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Identification of novel targets 
and pathways to distinguish 
suicide dependent or independent 
on depression diagnosis
Siqi Peng 1, Yalan Zhou 1, Lan Xiong 2* & Qingzhong Wang 1*

In recent years, postmortem brain studies have revealed that some molecular, cellular, and circuit 
changes associated with suicide, have an independent or additive effect on depression. The aim of the 
present study is to identify potential phenotypic, tissue, and sex-specific novel targets and pathways 
to distinguish depression or suicide from major depressive disorder (MDD) comorbid with suicide. The 
mRNA expression profiling datasets from two previous independent postmortem brain studies of 
suicide and depression (GSE102556 and GSE101521) were retrieved from the GEO database. Machine 
learning analysis was used to differentiate three regrouped gene expression profiles, i.e., MDD 
with suicide, MDD without suicide, and suicide without depression. Weighted correlation network 
analysis (WGCNA) was further conducted to identify the key modules and hub genes significantly 
associated with each of these three sub-phenotypes. TissueEnrich approaches were used to find the 
essential brain tissues and the difference of tissue enriched genes between depression with or without 
suicide. Dysregulated gene expression cross two variables, including phenotypes and tissues, were 
determined by global analysis with Vegan. RRHO analysis was applied to examine the difference in 
global expression pattern between male and female groups. Using the optimized machine learning 
model, several ncRNAs and mRNAs with higher AUC and MeanDecreaseGini, including GCNT1P1 and 
AC092745.1, etc., were identified as potential molecular targets to distinguish suicide with, or without 
MDD and depression without suicide. WGCNA analysis identified some key modules significantly 
associated with these three phenotypes, and the gene biological functions of the key modules mainly 
relate to ncRNA and miRNA processing, as well as oxidoreductase and dehydrogenase activity. Hub 
genes such as RP11-349A22.5, C20orf196, MAPK8IP3 and RP11-697N18.2 were found in these key 
modules. TissueEnrich analysis showed that nucleus accumbens and subiculum were significantly 
changed among the 6 brain regions studied. Global analysis with Vegan and RRHO identified PRS26, 
ARNT and SYN3 as the most significantly differentially expressed genes across phenotype and tissues, 
and there was little overlap between the male and female groups. In this study, we have identified 
novel gene targets, as well as annotated functions of co-expression patterns and hub genes that are 
significantly distinctive between depression with suicide, depression without suicide, and suicide 
without depression. Moreover, global analysis across three phenotypes and tissues confirmed the 
evidence of sex difference in mood disorders.

Major depressive disorder (MDD), a common mental illness, has become the leading cause of disability and 
disease burden worldwide1. MDD is highly associated with suicide. On the one hand, approximately 15% of 
MDD patients have their lifetime risk for suicide2; on the other hand, nearly 60% of individuals who died by 
suicide had a history of mood disorders3. Historical and recent data have shown that over 85% individuals who 
died by suicide had psychiatric disorders, including affective disorders, particularly in females4–6. Some MDD 
risk factors, including childhood adversity, stress, hopelessness, and aggressivity, may contribute to the activation 
of suicide ideation across a wide range of the lifespan7–10. Although some previous studies on the etiology of 
suicide have suggested that some neurobiological abnormalities of suicide ideation and suicidal behavior are 
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independent of psychiatric disorders, extensive postmortem brain studies have revealed that some changes at 
the molecular, cellular and circuit levels that may trigger suicide, have both independent and additive effect on 
depression through different pathways and brain circuitries11–14.

To date, large-scale genome wide association studies (GWAS) of MDD have produced some consistent genetic 
risk factors that contribute to susceptibility to depression15–19. For example, a meta-analysis of 3 largest MDD 
GWASs has identified 102 independent variants, 269 genes, and 15 gene sets, which have shown genome-wide 
significant association with depression20. The most recent meta-analysis of MDD GWAS has included 366,434 
cases and 847,433 controls with both Caucasian and African background, has uncovered 233 independent 
significant SNPs at 183 genomic risk loci21. Subsequently, the integration of GWAS results and transcriptional 
data was further conducted in the context of blood and postmortem brain tissues of depression. However less 
such genome-wide significant results were found in suicide22–25. From the view of multi-omics on postmortem 
brain tissues, transcriptomic and epigenetic changes in depression and suicide have been recapitulated using 
postmortem brain tissue as study materials that directly reflect changes relevant to the neurobiology of suicide 
and psychiatric disorders26–30. By examining some potential functional candidate genes, abnormalities in the 
serotonergic, glutamatergic, and GABAergic systems, as well as the hypothalamic–pituitary–adrenal axis for 
stress response, and the inflammatory pathways, have been detected in depressed or suicidal brain tissue31–34. 
More recent transcriptomic studies on different brain regions of depressed and suicidal individuals have not 
only confirmed the previous findings on GABA- and glutamate-related genes, etc., but also have discovered 
some novel genes and important signaling pathways35–42. Among these transcriptomic studies, a large-scale 
transcriptomic study of different brain tissues from depressed patients, who died from suicide, first directly 
explored the molecular mechanism of sexual dimorphism in MDD. This study has surprisingly shown that very 
little overlapping of differentially expressed genes was shared between males and females, both in depressed 
humans and with stressed mice43. Meanwhile, the sex-specific hub genes from the gene co-expression patterns 
(modules), e.g., DUSP6 and EMX1, were involved to promote stress vulnerability in female and male mice, 
separately43. Another transcriptome study of depression and suicide examined the genome wide exon gene and 
microRNA expression profile in the dorsal lateral prefrontal cortex of different types of postmortem brains, 
including non-psychiatric controls, MDD with suicide, and MDD non-suicides. The results of mRNA-seq GO 
analysis demonstrated that the genes involved microglial, endothelial, and glial cell DNA-dependent ATPase 
activity contributed to MDD and suicide44. Considering that a significant fraction of postmortem human brain 
donors with depression died of suicide, here we have performed a series of bioinformatics analyses with these 
two high-quality datasets to identify the novel targets of suicide, which are distinctive from the main pathways 
for MDD.

