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While optical microscopy inspection of blood films and bone marrow aspirates by a hematologist is 
a crucial step in establishing diagnosis of acute leukemia, especially in low‑resource settings where 
other diagnostic modalities are not available, the task remains time‑consuming and prone to human 
inconsistencies. This has an impact especially in cases of Acute Promyelocytic Leukemia (APL) that 
require urgent treatment. Integration of automated computational hematopathology into clinical 
workflows can improve the throughput of these services and reduce cognitive human error. However, 
a major bottleneck in deploying such systems is a lack of sufficient cell morphological object‑labels 
annotations to train deep learning models. We overcome this by leveraging patient diagnostic labels 
to train weakly‑supervised models that detect different types of acute leukemia. We introduce a deep 
learning approach, Multiple Instance Learning for Leukocyte Identification (MILLIE), able to perform 
automated reliable analysis of blood films with minimal supervision. Without being trained to classify 
individual cells, MILLIE differentiates between acute lymphoblastic and myeloblastic leukemia in 
blood films. More importantly, MILLIE detects APL in blood films (AUC 0.94 ± 0.04) and in bone marrow 
aspirates (AUC 0.99 ± 0.01). MILLIE is a viable solution to augment the throughput of clinical pathways 
that require assessment of blood film microscopy.

Morphological evaluation of leukocytes from peripheral blood smears and bone marrow aspirates under a high 
numerical aperture objective is an important step in diagnosing hematopoietic malignancies such as acute 
 leukemia1. More specifically, blood smears must always be inspected in the case of unexplained leukocytosis or 
when a complementary automated instrument suggests the presence of  blasts2. Equally, blood film inspection 
allows differentiating between myeloid and lymphoid lineages which is crucial for treatment  selection3–5.

Unfortunately, examination of peripheral blood and bone marrow aspirate films strongly relies on the avail-
ability of trained personnel, is time-consuming and prone to human error due to fatigue and cognitive over-
load. The emergence of digital pathology has presented the potential for scalable artificial intelligence assisted 
examination of peripheral blood films and bone marrow aspirates for diagnostic decision  support6. Although 
computational pathology has shown potential in reproducing hematologists’ work by training state-of-the-
art supervised deep learning models to recognize well established morphological indicators of  leukemia7–14, a 
critical limitation of previous studies is that they do not focus on differentiating the type of leukemia such as 
Acute Lymphoblastic Leukemia (ALL) vs. Acute Myeloid Leukemia (AML). Furthermore, these studies have 
not attempted to detect cases of Acute Promyelocytic Leukemia (APL) which warrants emergency treatment 
impacting early mortality and  prognosis15 while other time-consuming parts of the clinical pathway are ongo-
ing if available (e.g. genetics, cytochemistry, flow cytometry). An equally important drawback of previous fully 
supervised  models7,9,13,16,17 is that they require hundreds of thousands of object-level cell annotations provided 
by human  experts18 which are not only difficult to obtain at scale but are also susceptible to inconsistencies due 
to the subjectivity and cognitive fatigue of annotators. To overcome these limitations and, to provide a clinically 
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relevant system that could support, together with clinical evaluation and ancillary laboratory parameters, the 
prompt treatment in APL cases, we designed a Multiple Instance Learning for Leukocyte Identification (MILLIE) 
approach. Our customizable annotation-free deep-learning framework leverages patient diagnostic labels to 
train weakly supervised models that detect different types of acute leukemia. While weakly supervised multiple 
instance learning  models19,20 trained with diagnostic labels have been previously used to analyze microscopy 
images in cell  biology21,22 and in computational cancer  histopathology23–26, there have been few attempts to apply 
their capabilities to the acute leukemia clinical pathway. Our results show that, despite not having been trained 
to classify individual cells, MILLIE can accurately distinguish between normal, acute lymphoblastic leukemia 
and acute myeloblastic leukemia by recognizing normal WBC, lymphoblasts and immature myeloid cells in 
peripheral blood films. MILLIE was equally able to distinguish AML bone marrow aspirates from healthy ones. 
MILLIE was also able to detect promyelocytes in both blood films and bone marrow aspirates as an indicator of 
acute promyelocytic leukemia (APL).

