autonomous 2DOF system.

Figure 7.  Observations for 2DOF system.
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where, as previously, with pt = M−1
φ q̇t.

Experiments
We implement both the emitter and transmission MLP using the popular PyTorch library. The encoder’s RNN 
is also implemented using  PyTorch47. For the neural ODE, we use a modified version of the torchdiffeq  library15 
provided by  Ishikawa48. For the variational inference, we rely heavily on the automated processes provided by the 
Pyro  library49. Notably, we let the library handle the calculation of the ELBO as well as all Monte Carlo simula-
tions necessary for stochastic backpropagation.

Dynamical system. The focus on our experiments will be the study of linear and nonlinear ODE systems 
subject to noise. The ODE governing the dynamics of each system is defined as:

Where M is the diagonal mass matrix, C is the dissipation matrix, K is the potential function, D is the external 
excitation force function and q(t) is the position vector. In our default experiments, we assume that displace-
ments and accelerations are measurable. For all systems, we assume that these measurements are available for 
all DOFs (in a separate section, we explore the case where part of the DOFs are not accessible.). We will also 
assume that the mass matrix is known ( M = I the identity matrix) and that the rest of the parameters for C , K 
and D are randomly sampled from the uniform distribution U[0, 2] . Furthermore, we make the assumption that 
displacement measurements are subject to higher uncertainty than that of accelerations, and therefore corrupt 
the former with 10dB of Gaussian noise and the latter with 20dB of Gaussian noise.

In each experiment, the training dataset is generated as follows. Once we have defined the parameters of the 
dynamical system, we solve the ODE using  RK4550 for 500 iterations with different initial values. We then select 
our observed states (positions and accelerations) and corrupt these with additive Gaussian noise. We would like 
to note that we are aware that this assumption already poses some form of bias on the assumed noise distribution. 
However, non-Gaussian noise could be easily tackled via use of normalizing  flows51. Inspired by Saedmunsson 
et al.35, we augment our dataset by subdividing each simulation into windows of 50 with a shift of 1.

Coupled spring‑mass system. As a proof of concept, we start off by studying the dynamics two masses 
coupled with two springs, as shown on Fig.  6. For now, we only consider the free vibration non-dissipative 
responses of the system. As observables, we choose the position and the acceleration of both masses, as these are 
the most common quantities measured my sensors in monitoring systems. We define the equations of motion 
for each degree of freedom and put these in matrix form, i.e. :

Here, the potential function K(q(t)) = Klq(t) , i.e. is a linear transformation. The excitation function D(t) = 0 
the zero matrix.

(31)Mq̈(t)+ Cq̇(t)+ K(q(t)) = D(t)

(32)Mq̈(t)+ Klq(t) = 0

Figure 8.  Phase space for first DOF of a linear 2DOF system.
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Optimal parameter search. Our model’s ability to fit the training data is highly dependant on the hyperpa-
rameters defining the dimensions of the different neural networks. However, these networks are relatively 
small ( Nparameters ∼ 103 ), which renders the involved training costs computationally cheap. Motivated by the 
low dimensionality of the problem, we perform a hyperparameter search using Bayesian Parameter  Search52 to 
determine the optimal model configuration, which is found to be described by the following parameters:

Parameter NE LE NT NP LP LRNN

Value 18 2 15 85 3 15

While the ELBO allows our DMM to infer latent variables from noisy data, is does not offer an interpretable 
metric on how well the model fits the data. Once trained, we can use the derived DMM as a one-step ahead 
predictor to verify how well it has learned the dynamics of the system (Fig. 7). To further verify that the model 
has learned the underlying dynamics, we can plot the phase-space of the latent representation. In our case, the 
model learns a rotated version of the phase-space; symplecticity only constrains the area, not the orientation. 
Therefore, we can correct for the angle by applying a rotation transformation calculated with a least-square esti-
mator. On Fig. 8 we can see that both phase-spaces line up, indicating that our model was able to learn a latent 
representation corresponding to the phase-space of the linear system.

Figure 9.  Observations for a linear 3DOF system.
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Linear system of higher dimensionality. Moving on, we investigate the ability of the proposed model to 
adapt to a higher number of degrees of freedom. We verify that our model can scale up by learning the dynamics 
of a 3DOF system. The optimal parameter search now returns the following hyperparameters:

Parameter NE LE NT NP LP LRNN

Value 29 1 24 11 5 1

Figure 10.  Phase space for the first DOF of a 3DOF system.

Figure 11.  2DOF duffing oscillator system.

Figure 12.  FTLE for the duffing oscillator.
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Figure 13.  Duffing oscillator observations.

Figure 14.  Duffing oscillator phase space.
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We corroborate our previous conclusions for the 3DOF system on Figs. 9 and 10.
While we have just demonstrated that the number of DOFs can be increased, our model struggles to scale for 

much larger numbers of DOFs. This is due to the heavy influence of our hyperparameters on the performance of 
the model. This makes the Bayesian Parameter Search more and more costly as the number of DOFs increases. 
We leave this weakness of our model as a topic for further research.

