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Accountable survival 
contrast‑learning for optimal 
dynamic treatment regimes
Taehwa Choi 1, Hyunjun Lee 2 & Sangbum Choi 3*

Dynamic treatment regime (DTR) is an emerging paradigm in recent medical studies, which searches a 
series of decision rules to assign optimal treatments to each patient by taking into account individual 
features such as genetic, environmental, and social factors. Although there is a large and growing 
literature on statistical methods to estimate optimal treatment regimes, most methodologies focused 
on complete data. In this article, we propose an accountable contrast-learning algorithm for optimal 
dynamic treatment regime with survival endpoints. Our estimating procedure is originated from a 
doubly-robust weighted classification scheme, which is a model-based contrast-learning method that 
directly characterizes the interaction terms between predictors and treatments without main effects. 
To reflect the censorship, we adopt the pseudo-value approach that replaces survival quantities with 
pseudo-observations for the time-to-event outcome. Unlike many existing approaches, mostly based 
on complicated outcome regression modeling or inverse-probability weighting schemes, the pseudo-
value approach greatly simplifies the estimating procedure for optimal treatment regime by allowing 
investigators to conveniently apply standard machine learning techniques to censored survival data 
without losing much efficiency. We further explore a SCAD-penalization to find informative clinical 
variables and modified algorithms to handle multiple treatment options by searching upper and lower 
bounds of the objective function. We demonstrate the utility of our proposal via extensive simulations 
and application to AIDS data.

Dynamic treatment regime (DTR) is an emerging paradigm for maximizing treatment efficacy by providing 
tailored medicine to each patient1,2. Many chronic diseases, such as cancer, human immunodeficiency virus 
(HIV), and depression, are hard to be cured by a single treatment, requiring continuous disease management. 
Because human’s clinical information can change over time, sequentially adjusted treatments should be provided 
in practice, not only based on patients’ clinical history, but also their prior treatment information and intermedi-
ate responses. Due to the heterogeneity of the treatment effect affected by the patient’s baseline characteristics, 
a treatment regime can be defined as a decision rule that assigns a treatment to a patient by taking into account 
individual features such as genetic, environmental, and social factors. The optimal treatment regime is usually 
defined as the one that maximizes the average clinical benefit in the potential population for a single treatment. 
Then a DTR consists of a sequence of optimal treatment regimes, one per stage of intervention, that dictate how 
to individualize treatments to patients based on evolving treatment and covariate history.

There is a large and growing literature on statistical methods for effectively estimating optimal treatment 
regimes under multi-stage randomization clinical trials. Since the seminal work by Murphy1, numerous methods 
have been developed to explore personal characteristics such as genetic information or clinical information to 
find effective data-driven treatment rules. One of statistical approaches for finding optimal treatment regimes 
is to use a model-based method to evaluate the treatment regimes by positing appropriate statistical models for 
outcome on predictors, treatment, and predictor-by-treatment interaction, where the interaction term is mainly 
used to determine the optimal decision rules. Many early works use Q-learning or inverse-probability weight-
ing schemes in single-stage3–5 and multi-stage treatment6–8 settings. However, as the accessibility of individual 
information, such as molecular, environmental, and genomic data, increases, these approaches may exhibit a 
curse of dimensionality and suffer from low accuracy due to potential model mis-specification.

Alternatives to these model-based methods include the outcome-weighted learning (OWL) algorithm and its 
doubly-robust (DR) versions9–14, which directly work on the predictor-by-treatment interaction term by recasting 
the original search problem for the optimal treatment rule as a problem of minimizing the weighted misclassifica-
tion error. There, the original 0–1 loss may be substituted by a convex surrogate loss like the hinge loss function 
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to apply a weighted support vector machine (SVM) algorithm for the weighted classification problem. Instead, 
Zhang and Zhang13 directly minimized the non-smooth weighted misclassification error via a generic search 
algorithm. Tao and Wang12 studied the problem of searching optimal treatment rules when there are multiple 
treatment options. More recent developments explored various modern machine learning techniques, such as 
Markov decision process or graphical modeling15–17, and instrumental variable approaches to deal with possible 
confounders under observational studies18,19. See also Tsiatis et al.20 for a comprehensive review of the problem 
setting for DTR and related statistical methodologies.

In the survival analysis literature, many methods have also been developed to establish optimal treatment 
rules for survival outcomes, mostly based on outcome regression modeling8,21,22 or inverse-probability censoring 
weighted (IPCW) schemes23–25. However, many existing DTR methods for censored data are notoriously compli-
cated, as they often intend to directly maximize nonparametric Kaplan–Meier curves. For example, Jiang et al.24 
and Zhou et al.25 aimed to optimize IPCW-adjusted nonparametric t-year survival and cumulative incidence 
function for a competing risk, respectively, under the counterfactual framework26. Their methods are in general 
computationally unstable, because these nonparametric survival curves are often non-smooth, and thus its 
estimation may require extra smoothing procedures. Moreover, their algorithms are computationally expensive, 
because they involve iterative numerical evaluations of the target survival function in each optimization, and 
also they may not accommodate high-dimensional survival data. Other IPCW-based methods23,27 used double 
inverse-weighting schemes to facilitate censoring and treatment allocation from the classification perspective. 
Several authors assumed a semiparametric linear regression model and directly calculated the counterfactual 
survival time through the IPCW adjustment for censored data8,21. Although IPCW-based estimation is a conveni-
ent and standard way of handling censored data, it is usually sensitive to the amount and distribution of censored 
variables and is statistically and computationally inefficient even with doubly robust adjustments.

In this article, we propose an accountable contrast-learning algorithm for optimal dynamic treatment regimes 
with survival endpoints. Our estimating procedure is originated from a doubly-robust weighted classification 
scheme, which is a model-based contrast-learning method that directly characterizes the interaction terms 
between predictors and treatments without working on main effects. To reflect the censorship, we adopt the 
pseudo-value approach28,29 that replaces survival quantities with their pseudo-observations for the time-to-event 
outcome. Unlike many existing approaches, mostly based on outcome regression modeling or IPCW schemes, 
the pseudo-value methods enable investigators to conveniently apply standard machine learning techniques to 
censored data with minimal loss of statistical efficiency. We show that pseudo values, designed to handle cen-
soring, can be a natural unbiased substitute for estimating survival quantities when derived from a consistent 
estimator. Pseudo values are easy to compute and can also be applied to more complex censoring schemes, such 
as competing risks, restricted mean lifetime, and interval-censoring, etc. Once the pseudo survival responses 
are obtained, our estimating procedure is based on a penalized survival contrast-learning (PSCL) algorithm to 
estimate patient-level tailored treatment rules.