Subjects, data and methods
Postmortem mRNA expression data and reclassification of sub‑phenotypic groups.  Two 
previously reported postmortem mRNA expression profiling datasets for MDD studies were retrieved from 
the GEO database (GSE102556 and GSE101521). Besides of the corresponding gene expression data, we also 
obtained demographic data, as well as suicide information from each subject. We summarized the demographics 
and clinical characteristics, and re-grouped the subjects, based information from concomitant MDD and suicide 
information from these two datasets (Supplementary Table 1).

The GSE102556 study (PMID: 28825715) included 48 human subjects (age: 47 ± 15 years, F:M = 22:26); each 
subjects had 6 postmortem brain regions, including Anterior insula (Ant), orbitofrontal (BA11), cingulate gyrus 
25 (BA25), dorsolateral prefrontal cortex (BA8/9), nucleus accumbens (Nac) and subiculum (Subic). Based on 
the occurrence of suicide and MDD diagnosis, the subjects from the GSE102556 study, i.e., the Suicide Group, 
were reclassified into three groups: suicide with MDD (S + D_1, n = 26, age: 45 ± 14 years, F:M = 13:13), suicide 
without MDD (S-D_1, n = 11, age: 48 ± 17 years, F:M = 5:6), and non-suicide without MDD (CTR_1, n = 11, age: 
57 ± 16 years, F:M = 4:7).

The GSE101521 study (PMID: 27528462), i.e., the Depression Group, included 59 subjects (age 49 ± 21 years, 
F:M = 17:42) with one postmortem brain region of dorsolateral prefrontal cortex (BA9), which were reclassified 
as MDD with suicide (D + S_2, n = 21, age: 52 ± 22 years, F:M = 8:13), MDD without suicide (D-S_2, n = 9, age: 
58 ± 16 years, F:M = 3:6), and control (CTR_2, n = 29, age: 44 ± 21 years, F:M = 6:23). The clinical and demographic 
information of these participants in this study was collected by experienced psychiatrists and care-providers; 
and the clinical diagnostic criteria for the disease were referred to DSM-IV and SCID-1D.

The gene expression data from one overlapped brain region, i.e., the dorsolateral prefrontal cortex (BA9), 
from these two datasets were further merged and normalized according to the standard protocol; and the batch 
effect was removed by the limma package (v3.36.5)45. An aligned and normalized gene expression data-frame was 
generated for each subject. Principal variance component analysis with ExpressionNormalizationWorkflow was 
performed to estimate the data structural variances, and the significant expression principal components (PCs), 
adjusted for known covariates, including sex, age, postmortem interval (PMI), RNA integrity number (RIN)46.

Differential gene expression analyses.  To find out the characteristic gene expressions as candidate 
mRNA for different sub-phenotypes, machine learning analyses were performed for the merged gene expression 
dataset from the BA9 region. First, the normalized TPM (transcripts per million) matrices were proceeded 
using linear fit in the limma package to perform differential expression analyses of three comparisons, including 
S + D_vs_CTR, S-D_vs_CTR, and D-S_vs_CTR. Genes with a false discovery rate (FDR) less than 0.05 were 
defined as differentially expressed genes (DEGs), as previously reported47. The overlapping DEGs between each 
comparison were plotted as venn diagram.
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Machine learning analyses.  Then, the genes that were specifically enriched with one sub-phenotype were 
considered as candidate molecules; and the machine learning model was built with randomforest algorithm as 
previously reported48. During the training and testing stage, all subjects were divided into two classes using 
the createDataPartition function, about 80% of the participants were assigned to the training part, while the 
remaining 20% of the subjects were assigned to the testing part. Meanwhile, we optimized the two important 
parameters of mtry and ntree of the machine learning model to obtain the smallest estimation error rate so 
that it could have discriminate between classifiers. Among these two parameters, mtry represent the number of 
variables randomly sampled when building a decision tree branch in random forest modeling; and the optimal 
value of mtry parameter reflects as the lowest prediction error rate of the model. While ntree stands for the 
number of decision trees. In general, the lower ntree value will produce higher error rate while the higher ntree 
value will increase the complexity of model and reduce the prediction efficiency. Therefore, we first determined 
the optimal "mtry" parameter and the number of ntrees, based on the above candidate predictors as variables 
and tuneRF function. Subsequently, tenfold cross-validation was performed to avoid overfitting the model while 
determining the number of DEGs for the optimal classifier. Here, we introduced the Gini index as an evaluation 
index for the importance of the features (DEGs) the value of which was proportional to the number of sample 
splits. Usually, the higher value of the Gini index for a feature (DEGs), the more important it is. The genes having 
higher Gini Index were selected to input the random forest model and to calculate the area under the curve 
(AUC) values using the true class labels of half of the tested samples.