Nonlinear dynamics. Two degree of freedom duffing oscillator. We modify the previous 2DOF example 
via addition of cubic springs, resulting in a two degree of freedom Duffing oscillator, as shown on Fig. 11.

This adds a cubic nonlinear term to the elastic potential. The updated equations of motion are now given by :

Here, the potential function K
(

q(t)
)

= Klq(t)+ Kdq
3(t) , i.e. is a nonlinear transformation. Nonlinear dynami-

cal systems are notorious for exhibiting chaotic dynamics for certain regions of the initial phase-space. To explore 
the impact of the initial conditions on the dynamics of this system, we calculate the Finite-Time Lyapunov 
Exponent (FTLE) along the phase-plane. The FTLE is a useful metric to quantify the deviation of the trajectory 
of the system for an infinitesimal perturbation around a given initial condition. A high FTLE would indicate a 
high deviation for a small perturbation, which is a characteristic of a chaotic trajectory. The FTLE is given by:

with q(T) = �(q0) and ωmax a function that returns the maximum eigenvalue of the input. We can now calculate 
the FTLE for both DOFs along the [-2, 2] square phase-space with an initial �q0 = �q̇0 = 0.01:

An observation of Fig. 12 indicates that as we move away from the origin along the phase-space, the FTLE 
tends to increase, particularly around “chaotic rings”. Running a hyperparameter sweep, we are able to design a 
model capable of adapting to this more diverse dataset:

(33)Mq̈(t)+ Klq(t)+ Kdq
3(t) = 0

(34)FTLETt0(q0) =
1

2|T − t0|
log

(

ωmax(∇q�
T(q0)∇q�(q0))

)

Figure 15.  Double pendulum system.

Figure 16.  FTLE for the double pendulum.
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Figure 17.  Double pendulum observations.

Figure 18.  Double pendulum phase space.
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Parameter NE LE NT NP LP LRNN

Value 14 1 36 54 1 2

Figures 13 and 14 verify the ability of the proposed model to learn nonlinear dynamics just like in the linear 
dynamics. In the case of the Duffing oscillator, the chaoticness is low enough for our model to generalize for 
the entire phase-space.

Double pendulum. The NDOF pendulum is another example of a nonlinear system that exhibits chaotic 
dynamics. Already for a 2DOF pendulum (Fig. 15), the equations of motion are quite complicated. Using angu-
lar coordinates α for the angle and l for the length, the dynamics is described as follows:

In our study, we will fix m1 = m2 = 1 and l1 = l2 = 8 and G is the gravitational constant. We compute the FTLE 
for the [−π/2,π/2,−2, 2] phase-space of the pendulum with an initial �x0 = �ẋ0 = 0.01 (Fig. 16).

Unlike the duffing oscillator, the double pendulum’s phase-space exhibit chaotic dynamics in broader regions, 
typically when θ2 > π

2  . The proposed models is not able to generalize for such as diverse set of dynamics. Focus-
ing on a subs-space of the phase-space, namely [0, 1, 0, 1], we were able to train a model via use of a hyperpa-
rameter sweep :

Parameter NE LE NT NP LP LRNN

Value 13 0 18 21 4 1

Over a limited non-chaotic phase-space, the dynamics of the double pendulum can be learned, as per Figs. 17 
and 18. This demonstrates versatility of the proposed model, in the sense that it can be repurposed for a variety 
of nonlinear dynamics, as long as the phase-space only contains few chaotic initial configurations.

(35)
{

(m1 +m2)l1α̈1 +m2l2α̈2 cos(α1 − α2)+m2l2α̇2
2 sin(α1 − α2)+ (m1 +m2)G sin(α1) = 0

m2l2α̈2 +m2l1α̈1 cos(α1 − α2)−m2l1α̇1
2 sin(α1 − α2)+m2G sin(θ2) = 0

Figure 19.  Partially observed linear 2DOF system.



18

Vol:.(1234567890)

Scientific Reports |         (2023) 13:2643  | https://doi.org/10.1038/s41598-023-29186-8

www.nature.com/scientificreports/

Systems with partial observations. While we deemed it useful for demonstration purposes in what was 
shown in the previous examples, the proposed framework does not require the observation of all DOFs. In this 
section, we demonstrate its performance on learning the dynamics of the previously examined systems, but this 
time for a subset of observations. More specifically, we now chose to only observe the acceleration and displace-
ment of the first degree of freedom. We apply this approach to the 2DOF linear, 3DOF linear, 2DOF duffing and 
2DOF pendulum systems. Samples of the observed time series are showcased in Figs. 19, 20, 21 and 22.

In these scenarios, the model has to deal with a greater level of uncertainty, and this is reflected in the widen-
ing of the variance band, particularly for displacements. However, overall, our model is able to generalize for 
linear and nonlinear systems, even when only a subset of the system’s DOFs are observed (measured).