The proposed pseudo-value approach for adaptive treatment allocation exhibits two levels of robustness. 
The first level of robustness is achieved because the proposed method imposes model assumptions only on the 
predictor-by-treatment interaction term, not on the main-effect term. The other is attained as the form of the 
contrasting treatment effects is allowed to be doubly-robust by adopting a standard method for complete data. 
As a result, the proposed learning algorithm is more robust to model mis-specifications, and nonparametric 
learning methods such as SVM, random forests and boosting can be naturally applied to identify optimal treat-
ment rules. Empirical results on synthetic and real-world datasets show that our proposed methods can achieve 
superior results under various censoring settings, compared to other competitors.

Pseudo observations for survival outcomes
We begin by briefly overviewing the pseudo-value approach for survival data28,29. Suppose there are n random 
samples. Let θ = E[s(T)] be a parameter of interest, where s(·) is a measurable function of survival time T. For 
example, one might consider I(T ≥ t) and min(T , τ) for s(T), respectively, corresponding to t-year survival and 
restricted mean lifetime up to time τ > 0 . Pseudo-observations are basically jackknife-type resampling substitutes 
for unknown survival quantities. To be specific, the pseudo-observation for the ith subject can be defined as 
θ̂i = nθ̂ − (n− 1)θ̂−i , where θ̂ is an unbiased estimator of θ and θ̂−i is the leave-one-out (i.e., jackknife) estima-
tor, based on n− 1 samples excluding the ith object. Note that the pseudo-observation θ̂i is unbiased estimator, 
since E(θ̂i) = nE(θ̂ )− (n− 1)E(θ̂−i) = nθ − (n− 1)θ = θ . This property can be equivalently applied to the 
survival quantities. For example, the t-year survival, S(t) = P(T ≥ t) , can be approximated by

where Ŝ(t) and Ŝ−i(t) are nonparametric Kaplan–Meier estimators, based on all n samples and n− 1 samples 
without the ith observation, respectively. Similar techniques can be used to approximate restricted mean lifetime 
or cumulative incidence rate for a competing risk. In this article, we also focus on the competing risks setting as 
it includes the standard survival problem as a special case. For the ith subject, let Ti and Ci be failure and censor-
ing time variables, respectively, and xi be the baseline covariate. Also, let Di ∈ {1, . . . ,M} denote the indicator 
for cause of failure, where M is a known number of distinct failure causes, In the presence of censoring, we can 
actually observe {(T̃i ,�i , xi), i = 1, . . . , n} , where T̃i = min(Ti ,Ci) and �i = I(Ti ≤ Ci)Di . When the event of 
interest is the first cause of failure, the primary interest is often the t-year cumulative incidence function (CIF), 
defined as F1(t) = P(Ti ≤ t,Di = 1) , for which F1(t) = E[st(T)] and st(T) = I(T ≤ t,D = 1) . This can also be 
approximated by the pseudo-value approach through the equation

(1)Ŝi(t) = nŜ(t)− (n− 1)Ŝ−i(t),
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where �̂1i(t) is the estimated cause-1 specific cumulative hazard function. Our objective is then to construct an 
efficient and interpretable DTR rule by minimizing the t-year CIF on average. The pseudo-observations can also 
be computed using functions in the R: pseudo package.

A drawback of this basic pseudo-value approach is that it requires a stringent independent assumption 
between Ti and Ci . To relax it to the conditional independent assumption, i.e., Ti ⊥⊥ Ci|xi , several IPCW-adjusted 
nonparametric estimators for survival function30,31, some of which are available in the R: eventglm package32, 
have been developed. For example, one may use the following equations to compute the survival curves under 
covariate-dependent censoring

w h e re  v̂i = I(Ci ≥ Ti ∧ t)/Ĝ(T̃i ∧ t|xi) .  He re ,  Ĝ(T̃i ∧ t|xi) i s  a  c on s i s t e nt  e s t i m at or  o f 
G(T̃i ∧ t|xi) = P(Ci > T̃i ∧ t|xi) , which may be estimated by Cox’s proportional hazards model. Our experi-
ence is that two estimators perform similarly and they do not considerably outperform the basic pseudo-value 
estimator under the strict independent assumption.

Methods
Notation and assumptions.  Suppose now that patients are treated sequentially with multi-stage treat-
ments. With a slight abuse of notation, we redefine random variables in the following to describe longitudinal 
trajectories of K-stage clinical interventions. Let individuals be identified with i = 1, . . . , n and stages be denoted 
by k = 1, . . . ,K . Let Ak = ak ∈ Ak = {0, 1} and xk be the treatment option and covariates, respectively, both 
observed at the beginning of stage k, and let Rk be the reward, such as survival time, when the kth treatment 
Ak is given. Usually, larger reward values are preferable, but smaller values are preferred when CIF is the target 
objective. Let ηk be a random indicator that takes value 1 if a patient is alive at the beginning of the kth stage 
and 0 otherwise. By convention, we let η1 = 1 since all recruited patients are at least alive at the first treatment 
stage. Then, we let H1 = {η1, x1} and Hk = {η1, x1,A1,R1, . . . , ηk−1, xk−1,Ak−1,Rk−1, ηk , xk} (k ≥ 2) to denote 
the clinical histories of an individual up to stage k. Note that {xk ,Ak ,Rk} may be missing data when ηk = 0 . By 
observing all set of rewards, we can then define the overall outcome of interest as T = m(η1R1, . . . , ηKRK ) , 
where m(·) is a prespecified function, for example, T =

∑K
k=1 ηkRk . In the presence of censoring, however, the 

reward and consequently total reward T may not be fully observed. When the components in T are censored, 
we can substitute the target measure θ = E[s(T)] with the corresponding pseudo-observation θ̂i for patient i. 
Since the pseudo-value θ̂i is also a random variable, we shall use the notation Y in the following to denote the 
pseudo-observation of θ.