Methods
We trained MILLIE models to distinguish between normal, ALL and AML samples and we evaluated their clas-
sification performance both at sample and cell-level on separate hold out test sets. For each sample, our approach 
extracts patches containing individual cells from high-resolution fields of view of peripheral blood films and bone 
marrow aspirates (Fig. 1a) and employs these patches to train a weakly supervised convolutional neural network 
model with diagnostic  labels27 (Fig. 1b). More specifically, MILLIE was trained to differentiate between “bags” 
of cell instances extracted from positive samples (containing both regular and abnormal white blood cells) and 
“bags” of cell instances extracted from negative samples (only regular cells).

Trained to predict patient diagnosis, MILLIE implicitly identifies disease specific indicators with minimum 
supervision (Fig. 1c) which renders the approach both highly efficient (e.g., not hindered by the lack and biases 
of object-level annotations) and interpretable.

For each of the experiments detailed in the next section, we (1) extracted patches of individual white blood 
cells from each sample, (2) trained a multiple instance learning convolutional neural network model with sample-
level labels and (3) applied the trained model and reported the results.

Image datasets. All the datasets used in this study are publicly available. Table 1 summarizes the prov-
enance and characteristics of the image datasets with diagnostic level labels (also termed sample level labels) 
used to train and test MILLIE. Table 2 summarizes the provenance and characteristics of the image datasets with 
single cell morphological annotations (also termed object level level) used to validate the multi-instance weakly 
supervised MILLIE approach.

Image segmentation. Images in RGB color space were converted to HSV space and Otsu’s thresholding 
was applied to the Saturation channel as it offers high contrast stained WBC  nuclei28. Morphological binary 
opening followed by watershed and removal of small blobs were further applied to segment WBC nuclei. Tiles of 
200 × 200 pixels around the centroid of each remaining binary blob were cropped from the initial RGB images. 
We evaluated the segmentation accuracy on 15 randomly selected fields of view comprising a total of 71 manu-
ally annotated WBC. The segmentation algorithm “missed” 4 cells (recall: 0.94) and detected 6 false positives 
(precision: 0.92).

Network architecture and training details. The convolutional layers of MILLIE models were initial-
ized with weights from a VGG-19  model29 pre-trained on the ImageNet  dataset30. Objects of interest (Ok

i) with 
i = 1,…,N corresponding to image patches of white blood cells were extracted from each sample k after applying 
the segmentation step described in the previous section. MILLIE was trained to classify “bags” of these objects 
of interest with sample-level labels (Lk) provided by the routine clinical tests. The convolutional feature vectors 
corresponding to each cropped image  (Fk

i = conv(Ok
i)) of the model were pooled into a single feature vector fol-

lowed by two fully connected (FC) layers and a classification layer:

where N is the number of input image patches,  Wj,  bj are the corresponding weights and biases of each FC layer 
and ffusion is the feature aggregation rule. More specifically:

with nf, the number of individual features ( ζ il  ) in each  Fk
i.

Up to fifty image patches subject to on-the-fly geometrical augmentation (random rotations and random flips) 
as well as spectral augmentation (random hue modification, random gamma corrections, random noise) were 
randomly selected per sample for each iteration during training. The same augmentations were applied during 
testing for both sample-level and cell-level prediction. In this way, the spectral augmentations compensate for 
any covariate (acquisition) shifts due to the differences in the cameras and microscope settings used to image the 
different datasets. We employed stochastic gradient descent with a learning rate of 0.0003 and a cross entropy 
loss function to optimize the model weights during maximum 100 epochs (or early stopping). At testing time, 
all image patches from each sample were passed through the network. For the single cell classification task, 
individual cells were passed one at a time through the trained models which had the same exact weights as for 
the sample prediction case, with the difference that ffusion(Fk