Weighted gene co‑expression network analysis (WGCNA).  In order to further identify distinctive 
gene networks and pathways associated with three subphenotypes, we performed a weighted gene co-expression 
network analysis (WGCNA). First, a standard linear two-way analysis of variance was performed with aov 
function independently on the data for each gene49,50. The effects examined for each gene were difference among 
three phenotypic groups. Known covariates (e.g., sex, age, PMI, RIN) were adjusted with glm function for 
each gene, and significant genes in the two datasets were used for the following WGCNA analysis. WGCNA 
was conducted to identify key modules and hub genes significantly associated with a particular phenotype. 
Following the WGCNA tutorials and our previously reported studies, the soft-threshold β was selected using 
the pickSoftThreshold function based on the uncertain scale-free topology51–53. First, the similarity matrix was 
obtained by calculating the correlation coefficient between genes and then converted into an adjacency matrix 
with the function pickSoftThreshold, which can determine the best soft threshold/value and average degree of 
connectivity on the conditions of scale-free network construction. Here, we chose the value equal to 7 as the 
soft threshold at this point of the fitting index just reaches 0.85. Then, we transformed the adjacency matrix into 
the topological overlap matrix by means of the function TOMsimilarity. From its dissimilarity of topological 
overlap matrix, genes with similar expression patterns were divided into the same module labeled with a certain 
color, where minModuleSize of each module can be a set 30 genes as default number, and the genes in the gray 
module are not involved in subsequent research. Subsequently, we calculated the Moduleeigengene (ME) of each 
module which was defined as the first principal component of all gene expression data in the specific module and 
represented the overall level of gene expression. The spearman correlation coefficient from ME and phenotype 
trait association analysis was used to analyze the correlation between the module and phenotypic characteristics. 
Then, we selected the key modules with the largest correlation coefficients and the smallest p values by observing 
the results in the module feature map. Finally, chooseTopHubInEachModule function was utilized to identify the 
hub genes in the associated modules, which were visualized in the form of network graphs plotted with igraph 
package. To annotate the biological functions of key modules, clusterProfile package was used to enrich the genes 
in the modules into biological pathways and pathways.

Tissue‑specific and sex‑specific gene expression for suicide.  We further explored the GSE102556 
dataset based on re-organized dataframe based on suicide with and without MDD sub-phenotypes for tissue-
enrichment and sex-specific effects on gene expression. First, we analyzed the transcript ID expression changes 
across six types of brain tissues using the aov function, which represents the similarity and difference between 
different tissues. To be specific, it will be spitted into three different dataframes, corresponding to 3 phenotype 
groups. ANOVA was performed to test for differences among 6 independent tissue groups for each gene. The 
p value of ANOVA analysis was corrected by cofounding factors. This cross-tissue analysis was individually 
performed in three phenotypic groups (S+D_1, S−D_1 and CTR_1). Also, the significant level of each gene 
will be acquired as differentially expressed genes (DEGs), which showed the variance among the six regions. To 
further explore the enriched tissues of these significant genes, we conducted the tissue-specific gene enrichment 
analysis using the TissueEnrich package54,55. Referred as the TissueEnrich handbook, the dataframe containing 
expression information (rows as genes, columns as tissues) was input into SummarizedExperiment function. 
The teGeneRetrieval function was used to calculate tissue-specific gene enrichment. According to TissueEnrich 
tutorials, the default threshold can be optional changes to alter the degree of tissue specificity of the gene. In 
current study, we set the threshold as 4-fold changes, which means genes from tissue enhanced groups which 
reach at least 4-fold compared to the average levels in all other tissues, are considered brain tissue-specific genes 
in suicide with depression and suicide without depression groups.

In order to investigate the global difference between the transcriptional signature of whole brain tissues under 
the two-layers of phenotypes and tissues, Analysis of Similarity (ANOSIM) was performed with the function 
anoism from the Vegan package to simultaneously detect the dysregulation of gene expression in the multidimen-
sional scaling across three phenotypes and six tissues (cross phenotype and tissue analysis)56. As a non-parametric 
statistical test, ANOSIM has been widely used in the field of ecology; and the objective of ANOSIM mainly 
operates on a ranked dissimilarity matrix instead of raw data. First, one dataframe was produced containing the 
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mRNA expression level for the total of samples from three groups and 6 tissues. Then, the function vegdist will 
produce a suitable dissimilarity matrix from raw dataframe; and anosim function directly operates on dissimilar-
ity matrix with permutation correction. If the entire brains from the three phenotype groups do differ, then the 
difference between the three groups should be greater than the difference within the group. The heteromorphic 
statistic R (R = (rB − rW)/(N(N − 1)/4)) is calculated on the basis of difference in mean ranking between groups 
(rB) and within groups (rW). The statistical significance of the observed R was calculated by permuting the 
grouping vector to obtain the empirical distribution of R under the null model. We then divided all subjects 
into male and female groups and performed ANOSIM analysis in each of the male and female groups, as well 
as calculated the global significance level across phenotypes and tissues in each of the male and female groups.

The extent of overlap of dysregulated genes highlighted in male and female subjects were examined by per-
forming unbiased RRHO (v1.26.0), as described previously57–60. With a threshold-free method, RRHO analysis 
mainly estimate overlap between two ranked lists of genes. To perform RRHO analysis, the two gene sets were 
firstly ranked at the genome-wide scale according to their − log10 (P value) and the direction of change revealed 
by differential expression analyses. Secondly, a series of hypergeometric p values were calculated for each gene 
by sliding the rank threshold to examine the significance of overlapping genes above the expected threshold at 
each ranking site. Lastly, the hypergeometric p values of genes were plotted on a heatmap.

Ethical approval.  The Ethics Committee of the Shanghai University of Traditional Chinese Medicines 
waived the ethics approval and consent for the collection, analysis and publication of the transcriptional data 
for this study.