Now we define the potential outcomes as T∗(aK ) =
∑K

k=1 ηkR
∗
k(ak) and correspondingly Y∗(aK ) , where 

R∗
k(ak) denotes the potential reward for stage k if, possibly contrary to the fact, a patient were given treatments 

ak = (a1, . . . , ak) ∈ {0, 1}k . The optimal DTR will then maximize the expectation of the potential reward outcome 
as each patient were given the best treatment options at all stages. Let gk ≡ gk(Hk) ∈ {0, 1}, (k = 1, . . . ,K) be 
the treatment regime at the kth stage, mapping from the clinical history Hk to the treatment variable Ak . A DTR, 
observed at the end-of-stage, is defined as g = (g1, . . . , gK ) ∈ G , where G denotes all possible set of treatment 
regimes. The optimal DTR, denoted by gopt = (g

opt
1 , . . . , g

opt
K ) , is expected to achieve E[Y∗(gopt)] ≥ E[Y∗(g)] 

for any g ∈ G . We make the following standard assumptions for causal inference to link potential outcomes 
to observed data10,33: (i) Consistency, (ii) Sequential randomization, and (iii) Coarsening at random. Assump-
tion (i) states that the potential outcome coincides with the observed one when a subject is actually given 
the treatment. Assumption (ii) states that the treatment variable at each stage does not rely on future covari-
ates and treatment history, i.e., {

∑K
j≥l ηjR

∗
j (aj) : l = k, . . . ,K} ⊥⊥ Ak|Hk . Lastly, assumption (iii) assumes that 

at the beginning of each stage, the probability of censoring onward is independent of future outcomes, given 
accrued information. This means that the censoring indicator is conditionally independent of future rewards, 
i.e., {

∑K
j>l ηjR

∗
j (aj) : l = k, . . . ,K} ⊥⊥ �|Hk.

Individualized treatment regimes.  To motivate our method, we first consider the simplest single-stage 
problem (i.e., K = 1 ). By convention, it is assumed that the optimal treatment regime gopt ∈ G should also sat-
isfy E{Y∗(gopt)} ≥ E{Y∗(g)} for all g ∈ G . By the consistency assumption, the potential pseudo outcome of an 
arbitrary regime g can be linked to observed data as Y∗(g) = Y∗(1)I{g(H) = 1} + Y∗(0)I{g(H) = 0}. By letting 
µa(H) = E(Y |A = a,H) , E{Y∗(g)} = EH[µ1(H)I{g(H) = 1} + µ0(H)I{g(H) = 0}] , where EH is an expecta-
tion with respect to clinical information H . From the classification perspective for decision-making problems34, 
the optimal treatment regime gopt can be obtained by

where C(H) = µ1(H)− µ0(H) is the treatment contrast. A convenient way to estimate µa(H) is to use the 
inverse-probability weighting (IPW) method, which leads to

(2)F̂1i(t) =

∫ t

0
Ŝi(s)d�̂1i(s),

(3)Ŝ(t) =

∑n
i=1 I(Ti > t)v̂i
∑n

i=1 v̂i
or Ŝ(t) = n−1

n
∑

i=1

I(Ti > t,Ci ≥ Ti ∧ t)

Ĝ(T̃i ∧ t|xi)
,

(4)gopt(H) = arg min
g∈G

EH
[

|C(H)|{I[C(H) > 0] �= g(H)}
]

,
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Here, π̂a(H), a ∈ {0, 1} denotes the propensity score that can be estimated by imposing some parametric or non-
parametric models given a set of covariates H . The IPW-based contrasting estimator in Eq. (5) is easily shown to 
be an unbiased estimator for C(H) , because of E[I(A = a)/P(A = a|X = x)] = 1 and the consistency property 
of pseudo-observations. However, this approach is only valid when the propensity model π1(H) is correctly pos-
ited, which often fails to hold in practice, and usually it is statistically inefficient35,36. A more robust and efficient 
alternative is the augmented inverse-probability weighting (AIPW) estimator that combines outcome and pro-
pensity models to achieve the double-robustness property. Specifically, the AIPW estimator for µa takes the form

which is a weighted average between the pseudo-observation Y and its substitute µ̂a from an outcome regres-
sion model. Even if the target survival measure is non-negative, its pseudo-observation can take a positive or 
negative value29. Thus, it is natural to use a simple linear regression or modern machine learning techniques to 
approximate µa(H) . In the statistical literature, (6) is well known as a double-robust (DR) estimator10,20,37, because 
it still produces a consistent result, when either the outcome model µa(H) (Q-model) or propensity score model 
πa(H) (A-model) is correctly imposed37.

In this work, we shall use (6) to obtain the DR contrast estimator, i.e., ĈDR(H) = µ̂DR
1 (H)− µ̂DR

0 (H) . Once 
this contrasting factor is computed, the optimal treatment regime gopt can be obtained from (4). However, 
weighted classification errors (4) may require complex and slow general algorithms because its optimization 
is not straightforward9,13,34. Zhang and Zhang 13 used a generic optimization algorithm via the genoud func-
tion from the R: rgenoud package. However, this function is computing expensive and works slowly when the 
covariate dimension is moderate-to-high. Instead, we propose to solve the classification problem (4) via the 
weighted linear SVM algorithm38, which can estimate the true treatment regime with high probability due to 
the Fisher consistency property39. Motivated by Song et al.7, we adopt a penalized SVM by incorporating the 
contrast function ĈDR(H) as a weighting factor to achieve the optimization in (4). By letting wi = |ĈDR

i (Hi)| and 
Zi = sign{ĈDR

i (Hi)} , the optimization problem in (4) may be accomplished by introducing a penalized hinge 
loss function and approximating (4) with

where u+ = max(0, u) and f (·) is a prespecified function for treatment selection, so that gopt(H) = I{f (H) > 0} . 
For interpretability, we may take a simple linear decision function, i.e., f (Hi) = HT

i β , β ∈ R
p . We also use the 

SCAD penalty function

where � > 0 is a tuning parameter and γ = 3.7 as recommended by Fan and Li40. Following a local linear approxi-
mation method, we further linearize the SCAD penalty term as

and introduce a slack variable ξi = n−1[1− Zif (Hi)]+ . Then the weighted classification problem in (7) can be 
recast as

where u+ ≥ 0 and u− ≥ 0 are positive and negative parts of u, respectively, such that u = u+ − u− and 
|u| = u+ + u− , and hij is (i, j)th component of H . We may obtain an initial value β(0)

j  from the standard ℓ2-type 
SVM optimization. There exist many optimization softwares to work on problem (8); for example, one may use 
the lp() function in the R: lpSolve package. After β̂ is obtained, the estimated optimal treatment rule ĝopt can be 
formulated as ĝopt(H) = I(HT β̂ > 0) . It is noted that lower t-year cumulative incidence rates are preferred under 
competing risks data. In this case, we can simply replace ĈDR

i (Hi) in (7) with −ĈDR
i (Hi) to minimize F1(t) . This 

argument is justified by the following proposition.