i) =  Fk
i, as no feature fusion was no longer needed.
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Figure 1.  MILLIE approach. (a) Preprocessing and training data generation from a peripheral blood smear. 
Fields of view acquired with a high-NA objective lens (100×/1.4NA for blood films and 50×/0.55 for BMA) 
digital microscope are processed. A histogram-based  segmentation28 (see “Methods” section) was employed 
to generate binary masks corresponding to individual cells from the RGB images. These masks are further 
employed to crop individual patch images around each individual cell from the RGB images. (b) Training 
with weak labels. The extracted patches are passed through the convolutional neural network. Corresponding 
convolutional feature vectors are pooled together in one single feature vector (max pooling) followed by 
fully connected and classification layers. Weights of the model are optimized to predict the sample-level label 
available from routine clinical examinations. (c) Detecting morphological indicators. Once trained, individual 
cells can be passed one-by-one through the MILLIE models which classifies them as indicators for the specific 
disorders MILLIE learned to predict at a sample level.
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We have compared the max-pooling strategy with the more recent attention-pooling one (generalized average 
pooling) and have found no indication that attention pooling would improve the performance (Supplementary 
Fig. 1). The max-pooling strategy outputs higher AUROCs on the sample-level predictions (Supplementary 
Fig. 1).

Results
MILLIE differentiates between ALL and AML by recognizing myeloblasts and lymphoblasts 
in peripheral blood films. We trained and validated our MILLIE model to predict diagnostic labels with 
image fields from 69 normal samples and 57 ALL samples (Fig. 2a, b) publicly  available31 and 63 AML sam-
ples (Fig. 2c) from a different publicly available databank (https:// image bank. hemat ology. org/). A color trans-
fer  approach32 was applied to reduce the color variation between the two datasets. This combined dataset was 
randomly split into train (2/3) and test (1/3). MILLIE was then trained with “bags” of patches encompass-
ing 200 × 200 pixels (12.8 µm × 12.8 µm) around the centroid of each previously segmented White Blood Cell 
(WBC)28. A threefold cross validation yielded an average accuracy over all three classes: 0.99 ± 0.01 (Fig. 2d, 
confusion matrix for a single fold).

We further tested the model’s ability to classify single cells on a separate publicly available dataset consisting of 
130 images of individual normal WBC and 130 images of individual  lymphoblasts31 completed with 130 images 
of individual myeloblasts and immature myeloid cells randomly selected from another different public  dataset33. 
We show that, despite being only trained on diagnosis level labels, MILLIE was able to recognize objects such 
as lymphoblasts (AUC = 0.97) and myeloblast (AUC = 0.97) cells with high accuracy (Fig. 2e, f). As a manner of 
interpretability, we investigated the cell-level feature space learned by MILLIE. The convolutional feature vectors 
of the individual test cell images were reduced to two-dimensional space for visualization through transformation 
via Principal Component Analysis (PCA) and each point was shaded by its ground-truth cell label (Fig. 2g). PCA 
shows three distinct clusters of points with little overlap between normal and blast cells (Fig. 2g).

The datasets used to train MILLIE do not necessarily contain single-cell level annotations, therefore a com-
parison using the same training datasets is not possible. Nevertheless, we compared MILLIE with fully super-
vised approaches by adding a comparison of our cell-level classification performance with results reported in 
the literature obtained using fully supervised models tested on the same cell-level datasets (Supplementary 
Table 1). MILLIE obtained identical performance as fully supervised models when detecting lymphoblasts in 
PBS (Supplementary Table 1).

MILLIE recognizes acute promyelocytic leukemia and identifies promyelocytes in peripheral 
blood films. We next tested MILLIE’s ability to recognize APL samples and detect promyelocytes in blood 
films (Fig.  3a). For this purpose, we trained and validated a binary weakly supervised model to distinguish 
between APL (30 samples) and other (40 normal and other AML samples). Similarly, to the previous experi-
ment, a random split (train:2/3 and test:1/3) and a threefold cross validation were performed. In terms of sample 
classification, MILLIE achieved an AUC of 0.935 ± 0.036 (Fig. 3b, c). Once trained and validated on weak sam-
ple-level labels, we further tested MILLIE’s ability to distinguish promyelocytes from other types of WBC. On a 
separate test set comprising of single cell images of 611 promyelocytes and 3000 other myeloid and normal WBC 

Table 1.  Image datasets with diagnostic level labels used to train and test MILLIE. PBS peripheral blood film, 
BMA bone marrow aspirate.