Results
Identification of DEGs, co‑expression patterns, and hub genes for suicide with depression, 
suicide without depression and depression without suicide.  The significant p value of each 
transcript ID is sequentially calculated with aov function to show the changes of dysregulated expression genes 
across three phenotypic groups (Suicide Group: CTR_1, S+D_1, and S−D_1; Depression Group: CTR_2, D−S_2, 
D+S_2). This cross-phenotype analysis was separately conducted in the six brain regions in Suicide Group and 
one region in Depression Group. Then, the ExpressionNormalizationWorkflow was utilized to determine the 
variance of the principal components of the DEGs expression data that were impacted by demographic and 
other confounding factors. The results suggested sex, age, alcohol abuse and RNA integrity had a significant 
effect on the principal components (p < 0.05). Therefore, these demographic factors were used as confounding 
factors to correct for any significant difference. After correction with logistic regression analysis, the total 
number of 2467 DEGs were screened in the Depression Group (Supplementary Table 2; Supplementary Fig. 1). 
Regarding the number of DEGs in the six tissues in the Suicide Group, the most DEGs (n = 3773) were identified 
in the dorsolateral prefrontal cortex while the least DEGs (n = 1066) in the subiculum (Supplementary Table 3; 
Supplementary Fig.  2). Some genes, such as DUSP6 and mitogen-activated protein kinase genes, have been 
previously reported in the depression and suicide study while more novel genes were found. In general, the 
changes trend for most genes were observed to be upregulated in the Suicide Group (Supplementary Table 3). 
The similarities and differences genes of the 6 regions were shown in venn diagram (Fig. 1A). After examining 
gene expression in the 6 tissues, two transcripts containing RP11-459O16 belonging to the lncRNA family and 
CH25H coding with cholesterol 25-hydroxylase have significant changes overlapping in the 6 regions, suggesting 
that these two genes may play a contributory role in the connectivity of different brain tissues.

To further investigate the co-expression genes as a module significantly associated with certain phenotype, 
WGCNA analysis was performed with the differential expression genes in the dorsolateral prefrontal cortex 
regions from these two groups. As described in the methods, 4 modules in the Suicide Group (S+D_1, S–D_1 
and CTR_1) and 9 modules in the Depression Group (D+S_2, D–S_2 and CTR_2) were assigned. Subsequent 
analysis showed that each module was correlated with different phenotypes. Here, we focused on the modules 
having significant association with the phenotype of depression with suicide and suicide without depression. 
For example, the midnightblue module that was classified as the top positive module in the Suicide Group, 
showed a significant association with suicide without depression (p value = 1E−12) (Fig. 2A). Interestingly, the 
top significant GO annotated functions mainly relate to the activity of different types of oxidoreductases and 
dehydrogenase, including testosterone-, aldehyde-, and retino, etc., as well as glucocorticoid receptor binding 
and Golgi terms (Fig. 2C). On the other hand, the blue module in the Suicide Group, which is the top negatively 
correlated with suicide without depression, is mainly involved in the ncRNA, miRNA and dsRNA processing 
activity (Fig. 2A,D). For the Depression Group, the pink module of biological functions which focuses on the 
biological functions of postsynaptic synapse, has a significant negative association with depression without suicide 
(Fig. 2B,E). In contrast, orange module, as positive module for depression without suicide, mainly mediates into 
the signaling pathway for primary cilia and retinal sensitivity (Fig. 2B,F). Key hub genes were calculated based on 
the connectivity level of the co-expression network of each module (Supplementary Table 4). RP11-349A22.5 in 
the blue module and C20orf196 in the midnightblue module were identified as hub gene having high connectivity 
with nodes in a module and these two hub genes have been shown to have a key function in differentiating suicide 
without depression while MAPK8IP3 in the pink module and RP11-697N18.2 in the orange module were found 
to be hub genes in the module significantly associated with depression without suicide (Supplementary Fig. 3).

Screening of important molecules as candidate targets for three sub‑phenotypes.  To 
maximally identify the potential targets for depression with suicide, we merged the subjects with depression with 
suicide shared these two datasets to enlarge the sample size. Also, the further PCA analysis found no stratification 
of cohort structure (Supplementary Fig. 4). Three comparisons, including suicide with depression and control, 
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suicide without depression and control, depression without suicide and control, were used to conduct the 
comparison and contrast analysis (Fig. 1B). The total number of 3373, 1112 and 2991 DEGs were specifically 
assigned in the not overlapping section with suicide with depression, suicide without depression and depression 
without suicide, respectively (Fig. 1B; Supplementary Table 5). Then, the expression level of these specific DEGs 
was used to establish the machine learning model while the subjects were classified into two classes (disease 
state and healthy control). As described in the methods, the parameters were optimized to ensure that the model 
had the lowest prediction error rate. Finally, the MeanDecreaseGini of GCNT1P1 and AC092745.12 ranked as 
the top important candidate genes for suicide with depression (AUC = 0.90). Meanwhile, lncRNA AC010084.1 
and RP11-1C8.7 had the highest Gini index in the S–D group, suggesting the possible link of suicide without 
MDD with these lncRNAs (AUC = 0.86). For depression without suicide, the MPOL1 and SLC2A13 gene had the 
highest Gini index score and may be the candidate molecules (Table 1; Supplementary Fig. 5).

Identification of tissue‑specific genes in suicide group.  To examine some genes enriched in specific 
brain regions, cross-tissue analysis was performed calculate the changes level of all transcripts in the group 
of control, suicide with depression, and suicide without depression, respectively (Supplementary Table  6; 
Supplementary Fig. 6). Based on these dysregulated genes from the cross-tissue analysis, the brain tissue specific 
genes were screened out by means of TissueEnrich package. The results of TissueEnrich demonstrated that in the 
two brain regions, including Nac and subic, 14 and 16 genes, respectively, were found to reach tissue- enhanced 
level, that is, these two brain areas play a critical role in the development of depression (Table 2;  Supplementary 
Table 7). The gene MYO3A encoding myosin IIIA, was highly enriched in the Nac tissues of all three groups, 
which suggested that MYO3A gene as Nac tissue specific gene is unrelated to the phenotype. At the same time, 
the expression of TNFRSF8 gene was enhanced into the Nac of the control group and the group of suicide with 