Proposition 1  The optimal treatment rule for competing risks outcome is the minimizer of the following weighted 
misclassification error

(5)ĈIPW(H) = µ̂IPW
1 (H)− µ̂IPW

0 (H) =

{

A

π̂1(H)
−

1− A

1− π̂1(H)

}

Y .

(6)µ̂a
DR

(H) =
I(A = a)

π̂a(H)
Y +

{

1−
I(A = a)

π̂a(H)

}

µ̂a(H),

(7)n−1
n

∑

i=1

wi[1− Zif (Hi)]+ +

p
∑

j=1

P�(|βj|),

P′
�
(|βj|) = �

{

I(|βj| ≤ �)+
(γ �− |βj|)+

�(γ − 1)
I(|βj| > �)

}

,

P�(|β|) ≈ P�(|β0|)+ P′
�
(|β|)(|β| − |β0|), β ≈ β0,

(8)

min
ξi ,β

+
j ,β−

j ,β+
0 ,β−

0

n
�

i=1

wiξi +

p
�

j=1

P′
�

�

|β
(0)
j |

��

β+
j + β−

j

�

subject to Zi







β+
0 − β−

0 +

p
�

j=1

hij

�

β+
j − β−

j

�







≥ 1− ξi ,

ξi ,β
+
0 ,β

−
0 ,β

+
j ,β

−
j ≥ 0, for i = 1, . . . , n; j = 1, . . . , p,
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Dynamic treatment regimes.  This section extends the previous argument to multi-stage treatment strat-
egies to establish an optimal DTR. See Schulte et al.10 for more detailed description on this problem and related 
notations. To transfer the treatment effect between adjacent stages, we need to recursively define the value func-
tion at the stage-k13 as

where goptk  is the optimal treatment rule at kth stage and µakk(Hk) = EH[Vk+1(Hk+1)|A = ak ,Hk] for ak ∈ {0, 1} . 
We set Vk+1 ≡ Y  as there are no further subsequent processes. Note that µakk(Hk) can be interpreted as a 
Q-function in reinforcement learning since it represents the “quality” of action ak . Except for the last stage, 
Vk(Hk) should be estimated backward in stages and let denote the estimated value function by Ṽk ≡ Ṽk(Hk) . 
The value function at the kth stage can be recursively estimated from the last stage by following equation 
Ṽk = Ṽk+1 + ηk{µ̂1k(Hk)− µ̂0k(Hk)}{ĝ

opt
k (Hk)− Ak} , where ṼK+1 = Y . Note that Ṽk is equal to Ṽk+1 if the opti-

mal treatment is given at the kth stage, i.e., ĝoptk (Hk) = Ak , otherwise |µ̂1k(Hk)− µ̂0k(Hk)| will be added to Ṽk+1 . 
In the statistical literature, the appended term, which is equivalent to |µ̂1k(Hk)− µ̂0k(Hk)|I{ĝ

opt
k (Hk) �= Ak} , 

is called a “regret” function, because this quantity becomes positive when an optimal treatment is not 
given to the patient. The DTR algorithm aims to minimize this value at all stages of treatment regime to 
make it optimal. For the competing risks response, we should subtract the regret score from the (k + 1) th 
value function to obtain the kth value function if the patient does not receive the optimal treatment, i.e., 
Ṽk = Ṽk+1 − ηk{µ̂1k(Hk)− µ̂0k(Hk)}{ĝ

opt
k (Hk)− Ak} , so that we could minimize the cause-specific risk in 

the end.
At each stage, we use parametric or nonparametric methods to obtain µ̂akk(Hk), ak ∈ {0, 1} . The optimal 

treatment rule goptk ≡ g
opt
k (Hk) = I(f (Hk) > 0) at the kth stage can then be determined by minimizing the expec-

tation of the weighed misclassification error, EH[ηk|Ck(Hk)|{I[Ck(Hk) > 0] �= gk(Hk)}] . This can be done again 
by solving a ℓ1-type weighted linear SVM problem as in (8). Based on the value function Ṽk+1 from the (k + 1) th 
stage, we can construct a DR estimator for the stage-k contrasting factor Ck(Hk) = µ1k(Hk)− µ0k(Hk) as

where π̂ak (Hk) is the estimated propensity score of πak (Hk) . Notice that the estimated regret score 
in this case is equal to |ĈDR

k (Hk)|I{ĝ
opt
k (Hk) �= Ak} . Hence, the kth stage value function will be 

Ṽk = Ṽk+1 + ηk|Ĉ
DR
k (Hk)|I{ĝ

opt
k (Hk) �= Ak} . This computation proceeds in a backward iterative fashion from 

the last stage to the first, also related to dynamic programming algorithm41, which produces the desired optimal 
DTR, gopt = (g

opt
1 , . . . , g

opt
K ) . We emphasize that the gopt may not be optimal unless the sequential randomization, 

consistency and positivity assumptions hold. Also, there may not be a unique gopt . At any decision k, if there is 
more than one possible option goptk  maximizing the potential reward outcome, then any rule goptk  yielding one 
of these ak defines an optimal regime.

The proposed penalized DR-adjusted DTR estimation for survival outcome can be summarized as follows: 

Step 0.	� Set ṼK+1 ≡ Y .
Step 1.	� At stage-k, estimate goptk  with (Hk ,Ak , Ṽk+1) by minimizing (7) with treatment contrast (10).
Step 2.	� At stage-k, transfer the value function at stage-(k + 1) to the value function at stage-k with (9).
Step 3.	� Set k ← k − 1 and repeat steps 1 and 2 until k = 1.