Dataset name Ref Type Website

No. of samples

NORMAL ALL AML APL Total Optical magnification

ALL-IDB1 29 PBS http:// homes. di. unimi. it/ scotti/ all/ 69 57 – – 126 100×

N/A N/A PBS https:// image bank. hemat ology. org – – 33 30 63 100×

N/A 17 PBS https:// www. kaggle. com/ eugen eshen derov/ acute- promy elocy tic- leuke 
mia- apl – – 72 33 105 100×

N/A 13 BMA https:// www. kaggle. com/ sebas tianr ieche rt/ bone- marrow- slides- for- 
leuke mia- predi ction 236 – 1052 43 1331 50×

Table 2.  Image datasets with single cell (object-level) annotations used to validate MILLIE. PBS peripheral 
blood film, BMA bone marrow aspirate, LYB lymphoblasts, MYE myeloid lineage cells, PMY promyelocytes.

Dataset name Ref Type Website

No. of annotated cells (objects)

NORMAL LYB MYE PMY Total Optical magnification

ALL-IDB2 29 PBS http:// homes. di. unimi. it/ scotti/ all/ 130 130 – – 260 100×

N/A 30 PBS https:// data. mende ley. com/ datas ets/ snkd9 3bnjr/ draft?a= d9582 c71- 
9af0- 4e59- 9062- df30d f05a1 21 10,298 – 2284 611 13,193 100×

N/A 13 BMA https:// www. kaggle. com/ sebas tianr ieche rt/ bone- marrow- slides- for- 
leuke mia- predi ction 844 – 4669 1038 6551 50×

https://imagebank.hematology.org/
http://homes.di.unimi.it/scotti/all/
https://imagebank.hematology.org
https://www.kaggle.com/eugeneshenderov/acute-promyelocytic-leukemia-apl
https://www.kaggle.com/eugeneshenderov/acute-promyelocytic-leukemia-apl
https://www.kaggle.com/sebastianriechert/bone-marrow-slides-for-leukemia-prediction
https://www.kaggle.com/sebastianriechert/bone-marrow-slides-for-leukemia-prediction
http://homes.di.unimi.it/scotti/all/
https://data.mendeley.com/datasets/snkd93bnjr/draft?a=d9582c71-9af0-4e59-9062-df30df05a121
https://data.mendeley.com/datasets/snkd93bnjr/draft?a=d9582c71-9af0-4e59-9062-df30df05a121
https://www.kaggle.com/sebastianriechert/bone-marrow-slides-for-leukemia-prediction
https://www.kaggle.com/sebastianriechert/bone-marrow-slides-for-leukemia-prediction
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Figure 2.  Acute leukemia detection and typing in blood films. (a, b) Normal WBC and lymphoblasts detected 
in two ALL positive sample from the hold out validation set. (c) Normal leucocytes and myeloblasts detected 
by MILLIE in an AML sample. (d) Confusion matrix for sample classification on the validation set. (e) Receiver 
operating characteristic (ROC) curve for single cell classification on the cell image test set. (f) Confusion matrix 
for cell classification (lymphoblasts vs myeloblasts vs normal) on the cell image test set. (g) PCA visualization of 
the convolutional representations learned by MILLIE of the individual cells in the test set.
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randomly selected from a separate publicly available  dataset33, MILLIE achieved an AUC of 0.88 (Fig. 3d, e). 
PCA of the learned convolutional features shows a distinct cluster corresponding to the promyelocytes slightly 
overlapping with the other types of cells (Fig. 3f). The fact that MILLIE is able to differentiate between images 
of promyelocytes and other types of WBC from a different public dataset that it was trained on suggests that 
the spectral augmentations during training corrected for any covariate shift caused by color variations between 
datasets.

To demonstrate the robustness of the method, we further trained and tested MILLIE to distinguish APL 
samples (n = 33) from AML samples (n = 72) from a different publicly available  dataset16. MILLIE achieved an 
AUC of 0.96 ± 0.02 (Fig. 4a–e) on a random threefold cross validation and a higher AUC (0.94) than the one 
previously reported (0.86)16.