Figure 1.   Similarity and overlapping in the DEGs between different tissues and diseases. (A) DEGs from the 
cross-phenotype analysis. Different colors represent different tissues, overlapping parts represent genes present 
in all tissues, parts of not overlap represent DEGs that are specific to the tissues, and numbers indicate the 
number of DEGs in the corresponding tissue. (B) Venn diagram of the different phenotypes. Colors represent 
each phenotype, overlapping parts represent shared genes among phenotypes, parts of not overlapping represent 
DEGs that are specific to the diseases, and numbers indicate DEGs numbers of different phenotypes.
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MDD, but not in the group of suicide without MDD. Another gene, TARID transcript as a non-coding RNA, 
was found in the Nac of control and suicide without MDD, but not in the suicide with MDD. We speculated that 
TNFRSF8 and TARID were considered as not only the tissue specific genes but also phenotype-specific genes. 
For the subic tissue, no genes as tissue-enhanced genes were shared among three groups. In addition, CLIC6, 
encoding chloride intracellular channel 6, enriched in the subic of both suicide without MDD and control, but 
was absent in the suicide with MDD.

Sex specific signatures of expression patterns in suicides.  By means of cross phenotype tissue 
analysis, we calculated the R and p value of all transcript genes for the total subject group, male group, and 
female group. We also ranked the statistical R value of all significant transcripts and listed the top genes in 
Table 3. The top R genes in the mixed gender group (PRS26 (R = 0.37), ARNT (R = 0.32) and SYN3 (R = 0.32), 
the male group (FBXO7 (R = 0.41), RNU6-951P (R = 0.40) and ACTR8 (R = 0.39)) and the female group (ADI1 
(R = 0.64), CH25H (R = 0.63) and CCR1 (R = 0.57), were identified as the most differentially expressed genes 
across two variables of tissues and phenotypes (Table 3; Supplementary Fig. 7). To identify differences between 
male and female in global expression patterns across three phenotypes and multiple tissues, the results of rank–
rank hypergeometric overlay analysis showed that there was no significant overlap of global gene expression 
patterns were detected between male and female groups (p value = 0.92) (Supplementary Fig. 8).

Discussion
In this study, we identified some novel targets that can be used to distinguish different types of postmortem brain 
tissues from depression with or without suicide and suicide without depression. In addition, we also examined the 
tissue-specific and sex-specific transcriptional patterns between suicide dependent or independent of depression. 
Here, we selected two classical genome wide expression datasets of postmortem brain tissues from depression or 
suicide and extracted the demographic information of human postmortem brain tissue about having suicide or 
non-suicide, from the perspective of commodity phenotypes or single phenotype to find the possible key genes 
or co-expression patterns. Considering differentially expressed genes may correlate with different phenotypes, 
brain tissues and sex, various statistical strategies including ANOVA, limma and Vegan were adapted to conduct 
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Figure 2.   Module-trait relationship analysis with WGCNA and the KEGG pathway analysis for the correlated 
modules. (A) Module-phenotype relationship for the assigned module and different phenotypes from 
Suicide Group. Values in the figure indicate the correlation coefficient between module and phenotypes. The 
midnightblue module was positively correlated with suicide without MDD (r = 0.82, p value = 1E−12) while 
the blue module was negatively correlated with suicide without MDD (r = − 0.44, p value = 0.022). (B) Module-
phenotype relationship in the Depression Group. The two modules including the orange and pink module were 
the most significantly associated with MDD without suicide (orange module: r = − 0.62, p value = 2E−7; pink 
module: r = 0.54, p value = 1E−5). (C) The enriched GO functions of midnightblue module from Suicide Group. 
(D) The overrepresented GO functions of the blue module from Suicide Group. (E) Gene ontology analysis of 
the pink module from Depression Group. (F) Gene ontology analysis of the orange module from Depression 
Group.
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Groups ID Gene Description Biotype MeanDecreaseAccuracy MeanDecreaseGini

p value 
(suicide-
group)

p value 
(depression-
group)