Extension to DTR with multiple treatments.  Thus far, it is assumed that the treatment option for Ak is 
binary, i.e., Ak = ak ∈ {0, 1} . However, there are many clinical studies, testing more than two treatments, in which 
case the aforementioned approach for optimal treatment regime cannot be applied. With multiple treatment 
options, we will use a mixed approach of Huang et al.8 and Tao and Wang12. If there are Lk ≥ 3 treatment options for 
the kth stage, we can consider the order statistics of µak (Hk), ak = 1, . . . , Lk , , i.e., µ(1)(Hk) ≤ · · · ≤ µ(Lk)(Hk) . 
Now let νak be the order index of the mean outcome, such that µ(ak)(Hk) = µνak

(Hk) . Then the best optimal 
treatment regime goptk  among Lk treatments may be estimated by directly maximizing

This optimization, however, is plausible only when Lk is small and fixed in advance, otherwise it becomes very 
difficult to implement8. Alternatively, Tao and Wang12 suggested to find a sub-optimal treatment regime by paying 
attention to the following inequalities of the subsequent contrast functions for ak = 1, . . . , Lk − 1,

gopt(H) = arg min g∈G EH[|C(H)|{I[C(H) ≤ 0] �= g(H)}].

(9)Vk(Hk) = EH

[

Vk+1(Hk+1)+ ηk{µ1k(Hk)− µ0k(Hk)}
{

g
opt
k (Hk)− Ak

}

|Hk

]

,

(10)

ĈDR
k (Hk) =

AkṼk+1

π̂1(Hk)
−

{

Ak − π̂1(Hk)

π̂1(Hk)

}

µ̂1k(Hk)−

[

(1− Ak)Ṽk+1

π̂0(Hk)
+

{

Ak − π̂1(Hk)

π̂0(Hk)

}

µ̂0k(Hk)

]

,

(11)EH



ηk

Lk
�

ak=1

µ(ak)(Hk)I{νak (Hk) = gk(Hk)}



.

0 ≤ µ(Lk)(Hk)− µ(Lk−1)(Hk) ≤ µ(Lk)(Hk)− µ(ak)(Hk) ≤ µ(Lk)(Hk)− µ(1)(Hk).
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By focusing on two specific contrasting factors |µ̂(Lk)(Hk)− µ̂(Lk−1)(Hk)| and |µ̂(Lk)(Hk)− µ̂(1)(Hk)| respec-
tively, they identified sub-optimal treatment regimes as

and

This argument suggests that a sub-optimal treatment rule may be obtained by controlling some of the treatment 
contrasting factors. Note that the decision rules in (12) and (13) minimize, respectively, the lower and the upper 
bounds of the expected loss in the outcome due to sub-optimal treatments in the entire population of inter-
est. We explore both treatment selection methods in our numerical experiments with pseudo-observations for 
censored data. Our results reveal that the two methods produce similar performance. This may be because the 
minimum and maximum bounds of the objective function may converge to the same value unless the assumed 
models are severely mis-specified.

Experimental studies
This section provides our empirical simulation results to demonstrate the finite-sample performance of the 
proposed method in a two-stage DTR setting. We also performed additional simulations, shown in the web-
based supplementary material, which include the results for the single-stage estimation and covariate-dependent 
censoring situation.

Scenario 1: Randomized experiments.  We first evaluate the performance of the proposed method for 
the two-stage DTR problem when responses are subject to censoring and competing risks. Simulation results 
under single stage are postponed to the Tables S1 and S2 in the Web-appendix. We let n = 500 or 1000 in all stud-
ies. Let xk,ji be the jth covariate value of the ith subject at the kth stage (i = 1, . . . , n; k = 1, 2; j = 1, . . . , pk) . At 
the first stage, we generate 10 covariates x1,i = (x1,1i , . . . , x1,10i)

T , where each covariate independently follows an 
Uniform[−2, 2] distribution. The second stage involves a single variable x2,i = (x2,i) that is generated from Uni-
form[min(x1,1i), max(x1,1i)] . The treatment indicator Ak,i , k = {1, 2} is generated from Bernoulli(0.5). For survival 
outcome, we first generate first stage survival time as T1,i = exp{1.5+ 0.5x1,1i + A1,i(x1,2i − 0.5)+ ǫ1,i} and accu-
mulated survival time at second stage as T2,i = exp{1.5+ 0.5x1,1i + A1,i(x1,2i − 0.5)+ A2,i(x2,i − 0.5)+ ǫ2,i} , 
where ǫ1,i and ǫ2,i are random error variables, independently generated from exp(ǫk,i) ∼ Exp(1) . Censoring 
times are generated from Ci ∼ Exp(c0) , where c0 is a fixed constant yielding 15% or 30% censoring rates. A 
subject enters the second stage when η2,i = I(T1,i < Ci) = 1 . For an individual who is not alive at the begin-
ning of the second stage (i.e., η2,i = 0 ), his or her survival time is Ti = T1,i exp{(g

opt
2,i − A2,i)(x2,i − 0.5)} , other-

wise the survival time is given by Ti = T2,i . That is, Ti = η2,iT2,i + (1− η2,i)T1,i exp{(g
opt
2,i − A2,i)(x2,i − 0.5)} . 

In this setting, it can be shown that the optimal rules gopt = (g
opt
1 , g

opt
2 ) are given by gopt1 = I(x1,2i ≥ 0.484) 

and gopt2 = I(x2,i ≥ 0.5) . Under this setting, approximately 80% of individuals are transferred from stage 1 to 
stage 2. The propensity score for each individual is estimated by the sample proportion of the treatment, i.e., 
#(Ak = 1)/n . Our objective is to find optimal DTRs that maximize the 3-year survival rate, for which the true 
maximal survival is known to be S(3, gopt0 ) = 0.65.

We further consider the competing risks data setting, in which we model the stage-1 and 
stage-2 Q-functions for the cause-1 event as ψ1i = exp{1− 3x1,1i − A1,i(3.6x1,2i − 0.8)} and 
ψ1i = exp{1− 3x1,1i − A1,i(3.6x1,2i − 0.8)− A2,i(0.5− 1.7x2,i)} ,  respectively. The Q-model for the 
cause-2 event is  specif ied as  ψ2i = exp{1+ 3x1,1i + A1,i(x1,2i + 0.8)− A2,i(x2,i − 0.5)} .  Fol low-
ing Fine and Gray42, we let Pi(Di = 1) = 1− (1− q)1/ψ1i and generate the cause-2 event times from 
F2i(t) = 1− exp{−tψ2i}. For the cause-1 event, we let η2,i = 1 if the cause-1 event time is less than 3. 
The cause-1 event times are generated from F1i(t) = 1− {1− q(1− e−t)}ψ1i if η2i = 1 , otherwise from 
F1i(t) = 1− {1− q(1− e−t)}exp{1−3x1,1i−A1,i(3.6x1,2i−0.8)} . With the choice of q = 0.5 , about 43% and 38% of indi-
viduals experience the cause-1 failure, respectively, under 15% and 30% censoring rates. Also, approximately 45% 
are transferred to stage 2 and suffer from the cause-1 event. The optimal treatment rules are gopt1 = I(x1,2i ≤ 0.250) 
and gopt2 = I(x2,i ≥ 0.294) , for which the true minimal 3-year cause-1 CIF is F1(3, g

opt
0 ) = 0.23.