The datasets used to train MILLIE do not necessarily contain single-cell level annotations, therefore a com-
parison using the same training datasets is not possible. Nevertheless, we compared MILLIE with fully super-
vised approaches by adding a comparison of our cell-level classification performance with results reported in 
the literature obtained using fully supervised models tested on the same cell-level datasets (Supplementary 

Figure 3.  Acute promyelocytic leukemia detection in blood films. (a) Promyelocytes detected in an APL 
positive sample from the hold out validation set. (b) Confusion matrix for sample classification on the 
validation set. (c) Receiver operating characteristic (ROC) curve for sample-level classification on the hold 
out validation set (d) ROC curve for cell-level classification on the cell image test set. (e) Confusion matrix for 
cell classification (promyelocytes vs other) on the cell image test set. (f) PCA visualization of the convolutional 
representations learned by MILLIE of the individual cells in the test set.
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Table 1). In this context, fully supervised models trained specifically to distinguish between BMA myeloblasts 
and promyelocytes perform only slightly better. While, classifying individual cells is not the main aim of our 
weakly supervised MILLIE approach, we show that MILLIE can flag lymphoblasts and immature myeloid cells 
as markers of ALL and AML respectively.

MILLIE detects AML and APL while identifying promyelocytes in bone marrow aspirates. To 
further validate our approach, we trained and validated MILLIE to classify blood films of bone marrow aspirates 
from 236 healthy subjects and 1095 AML patients (out of which 43 were diagnosed with APL) using a publicly 
available  dataset13. Random splits (train:3/4 and test:1/4) and a fourfold cross validation were performed in this 
three-class classification problem. In terms of both AML and APL sample classification, MILLIE achieved on 
average an AUC of 0.99 (Fig. 5a). The confusion matrix (Fig. 5b) confirms the high accuracy in sample classifica-

Figure 4.  APL versus AML classification of blood samples (additional  dataset16). (a) Receiver operating 
characteristic (ROC) curve for sample-level classification on the hold out validation set. (b) Confusion matrix 
for sample classification on the validation set. (c) ROC curve for cell-level classification on the cell image test 
set. (d) Confusion matrix for cell classification (promyelocytes vs other) on the cell image test set. (e) PCA 
visualization of the convolutional representations learned by MILLIE of the individual cells in the test set.
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tion. Like our previous experiments, once trained and validated on diagnosis level labels, we further tested MIL-
LIE’s ability to distinguish myeloid immature cells (myeloblasts, monoblasts and promyelocytes) from mature 

Figure 5.  Acute myeloid leukemia detection in bone marrow aspirates. (a) Receiver operating characteristic 
(ROC) curve for sample-level classification on the hold out validation set. (b) Confusion matrix for sample 
classification on the validation set. (c) ROC curve for cell-level classification on the cell image test set. (d) 
Confusion matrix for cell classification (promyelocytes vs other) on the cell image test set. (e) PCA visualization 
of the convolutional representations learned by MILLIE of the individual cells in the test set.
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healthy WBC (lymphocytes, monocytes and granulocytes) in bone marrow aspirates. On a publicly available 
test set comprising of manually annotated single cell  images13 of 309 promyelocytes, 718 myeloblasts and 262 
normal WBC extracted from unseen samples, MILLIE achieved an AUC of 0.895 for promyelocytes and 0.862 
on myeloblast classification (Fig. 5c). While most promyelocytes (78%) and myeloblasts (84%) are classified cor-
rectly according to the weak labels, a fraction of the normal mature cells (mostly lymphocytes) is wrongly high-
lighted by MILLIE as AML cells (Fig. 5d). PCA of the learned features in the first fully connected layer shows 
three slightly overlapping but distinct clusters (Fig. 5e).