GTEx 
expression 
analysis

S+D

ENSG00000236474 GCNT1P1 Pseudogene Pseudogene 1.53 0.25 0.001 0.05 + 

ENSG00000221307 AC092745.1 AC092745.1 miRNA 1.18 0.22 0.48 0.02 + 

ENSG00000258879 RP11-
713N11.5 RP11-713N11.5 LincRNA 1.99 0.22 0.68 0.007

ENSG00000227773 ASH1L-IT1
ASH1 like his-
tone lysine meth-
yltransferase

Sense_
intronic 2.45 0.22 0.13 0.001 + 

ENSG00000230320 BEND7P1
BEN domain 
containing 7 
pseudogene 1

Pseudogene 2.36 0.21 0.001 0.66

ENSG00000179044 EXOC3L1
Exocyst complex 
component 3 
like 1

Protein_cod-
ing 2.17 0.20 0.35 0.001

ENSG00000124003 MOGAT1
Monoacylglycerol 
O-acyltransferase 
1

Protein_cod-
ing 1.52 0.20 0.14 0.002

ENSG00000252023 RNU6-581P
RNA, U6 small 
nuclear 581, 
pseudogene

snRNA 1.50 0.19 0.004 0.66 + 

ENSG00000257880 RP11-
769N19.2

Novel transcript, 
sense intronic to 
FAM19A2

Sense_
intronic 2.19 0.19 0.0003 0.50

ENSG00000242986 RPL21P99
Ribosomal 
protein L21 pseu-
dogene 99

Pseudogene 1.88 0.18 0.002 0.72

S–D

ENSG00000229308 AC010084.1 AC010084.1 lncRNA 2.71 0.12 0.02 –

ENSG00000271830 RP11-1C8.7 RP11-1C8.7 lncRNA 1.87 0.11 0.002 – + 

ENSG00000165379 LRFN5

Leucine rich 
repeat and 
fibronectin type 
III domain con-
taining 5

Protein_cod-
ing 1.21 0.11 0.04 – + 

ENSG00000263990 CTC-
542B22.2 CTC-542B22.2 lncRNA 0.11 0.11 0.04 – + 

ENSG00000188133 TMEM215 Transmembrane 
protein 215

Protein_cod-
ing 1.18 0.09 0.009 – + 

ENSG00000262188 LINC01978
Long intergenic 
non-protein cod-
ing RNA 1978

lncRNA 1.27 0.09 0.02 – + 

ENSG00000164466 SFXN1 Sideroflexin 1 Protein_cod-
ing 1.75 0.09 0.01 –

ENSG00000134917 ADAMTS8
ADAM metal-
lopeptidase with 
thrombospondin 
type 1 motif 8

Protein_cod-
ing 1.20 0.08 0.003 –

ENSG00000253459 AL139099.1

Full-length 
cDNA clone 
CS0DK012YO09 
of HeLa cells of 
Homo sapiens; 
Uncharacterized 
protein

Protein_cod-
ing 0.50 0.08 0.03 –

ENSG00000168995 SIGLEC7 Sialic acid binding 
Ig like lectin 7

Protein_cod-
ing 1.17 0.07 0.009 –

Continued
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WGCNA, machine learning and RROH. We found that most of the DEGs, especially the top significant genes, 
were consistent with previous studies, such as MRPS6, SERPINH1and IL8 gene in GSE101521, DUSP6, EMX1 
and MPAK15 gene in GSE102556. In addition, we also identified novel possible transcripts and ncRNA that 
contribute to the discrimination of depression or suicide.

Postmortem brain tissue as an important material reflects the molecular and cellular changes in brain tis-
sues from suicided victims and controls, which are also features of mental illness11. However, the prominent 
consideration of postmortem brain studies is the impact of comorbid suicide diagnoses including some com-
mon psychiatric disorders and other risk factors that influence the transitions from suicide ideation to suicide 
attempts61. From the perspective of suicide with psychiatric disorders, Underwood et al.62 investigated brain 
serotonin transporter, 5-HT1A and 5-HT2A receptor binding in the prefrontal cortex and anterior cingulate 
cortex of suicide and controls. They reported that lower serotonin transporter levels in suicide were depend-
ent on MDD, and found that higher 5-HT1A binding in suicides was independent of MDD, whereas 5-HT2A 
binding increased in suicides with MDD or alcoholism. This study suggested serotonin receptor binding in 
postmortem brain tissue can be a risk factor to separate the effects of suicide from comorbid MDD, AUD, and 
early life adversity62. In the present study, we explored the suicide- or depression-specific mRNA and mRNA 
co-expression pattern changes that contribute to development of suicide and depression. From the WGCNA 
results, the biological functions of co-expression pattern associated with suicide without depression are mainly 
related to ncRNA processing activity, whereas depression without suicide can be attributed to neuronal synapses, 
suggesting that epigenetic modification and synaptic dysfunction in brain tissues play an essential role in the 
development of suicide or depression.

For machine learning analysis, we integrated contrast analyses of multiple comparisons and machine learn-
ing to identify candidate targets for a given sub-phenotype. In this process, we first maximally optimized the 
various parameters for building the training model by means of randomforest and obtained relatively accurate 
distinguishing capacity. To confirm the distinguishing accuracy of genes with high MeanDecreaseGini, we com-
pared the AUC score between randomforest models of genes with high MeanDecreaseGini and the group of 
all genes, the results of which shown AUC score of genes with high MeanDecreaseGini were largely enhanced 
in the S + D_1 (AUC high MeanDecreaseGini genes = 0.90; AUC total genes = 0.81). Intriguingly, we also found majority of 
these genes with high MeanDecreaseGini belong to the family of non-coding RNAs. Moreover, several ncRNAs 
including GCNT1P1, AC092745.1, ASH1L-IT1 and RNU6-581P from the S + D_1 group are specifically enriched 
in the cerebellum and pituitary by the analysis of gene expression levels across different human tissues in the 
GTEx dataset, suggesting that ncRNAs that are highly expressed in the cerebellum and pituitary may be used as 
specific targets for suicide and MDD63. Currently, machine learning analysis are used for diagnosis, prognosis, 
treatment decisions, and detection of biomarker for suicide64,65. To predict suicide attempts and suicide deaths, 
the prediction model was developed using the penalized LASSO method with health record data and self-report 
questionnaires from about 3 million patients, and the results have shown an accuracy ranging between 0.83 and 
0.8566,67. Meanwhile, machine learning was used for exploring biomarkers of the antidepressant by analyzing the 
expression of microRNA in previous MDD studies68.

Groups ID Gene Description Biotype MeanDecreaseAccuracy MeanDecreaseGini

p value 
(suicide-
group)

p value 
(depression-
group)

GTEx 
expression 
analysis

D–S

ENSG00000151338 MIPOL1 Mirror-image 
polydactyly 1

Protein_cod-
ing 1.38 0.15 – 0.01

ENSG00000248865 SLC2A13
Solute Carrier 
Family 2 Member 
13

Protein_cod-
ing − 0.08 0.13 – 0.001

ENSG00000175356 SCUBE2
Signal peptide, 
CUB domain and 
EGF like domain 
containing 2

Protein_cod-
ing 2.04 0.12 – 0.01

ENSG00000249021 AC008549.2 AC008549.2 LncRNA 1.23 0.12 – 0.009

ENSG00000105968 H2AZ2 H2A.Z variant 
histone 2

Protein_cod-
ing 2.23 0.12 – 0.04 + 

ENSG00000155749 FLACC1
Flagellum associ-
ated contain-
ing coiled-coil 
domains 1