Table 1 summarizes the performance of several DTR methods, including outcome weighted learning (OWL)39 
and its DR version (DWL), penalized OWL (POWL) and the proposed penalized DR weighted learning (PDWL), 
for survival and competing risks endpoints. In all cases, survival responses are replaced with their pseudo-
observations. Here, OWL and POWL represents the pseudo-outcome weighted learning method and the SCAD-
penalized OWL, respectively. For OWL and POWL, we evaluate the contrasting factor C(H) by (5) and the value 
function by (9). Simulations are conducted to optimize the true survival curves, {S(3, ĝopt), F1(3, ĝopt)} , and their 
empirical counterparts, {Ŝ(3, ĝopt), F̂1(3, ĝopt)} . The results show that the proposed PDWL outperforms other 
algorithms, nearly achieving the maximal survival and minimal cumulative incidence rates in all cases. Our 
method also best performs in terms of correct decision rate at the first stage (CDR1) and average correct deci-
sion rate at both stages (ACDR), which are approximated with 50,000 test samples. Note that a naive treatment 
regime with g = 0 , i.e., just prescribing the control treatment in both stages, even produces better outputs than 
OWL or DWL. This implies that the performance of optimal treatment allocation rules can be greatly improved 
through penalization on the predictor-by-treatment interaction term.

(12)ĝ
opt
k = arg min

gk∈G

EH[ηk|µ̂(Lk)(Hk)− µ̂(Lk−1)(Hk)|I{νLk (Hk) �= gk(Hk)}]

(13)ĝ
opt
k = arg min

gk∈G

EH[ηk|µ̂(Lk)(Hk)− µ̂(1)(Hk)|I{νLk (Hk) �= gk(Hk)}].
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Scenario 2: Observational studies.  We next consider observational studies, in which treatment selection 
is not randomized and may depend on patients’ histories. In a similar configuration to the first simulation, we con-
sider two scenarios for the propensity score function: (i) true logistic: P(A1,i = 1|x1,i) = expit(x1,2i − 0.6x1,3i) 
and P(A2,i = 1|x2,i) = expit(−0.5x2,i) ; and (ii) false logistic: P(A1,i = 1|x1,i) = expit(x1,2i − 0.6x1,3i − 0.4x21,3i) 
and P(A2,i = 1|x2,i) = expit(−0.5x2,i − 0.2x22,i) . Notice that the the true logistic models do not involve any sec-
ond-order treatment effects, whereas the false logistic models have a quadratic term. We shall apply the standard 
logistic model with only main-effect terms, in which case the true logistic model is correctly specified but the 
false logistic model is mis-specified.

Figures 1 and 2 summarize the simulation results for the survival and competing risks endpoints, respectively, 
when censoring rates are about 30%. Again, four methods, OWL, DWL, POWL and PDWL, are compared in 
terms of the targeted survival measure and ACDR. Clearly, the proposed PDWL approach outperforms other 
algorithms, regardless of whether the fitted model is correctly specified or not, and also achieves the targeted 
optimal rates. Overall, DWL shows very high variability in predicting optimal regimes. On the other hand, POWL 
occasionally performs very poorly, even though its variation is well controlled. This implies that DR estimators 
should be accompanied with a proper penalization method to achieve optimal performance and that penaliza-
tion alone could also result in inconsistent and misleading treatment rules. In almost all scenarios, OWL find 
sub-optimal rules and thus cannot be the method of choice. As the sample size increases, the performance of 
all algorithms improve.

Scenario 3: Multiple treatments.  Finally, we extend our method to the multiple treatments recommenda-
tion problem. For simplicity, we assume that there are three treatment options (i.e., Ai ∈ {1, 2, 3} ) in a single-stage 
( K = 1 ) setting. We let x1i , x2i and x3i follow Uniform[−2, 2 ] independently and define ϕ1i = exp(x2i − 0.6x3i) , 
ϕ2i = exp(x2i + 0.2x3i) and ϕ3i = 1+ ϕ1i + ϕ2i . Then, the treatment indicator Ai is generated from a multi-
nomial distribution with probabilities (ϕ1i/ϕ3i ,ϕ2i/ϕ3i , 1/ϕ3i) for treatment 1, 2 and 3, respectively. The sur-
vival time is generated as Ti = exp{1.5+ 0.5x1i + (Ai = 1)(x1i − x2i)+ (Ai = 2)(x1i + 0.5x2i)+ ǫi} , where 
exp(ǫi) ∼ Exp(1) . Figure  3 summarizes the results, where we use the one-versus-one SVM to optimize (11) 
under 30% censoring. Each color represents three treatments and black dashed line is the true decision line. 
Two DR methods (DR1 and DR2) perform well, clearly separating three treatment regions. In contrast, IPW-
based methods (IPW1 and IPW2) result in poor classification performance, where treatment 1 is dominated by 
treatments 2 and 3. Here, DR1 and IPW1 are obtained from (12), whereas DR2 and IPW2 are based on (13). 