Nonautonomous systems. Dissipation. We return to the coupled spring-mass system. However, we 
now add damping to both degrees of freedom. The corresponding equations of motion are now given by:

We retrain the same model as in section 4.2, but now with implementation of the dissipative integrator described 
in section 3.5.

Figure 23 illustrates that the herein proposed model delivers stable predictions on the dynamics of the model. 
However, we would further like to verify whether the model’s latent space takes into account the loss of energy 
of the system. The results obtained in Fig. 24 are mixed. The model reflects the fact that the energy variations are 
diminishing over time and the model is converging towards a constant state. However, we are left with a large 
residual energy even when the system is at rest. This is because of the gauge invariance of the potential energy 
of this system; a trajectory can give us information on the gradient of the energy, but there are infinitely many 
possible starting points. Since we do not offer any prior information on the initial potential energy to the model, 
it will not be able to recover this information by simply observing the system’s trajectories.

Forced dissipative nonlinear dynamics. We now additionally subject the dissipative version of a nonlinear sys-
tem to external forces. In particular, we will study the effects of a sinusoidal excitation on a dissipative 2DOF 
duffing oscillator. The corresponding equations of motion are now given by:

(36)Mq̈(t)+ Cq̇(t)+ Klq(t) = 0

Figure 20.  Partially observed linear 3DOF system.
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We retrain the 2DOF duffing oscillator model with values of γ = [0, 2] and f = [0.5, 3] . Here, the matrix D is 
used to project the excitation of a subset of DOFs. For our experiments, D1,1 = 1 whereas the rest of D is left to 
be equal to 0 so as to apply the forcing on the first DOF. We only consider the first DOF to be directly excited. 
As examples, we display below the predictions for a fixed f = 1.5 and γ = 0.3, 0.9, 2.0 on Figs. 25, 26 and 27 
respectively.

Comparison with other encoders. To compare our encoders with those of Krishnan et al.12, we decide 
to measure the Mean Squared Error (MSE) between the predicted mean and the ground truth trajectory. Fur-
thermore, we also count the percentage of noisy datapoints that are outside the µ± 2σ range. Each metric is 
computed over the test set (10% of the full dataset, i.e. 500 samples) and averaged. We implement the RNN and 
BiRNN encoders from the original  DMM12, our NODE encoder and our Symplectic NODE encoder. All experi-
ments are performed with the same random seed.

Encoder RNN BiRNN ODE (Ours)
Symplectic ODE 
(Ours)

MSE Outlier MSE Outlier MSE Outlier MSE Outlier

Linear 2DOF 4.18 0.357% 4.12 0.288% 0.73 0.038% 1.56 0.056%

Linear 3DOF 1.12 0.175% 1.14 0.209% 1.02 0.244% 0.76 0.031%

Duffing 2DOF 1.69 38.954% 1.73 42.50% 1.88 2.71% 1.01 0.88%

Pendulum 2DOF 1.64 0.514% 1.59 0.316% 1.43 0.610% 1.42 0.687%

Linear 2DOF Dissipative 20.95 0.115% 15.04 0.146% 2.82 0.391% 2.24 1.073%

Duffing 2DOF Dissipative Sinusoidal Forcing 231.10 2.639% 147.13 0.654% 134.27 0.600% 101.72 1.765%

(37)Mq̈(t)+ Cq̇(t)+ Kq(t)+ Kdq
3(t) = Dγ sin(2π ft)

Figure 21.  Partially observed duffing 2DOF system.
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In the most simple experiment, the base NODE encoder is able to outperform its symplectic counterpart. 
However, for more complex dynamics, the symplectic encoder is able to make more accurate predictions than 
the other encoders.

Conclusion
We presented a variation of the DMM that is able to learn a physics-informed latent representation from noisy 
samples of a MDOF system. In particular, the use of symplectic encoders, derived from the Hamiltonian formal-
ism, successfully introduces the property of energy presentation to the latent space. Our model is able to learn 
the dynamics of a variety of linear and nonlinear system dynamics, namely linear systems, duffing oscillators 
and double pendulums. Our models can also be applied to the non-autonomous case. In physical terms, we are 
able to account for both dissipation and external forces.

Our future works in the field of dynamical system will focus on incorporating additional latent biases in our 
model. For example, the exact measure of the energy is still a problem to be solved. In addition, we will also 
explore way to scale our solutions to systems with a much larger number of DOFs.

Figure 22.  Partially observed double pendulum system.
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Figure 23.  Linear dissipative 2DOF system observations.
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Figure 24.  Linear dissipative 2DOF system energy.

Figure 25.  Forced dissipative 2DOF system observations for γ = 0.3.
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Figure 26.  Forced dissipative 2DOF system observations for γ = 0.9.
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Figure 27.  Forced dissipative 2DOF system observations for γ = 2.0.
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Data availability
All datasets used to train and validate the models can be generated using the “simulate.py” script from https:// 
github. com/ kbacsa- ethz/ phys- stoch with a desktop computer within approximately 10 min.
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