Protein_cod-
ing 1.56 0.12 – 0.002

ENSG00000171703 TCEA2
Transcription 
elongation factor 
A2

Protein_cod-
ing 0.01 0.11 – 2.10E−05 + 

ENSG00000238577 snoU13 Small nucleolar 
RNA U13 SnoRNA 1.67 0.11 – 0.002

ENSG00000183798 EMILIN3 Elastin microfibril 
interfacer 3

Protein_cod-
ing 0.09 0.11 – 7.91E−05

ENSG00000188681 TEKT4P2 Tektin 4 pseudo-
gene 2 Pseudogene 1.71 0.10 – 0.002

Table 1.   The genes with high MeanDecreaseGini as variables found in the machine learning analysis.
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TissueEnrich was used to find out the essential tissues for the development of depression and identify tissue-
specific genes, and co-expression patterns associated with tissues. Interestingly, the enhanced genes in the 
TissueEnrich suggested that the Nac region may be the most important tissue contributing to the pathophysiology 
and symptomatology of depression and suicide. Under normal conditions, Nac function is related to the brain’s 
limbic and reward circuits and the uptake of glutamatergic and dopaminergic signals from other brain tissues69. 
Evidence from the rodent depression model and the antidepressant-like effects also support that Nac tissues 
are involved in the impaired motivation, anhedonia, and decreased energy levels which are core symptoms of 
depression70. Despite that genome-wide transcriptional study supports that several molecular changes in the 
Nac of depressive like behavior animal models, we further validated the importance of Nac and subic for suicide 
or depression71.

We have uncovered the global landscape of distinct expression patterns for different tissues and individuals in 
depression and suicide. In recent years, the development of multi-dimension informatics approaches including 
vegan and Tensorflow, has enabled the global investigation of significantly dysregulated gene expression across 
multiple variables, and have identified key genes for the concomitant diseases. The subsequent RRHO analysis58 
further confirmed that the global gene expression patterns have little overlap between the male and female group 
under the situations of suicide independent depression or suicide comorbid depression, which is consistent with 
the conclusions of previous transcriptomic studies in depression43,59,72,73.

At present, transcriptional studies from candidate genes to genome-wide approaches have also identified 
some dysregulated genes associated with sex difference in MDD. Some candidate genes, from serotonergic 
system to GABA synthesizing enzymes, were found to have altered expression associated with sex difference in 

Table 2.   The enhanced level genes from TissueEnrich analysis distributed into the groups and tissues. The bold 
font characters mean significant genes.

Group Gene name Description Biotype Enhanced tissues p value

CON

MCOLN3 Mucolipin TRP cation channel 3 Protein_coding Subic 2.84E−08

TARID TARID Antisense Nac 0.00003

F5 Coagulation factor V Protein_coding Subic 0.0150

MYO3A Myosin IIIA Protein_coding Nac 0.0009

MORC1 MORC family CW-type zinc finger 1 Protein_coding Subic 0.0014

SLC16A12 Solute carrier family 16 member 12 Protein_coding Subic 0.0505

TNFRSF8 TNF receptor superfamily member 8 Protein_coding Nac 0.0034

CYP4F32P Unprocessed pseudogene Pseudogene Nac 0.0136

LINC00534 Long intergenic non-protein coding RNA 534 LincRNA Nac 0.0108

CLIC6 Chloride intracellular channel 6 Protein_coding Subic 0.0189

RP1-283K11.2 RP1-283K11.2 Antisense Nac 0.0010

RP11-343J3.2 RP11-343J3.2 Antisense Subic 0.0009

SHISA6 Shisa family member 6 Protein_coding Subic 0.0020

SHOX2 Short stature homeobox 2 Protein_coding Subic 0.1292

TSPAN18 Tetraspanin 18 Protein_coding Subic 0.0303

CP Ceruloplasmin Protein_coding Subic 0.0558

SLC5A5 Solute carrier family 5 member 5 Protein_coding Subic 0.0774

S−D

ABCA12 ATP binding cassette subfamily A member 12 Protein_coding Subic 0.000002

TARID TARID Antisense Nac 0.0033

GUCA1C Guanylate cyclase activator 1C Protein_coding Subic 0.0030

RPL36AP53 Ribosomal protein L36a pseudogene 53 Pseudogene Nac 0.0003

RP11-60A8.1 RP11-60A8.1 LincRNA Subic 0.00007

GPR1 G protein-coupled receptor 1 Protein_coding Nac 0.0006

MYO3A Myosin IIIA Protein_coding Nac 0.0017

AMBN Ameloblastin Protein_coding Nac 0.0037

UPK1B Uroplakin 1B Protein_coding Nac 0.0028

LINC00645 Long intergenic non-protein coding RNA 645 LincRNA Nac 0.0263

RXFP2 Relaxin family peptide receptor 2 Protein_coding Nac 0.0005

CTB-32P11.1 Uncharacterized LOC101927862 LincRNA Subic 0.00009

LL21NC02-1C16.2 LL21NC02-1C16.2 Antisense Nac 0.0030

CLIC6 Chloride intracellular channel 6 Protein_coding Subic 0.0051

S+D

SKAP1 src kinase associated phosphoprotein 1 Protein_coding Subic 1.10E−12

MYO3A Myosin IIIA Protein_coding Nac 0.0000012

TNFRSF8 TNF receptor superfamily member 8 Protein_coding Nac 0.0000079

RP11-478C6.6 Novel zinc finger protein pseudogene Pseudogene Nac 0.0000271
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MDD 72. Particularly some key genes identified from transcriptomic studies, e.g., DUSP6, EMX1, LINC00473, as 
potential important drivers for sex difference, directly involved in the brain molecular changes in depressed men 
and women43. Additionally, novel approaches including global analysis in present study and gene co-expression 
network analysis and deconvolution analyses provided more convincing evidence that the existence of sex 
differences across the brain in the MDD. About the underlying mechanisms on sex difference at the behavioral 
or transcriptional levels, evidence has suggested that the interplay between sex chromosomes, development 
gonadal hormones and adult hormone exposure could influence social behavior, alcohol abuse, habit formation, 
aggressive and parenting behavior, and gene expression, which could mediate the different mood changes in 
male and female MDD patients72,74.