Discussion
Our approach addresses a challenge in clinical automated computational hematopathology, namely detecting 
and differentiating between various types of immature white cells in peripheral blood films and bone marrow 
aspirates. Precise APL diagnosis relies on clinical suspicion, morphology, flow cytometry, and cytogenetic or 
molecular detection of translocation t(15;17)(q24;q21) PML-RAR which are time consuming if available at all 
in low resource settings. Furthermore, limited access to care, diagnostic delays leading to delays in the admin-
istration of all-trans retinoic acid (ATRA) and arsenic trioxide (ATO) therapy are all factors influencing the 
outcomes of patients with  APL34–37. In this context, integrated within blood film and bone marrow assessment 
clinical workflows, deep learning computational pathology systems such as MILLIE could facilitate prioritiza-
tion of acute leukemia diagnosis in currently overloaded healthcare systems as well as playing an important role 
in low-resource settings.

MILLIE produces deep-learning models for blood film analysis which are trained with diagnostic labels 
only, without any additional human-expert cell-level morphological annotations. Specifically, to train MIL-
LIE we leveraged weak patient-level diagnosis labels to overcome the lack of annotations needed to train fully 
supervised machine learning models for white blood cell identification and classification. Despite being trained 
on such diagnosis labels (weak labels), MILLIE was successful in identifying individual well-established indica-
tors associated with different types of acute leukemia, namely lymphoblasts, myeloblasts and promyelocytes. 
Detecting promyelocytes as an indicator of APL is extremely useful, as this supports emergency treatment which 
impacts patient  prognosis5.

We have also shown that MILLIE is adaptable and generally applicable to multi-class classification problems 
along with the binary diseased versus healthy classification tasks commonly examined in weakly supervised 
clinical contexts. Our computational pathology approach based on weak supervision is more appropriate for 
integration within clinical workflow than previous fully supervised  approaches13,18 since it only requires patient 
diagnosis level labels and does not rely on hard to obtain object-level labels. Further studies could provide 
deep representations of patient level clinical history and diagnostic modalities (cytogenetic, molecular, flow-
cytometry) that can be harnessed by our MILLIE approach to widen its image detection capabilities of reactive 
processes. While we show that our approach can classify APL blood films and bone marrow aspirate samples 
by mainly distinguishing promyelocytes from other cell types, further research is needed to assess whether it 
can be extended to differentiate between benign versus neoplastic promyelocytes as well as other promyelocyte 
containing neoplasms present in other disorders such as chronic myeloid leukemia.

APL is a curable malignancy when appropriate prompt treatment is commenced. If deployed within over-
loaded hematology care  pathways15 our MILLIE computational hematology approach could transform the 
throughput by which blood films and bone marrow aspirates are assessed which could lead to prompt referral 
for treatment to reduce early mortality and improve prognosis of APL  cases15. Regardless of the resource settings, 
MILLIE provides a realizable solution for clinical decision support and clinical pathway prioritization. In the con-
text of remote resource poor healthcare settings, where added to the absence of cytogenetic or molecular testing 
capabilities, there is also lack of expertise for making the distinction between normal and abnormal blood films 
and marrow aspirates, MILLIE can provide decision support to initiate treatment. At the other extreme, in large 
urban resource rich countries, where there is large volume of patients across many complex clinical pathways, 
there is the advantage of rapid throughput to referral to effective treatment while reducing errors due to cogni-
tive load of over stretched staff. Further studies implementing the MILLIE platform should allow the system to 
include a wider range morphological representations to improve throughput and accuracy hematological clinical 
pathways that require microscopic assessment of blood films or bone marrow specimens.

Data availability
All the datasets used in this study are publicly available. Images from the ALL samples and corresponding labels 
are available from the ALL Image DataBase (ALL-IDB)31 (http:// homes. di. unimi. it/ scotti/ all/). Images from 
the AML samples (including APL) are publicly available at the American Society of Hematology Image Bank 
(https:// image bank. hemat ology. org/). Images of individual cells (promyelocytes and myelocytes) on which MIL-
LIE was additionally tested are publicly  available33 at: https:// data. mende ley. com/ datas ets/ snkd9 3bnjr/1. Images 
and annotations of the bone marrow aspirate  samples13 are publicly available at: https:// www. kaggle. com/ sebas 
tianr ieche rt/ bone- marrow- slides- for- leuke mia- predi ction.

Code availability
Python code and trained models are available at: https:// github. com/ UCL/ FASt- MAL- MOFF.
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