Table 1.   Performance of several DTR algorithms. The table reports optimized t-year survival and t-year 
cumulative incidence rates, correct decision rate at first stage (CDR1), and average correct decision rate of two 
stages (ACDR). For each scenario, the best model is highlighted in bold.

n Censor Method

Survival events Cause-1 specific events

S(3, ĝopt) Ŝ(3, ĝopt) CDR1 ACDR F1(3, ĝ
opt) F̂1(3, ĝ

opt) CDR1 ACDR

500

15%

g = 0 0.50 (0.00) 0.39 (0.02) 0.62 (0.00) 0.39 (0.00) 0.43 (0.00) 0.44 (0.02) 0.44 (0.00) 0.37 (0.00)

g = 1 0.31 (0.00) 0.39 (0.02) 0.38 (0.00) 0.14 (0.00) 0.42 (0.00) 0.43 (0.02) 0.56 (0.00) 0.14 (0.00)

OWL 0.46 (0.05) 0.44 (0.05) 0.50 (0.10) 0.37 (0.10) 0.40 (0.04) 0.44 (0.04) 0.50 (0.09) 0.32 (0.10)

DWL 0.50 (0.07) 0.50 (0.05) 0.85 (0.09) 0.47 (0.15) 0.28 (0.03) 0.33 (0.03) 0.85 (0.08) 0.54 (0.11)

POWL 0.58 (0.02) 0.54 (0.04) 0.79 (0.08) 0.66 (0.08) 0.27 (0.02) 0.34 (0.03) 0.83 (0.06) 0.59 (0.09)

PDWL 0.61 (0.01) 0.56 (0.03) 0.90 (0.04) 0.74 (0.06) 0.26 (0.01) 0.32 (0.03) 0.89 (0.03) 0.64 (0.09)

30%

g = 0 0.51 (0.00) 0.40 (0.02) 0.62 (0.00) 0.40 (0.00) 0.43 (0.00) 0.43 (0.02) 0.44 (0.00) 0.37 (0.00)

g = 1 0.32 (0.00) 0.40 (0.03) 0.38 (0.00) 0.14 (0.00) 0.42 (0.00) 0.43 (0.03) 0.56 (0.00) 0.14 (0.00)

OWL 0.47 (0.05) 0.45 (0.05) 0.50 (0.10) 0.38 (0.10) 0.41 (0.04) 0.44 (0.04) 0.50 (0.09) 0.32 (0.10)

DWL 0.50 (0.06) 0.50 (0.05) 0.84 (0.09) 0.44 (0.14) 0.28 (0.03) 0.33 (0.04) 0.85 (0.08) 0.53 (0.12)

POWL 0.58 (0.03) 0.53 (0.04) 0.77 (0.09) 0.64 (0.08) 0.27 (0.02) 0.34 (0.03) 0.83 (0.07) 0.59 (0.09)

PDWL 0.61 (0.01) 0.56 (0.03) 0.89 (0.04) 0.74 (0.06) 0.26 (0.01) 0.32 (0.03) 0.89 (0.03) 0.63 (0.09)

1000

15%

g = 0 0.50 (0.00) 0.39 (0.01) 0.62 (0.00) 0.39 (0.00) 0.43 (0.00) 0.44 (0.01) 0.44 (0.00) 0.37 (0.00)

g = 1 0.31 (0.00) 0.39 (0.02) 0.38 (0.00) 0.14 (0.00) 0.42 (0.00) 0.43 (0.02) 0.56 (0.00) 0.14 (0.00)

OWL 0.48 (0.05) 0.46 (0.05) 0.51 (0.11) 0.41 (0.11) 0.39 (0.05) 0.44 (0.04) 0.51 (0.10) 0.36 (0.11)

DWL 0.51 (0.07) 0.52 (0.05) 0.90 (0.06) 0.51 (0.17) 0.27 (0.02) 0.32 (0.02) 0.88 (0.05) 0.59 (0.09)

POWL 0.61 (0.01) 0.56 (0.03) 0.87 (0.06) 0.78 (0.07) 0.25 (0.01) 0.33 (0.02) 0.88 (0.05) 0.69 (0.08)

PDWL 0.62 (0.01) 0.57 (0.02) 0.93 (0.02) 0.83 (0.04) 0.25 (0.01) 0.32 (0.02) 0.91 (0.02) 0.73 (0.08)

30%

g = 0 0.51 (0.00) 0.40 (0.02) 0.62 (0.00) 0.40 (0.00) 0.43 (0.00) 0.44 (0.02) 0.44 (0.00) 0.37 (0.00)

g = 1 0.32 (0.00) 0.40 (0.02) 0.38 (0.00) 0.14 (0.00) 0.42 (0.00) 0.43 (0.02) 0.56 (0.00) 0.14 (0.00)

OWL 0.49 (0.05) 0.46 (0.05) 0.51 (0.11) 0.41 (0.12) 0.40 (0.05) 0.44 (0.04) 0.51 (0.10) 0.35 (0.12)

DWL 0.51 (0.06) 0.52 (0.04) 0.89 (0.07) 0.46 (0.15) 0.27 (0.02) 0.32 (0.02) 0.88 (0.05) 0.59 (0.11)

POWL 0.62 (0.02) 0.56 (0.03) 0.85 (0.07) 0.76 (0.07) 0.25 (0.01) 0.33 (0.02) 0.87 (0.05) 0.69 (0.08)

PDWL 0.63 (0.01) 0.58 (0.02) 0.93 (0.02) 0.82 (0.04) 0.25 (0.01) 0.32 (0.02) 0.91 (0.02) 0.72 (0.08)
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Clearly, doubly-robust modifications outperform basic estimators, which implies that model specification is also 
essential for the performance of classification algorithms.

An application to ACTG175 data
Data description.  This section provides a practical application of the proposed treatment selection method 
to the AIDS Clinical Trial Group (ACTG175) study43. In this study, each subject was randomized by four treat-
ment arms with equal assignment probabilities: (i) zidovudine monotherapy (ZDV), (ii) ZDV plus didano-
sine (ddI), (iii) ZDV plus zalcitabine (zal) and (iv) ddI monotherapy alone, which were coded as 0, 1, 2 and 3, 
respectively. Figure 1a visualizes the nonparametric survival curves for these four treatment arms, showing three 
treatment arms except ZDV alone have a similar survival rates. For this reason, previous work24 assumed that 
the treatment is binary by combining (ii)–(iv) into a single arm. In this analysis, we consider the optimal treat-
ment selection problem between binary arms ((ii) versus (iii)) and among three treatment arms ((ii), (iii) and 
(iv)). The event of primary interest is the first observed time-to-event of either having a larger than 50% decline 
in the CD4 cell count or occurrence of immune deficiency syndrome or death. Twelve baseline covariates were 
considered in Hammer et al.43 and three of them were identified as important risk factors, which are age in year 
at baseline (Age), CD4 T-cell count at baseline (CD40) and Karnofsky score (Karnof). In addition to these three 
variables, we also include the following covariates in our analysis: Gender (Sex), weight in kilogram (Weight) 
and number of days of previously received antiretroviral therapy (Preanti). The overall censoring rate was 79.7% 
when the maximum follow-up time was set to 1000 days.