In summary, we investigated different transcriptomic datasets to uncover differential gene targets and path-
ways among subgroups of depression with suicide, suicide without depression and depression without suicide. 
We also investigated the co-expression patterns and hub genes significantly associated with these three sub-
phenotypes. Meanwhile, global analysis across three phenotypes and tissues confirmed evidence for sex differ-
ence in mood disorders. Our study is still limited by the sample size in each subgroup, as well as limited detailed 
clinical information and medical history on postmortem brain tissues.

URLs

1.	 Heatmap: https://​cran.r-​proje​ct.​org/​web/​packa​ges/​gplots/​index.​html.
2.	 WGCNA analysis: https://​horva​th.​genet​ics.​ucla.​edu/​html/​Coexp​ressi​onNet​work/​Rpack​ages/​WGCNA/​Tutor​

ials/.

Table 3.   The top Significant genes with high statistic value by cross-phenotype-tissue analysis.

Group Ensemble_ID Gene_symbol Description Biotype Statistic R Significance

Mixed

ENSG00000197728 RPS26 Ribosomal protein S26 Protein_coding 0.371 0.001

ENSG00000143437 ARNT Aryl hydrocarbon receptor nuclear 
translocator Protein_coding 0.326 0.001

ENSG00000185666 SYN3 Synapsin III Protein_coding 0.324 0.001

ENSG00000259675 RP11-507B12.1 Novel transcript LincRNA 0.317 0.001

ENSG00000233273 AMMECR1LP1 Pseudogene Pseudogene 0.316 0.001

ENSG00000174456 C12orf76 Chromosome 12 open reading frame 
76 Protein_coding 0.315 0.001

ENSG00000258711 RP11-218E20.3 Novel transcript LincRNA 0.313 0.001

ENSG00000138135 CH25H Cholesterol 25-hydroxylase Protein_coding 0.313 0.001

ENSG00000200832 SNORD114-4 Small nucleolar RNA, C/D box 114–4 snoRNA 0.307 0.001

ENSG00000102878 HSF4 Heat shock transcription factor 4 Protein_coding 0.306 0.001

Male

ENSG00000100225 FBXO7 F-box protein 7 Protein_coding 0.406 0.001

ENSG00000199603 RNU6-951P RNA, U6 small nuclear 951, pseu-
dogene snRNA 0.400 0.001

ENSG00000113812 ACTR8 ARP8 actin-related protein 8 
homolog (yeast) Protein_coding 0.387 0.001

ENSG00000252035 RNU6-397P RNA, U6 small nuclear 397, pseu-
dogene snRNA 0.387 0.001

ENSG00000212100 MIR764 MicroRNA 764 MiRNA 0.375 0.001

ENSG00000231713 AF064860.7 LincRNA LincRNA 0.361 0.001

ENSG00000226684 RP3-418C23.2 LincRNA LincRNA 0.331 0.001

ENSG00000106069 CHN2 Chimerin 2 Protein_coding 0.330 0.001

ENSG00000233273 AMMECR1LP1 Pseudogene Pseudogene 0.328 0.001

ENSG00000162645 GBP2 Guanylate binding protein 2, 
interferon-inducible Protein_coding 0.308 0.001

Female

ENSG00000182551 ADI1 Acireductone dioxygenase 1 Protein_coding 0.640 0.001

ENSG00000138135 CH25H Cholesterol 25-hydroxylase Protein_coding 0.631 0.001

ENSG00000163823 CCR1 C–C motif chemokine receptor 1 Protein_coding 0.570 0.001

ENSG00000141469 SLC14A1 Solute carrier family 14 member 1 Protein_coding 0.559 0.001

ENSG00000230870 FBXW11P1 Pseudogene Pseudogene 0.548 0.001

ENSG00000214198 RP11-642P15.1 Pseudogene Pseudogene 0.548 0.001

ENSG00000256943 RP13-895J2.2 Antisense Antisense 0.548 0.001

ENSG00000232640 RP1-266L20.2 Antisense Antisense 0.546 0.001

ENSG00000129480 DTD2 d-Tyrosyl-tRNA deacylase 2 (puta-
tive) Protein_coding 0.544 0.001

ENSG00000206712 RNU6-26P RNA, U6 small nuclear 26, pseudo-
gene snRNA 0.541 0.001

https://cran.r-project.org/web/packages/gplots/index.html
https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/Tutorials/
https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/Tutorials/
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3.	 Machine learning analysis Rando: https://​topepo.​github.​io/​caret/​model-​train​ing-​and-​tuning.​html, https://​
rpubs.​com/​phamd​inhkh​anh/​389752.

4.	 TissueEnrich analysis: https://​bioco​nduct​or.​org/​packa​ges/​relea​se/​bioc/​vigne​ttes/​Tissu​eEnri​ch/​inst/​doc/​Tissu​
eEnri​ch.​html.

5.	 Vegan analysis: https://​cran.r-​proje​ct.​org/​web/​packa​ges/​vegan/​vegan.​pdf.
6.	 RRHO analysis: https://​syste​ms.​crump.​ucla.​edu/​rankr​ank/​rankr​anksi​mple.​php.
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