Analysis results.  To examine whether the censoring distribution depends on a set of covariates, we first fit-
ted a Cox proportional hazards model and we found that Sex and Preanti are statistically significant at the signifi-
cance level of 0.05. Therefore, we considered modified pseudo-observations from Eq. (3) under the conditional 
independent censoring assumption as well as pseudo-observations from the standard Kaplan-Meier method. 
We computed individual pseudo responses for the survival rate after 1000 days since the treatment. Since this 
study was a randomized trial, we calculated the propensity score as the proportions of treated and untreated and 
applied a linear regression model to predict the mean response. Then we investigated seven methods for opti-
mal treatment regime: (i) naive Kaplan–Meier, (ii) OWL, (iii) POWL, (iv) DWL, (v) PDWL, (vi) PDWL2, and 
(vii) MDWL. Here, PDWL2 represents the PDWL algorithm with covariate-adjusted pseudo-observations and 
MDWL represents the modified DWL algorithm for the three treatment options. The naive Kaplan–Meier curve 
under original treatment allocation is included as a reference.
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op

t)

0.3

0.4

0.5

0.6

0.7

Sample size

Ŝ
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Figure 1.   Survival probability and average correct decision rate (ACDR) of two stages under optimal dynamic 
treatment regimes with OWL, DWL, POWL and PDWL for different sample sizes. Optimal regimes should 
maximize the survival rate and ACDR.
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Figure 4 shows (a) nonparametric Kaplan–Meier curves for four treatments and (b) the expected survival 
curves under the optimal treatment regimes from six weighted classification algorithms. Clearly, our proposed 
methods, PDWL and PDWL2, achieved higher overall survival probabilities than the other algorithms, although 
we focused on a particular t-year survival outcome. The performance of PDWL and PDWL2 were almost indis-
tinguishable, implying that a covariate adjustment for the pseudo-value calculation may not make a noticeable 
difference in identifying optimal treatment regimes. Also note that OWL and DWL do not significantly improve 
the overall survival, compared to the naive KM estimator. This may show that penalization is critical in identi-
fying an effective optimal treatment decision rule. The optimal survival rates, if patients followed the optimal 
treatment rules by PDWL and PDWL2 are above 83% at 1000 days after the treatment, whereas the survival 
rates under OWL and KM are less than 80% at the same time point. Finally, we note that the MDWL approach 
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Figure 2.   Cumulative incidence rate and average correct decision rate (ACDR) of two stages under optimal 
dynamic treatment regimes with OWL, DWL, POWL and PDWL for different sample sizes. Optimal regimes 
should minimize the cumulative incidence rate but maximize ACDR.
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for multiple treatments can improve overall survival significantly, dominating the other methods after about 
300 days. When implementing MDWL, two criteria (12) and (13) usually produce similar performance, and we 
used (12) to produce the result in Fig. 4b. This implies that although the suggested treatment rules for multiple 
treatments are sub-optimal, it could result in more improved performance than the two-treatment cases. More 
empirical and theoretical studies in this regard would be interesting.

Discussion
In this paper, we propose an accountable survival contrast-learning to identify tailored optimal treatment regimes 
with time-to-event outcomes. Existing methodologies for censored data are mostly based on notoriously complex 
computing algorithms and become impracticable when the number of covariates are too much increased. It is 
partly because their procedures may involve a weighted nonparametric survival curve estimation at each itera-
tion under potential population24,25. Alternatively, we employ an affordable pseudo-value approach by replacing 
unknown survival or competing risks measures with their jackknife-type resampling estimates. We then develop 
effective regularized survival contrast-learning algorithms that can produce interpretable optimal treatment rules. 
It should be also noted that many weighted classification algorithms are based on IPW estimating procedures 
with an ℓ2-penalization. However, these approaches are vulnerable to model mis-specification and amount of 
censoring and often underperformed as shown in our simulation studies. We provide empirical evidence that 
our proposal can significantly increase accountability and prediction power in tailoring clinical decision-making 
by combining well-known ℓ1-type regularization and doubly-robust weighting schemes. In real applications, 
however, linear treatment rules are sometimes not sufficient to achieve the maximum expected treatment reward 
and non-linear treatment rules may be requested. In that case, one may generalize the proposed SVM by using 
a reproducing kernel Hilbert space (RKHS) or pile multiple layers for the deep neural network (DNN). These 
architectures are widely used in many classification problems and can be explored under the DTR framework.

Of note, conventional pseudo-observations require the strict independent censoring condition, which may 
fail to hold in practice. Our empirical experiences, however, show that our approach still works well even in the 
case of covariate-dependent censoring. One may adopt an inversely censoring weighted approach to facilitate 
covariate-dependent censoring, as shown in Eq. (3)30,31, but we show that its contribution is limited in revealing 
optimal treatment rules. Further simulation results in Table S3 of the Web-appendix also show that the covariate-
adjusted and unadjusted pseudo-value methods produce similar performance. Hager et al.44 also proposed an 
IPW-based classification algorithm for optimal dynamic treatment regime with censored survival data. Empirical 
studies to compare their algorithm with the proposed pseudo-value approach would be interesting. Finally, when 
there are multiple treatment arms, we used the sub-optimal contrast-learning classification algorithms that may 
not produce the globally optimal treatment rule. In this case, the classification algorithm may be applied several 
times to each pair among multiple treatment options. However, this approach is computationally demanding and 
also possibly subject to a multiple-testing problem. One might solve this problem by introducing SVM algorithms 
for multi-class items45. It is worth further investigation and will be pursued in a separate study.

Data Availability
The pseudo-observation of survival quantities can be calculated by the R package pseudo46 and eventglm32. 
The optimization of the penalized SVM is conducted by the R package lpSolve47. One-versus-one pairwise 
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Figure 4.   Nonparametric Kaplan–Meier curves of ACTG175 data under (a) given treatment arms and (b) 
optimal treatment rules.
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SVM can be implemented by the R package e107148. The ACTG175 dataset used in this study is available at 
the R package speff2trial49. The sample R code to implement our method is available via the first author’s 
Github (https://​github.​com/​taehw​a015/​SurvD​TR).
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