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Radiomic phenotyping of the lung 
parenchyma in a lung cancer 
screening cohort
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High-throughput extraction of radiomic features from low-dose CT scans can characterize the 
heterogeneity of the lung parenchyma and potentially aid in identifying subpopulations that may 
have higher risk of lung diseases, such as COPD, and lung cancer due to inflammation or obstruction 
of the airways. We aim to determine the feasibility of a lung radiomics phenotyping approach in a lung 
cancer screening cohort, while quantifying the effect of different CT reconstruction algorithms on 
phenotype robustness. We identified low-dose CT scans (n = 308) acquired with Siemens Healthineers 
scanners from patients who completed low-dose CT within our lung cancer screening program 
between 2015 and 2018 and had two different sets of image reconstructions kernel available (i.e., 
medium (I30f.), sharp (I50f.)) for the same acquisition. Following segmentation of the lung field, a 
total of 26 radiomic features were extracted from the entire 3D lung-field using a previously validated 
fully-automated lattice-based software pipeline, adapted for low-dose CT scans. The lattice in-house 
software was used to extract features including gray-level histogram, co-occurrence, and run-length 
descriptors. The lattice approach uses non-overlapping windows for traversing along pixels of 
images and calculates different features. Each feature was averaged for each scan within a range of 
lattice window sizes (W) of 4, 8 and 20 mm. The extracted imaging features from both datasets were 
harmonized to correct for differences in image acquisition parameters. Subsequently, unsupervised 
hierarchical clustering was applied on the extracted features to identify distinct phenotypic patterns 
of the lung parenchyma, where consensus clustering was used to identify the optimal number of 
clusters (K = 2). Differences between phenotypes for demographic and clinical covariates including sex, 
age, BMI, pack-years of smoking, Lung-RADS and cancer diagnosis were assessed for each phenotype 
cluster, and then compared across clusters for the two different CT reconstruction algorithms using 
the cluster entanglement metric, where a lower entanglement coefficient corresponds to good cluster 
alignment. Furthermore, an independent set of low-dose CT scans (n = 88) from patients with available 
pulmonary function data on lung obstruction were analyzed using the identified optimal clusters 
to assess associations to lung obstruction and validate the lung phenotyping paradigm. Heatmaps 
generated by radiomic features identified two distinct lung parenchymal phenotype patterns across 
different feature extraction window sizes, for both reconstruction algorithms (P < 0.05 with K = 2). 
Associations of radiomic-based clusters with clinical covariates showed significant differences for BMI 
and pack-years of smoking (P < 0.05) for both reconstruction kernels. Radiomic phenotype patterns 
were more similar across the two reconstructed kernels, when smaller window sizes (W = 4 and 8 mm) 
were used for radiomic feature extraction, as deemed by their entanglement coefficient. Validation 
of clustering approaches using cluster mapping for the independent sample with lung obstruction 
also showed two statistically significant phenotypes (P < 0.05) with significant difference for BMI and 
smoking pack-years. Radiomic analysis can be used to characterize lung parenchymal phenotypes 
from low-dose CT scans, which appear reproducible for different reconstruction kernels. Further 
work should seek to evaluate the effect of additional CT acquisition parameters and validate these 
phenotypes in characterizing lung cancer screening populations, to potentially better stratify disease 
patterns and cancer risk.
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Quantitative CT (QCT) imaging-based metrics, including radiomic features, can be an important tool for phe-
notyping lung diseases, such as COPD and interstitial lung diseases1, and potentially also assessing the risk for 
developing lung cancer2. For example, Raghu et al.3 proposed an improved model for early prediction of lung 
cancer from clinical, demographic and low-dose CT (LDCT) data within a lung cancer screening cohort. In 
addition, Hawkins et al.4 showed that radiomics of lung cancer screening LDCT at baseline can be used to assess 
risk of development of cancer. Castaldi et al.5 identified four subgroups of smokers within the COPDGene cohort 
with unique clinical characteristics and COPD-associated genetic variants. Recently, Haghighi et al.6 used a 
QCT imaging-based clustering approach to identify homogeneous clusters within current smokers with unique 
clinical phenotype characteristics.

The breadth of a radiomics-based approach could offer unique advantages in characterizing the heterogeneity 
of the lung parenchyma as an imaging biomarker of disease severity and/or the risk of developing lung cancer. 
Image acquisition and reconstruction can vary widely across different scanners, causing unwanted variation in 
extracted radiomic features7, which can be a challenge in standardizing and translating such imaging biomarkers. 
Shafiq-ul-Hassan et al.7 investigated the reconstruction kernel-induced variability using noise power spectra as 
a correction factor to reduce variability in CT texture features. Zhao et al.8 assess a comprehensive, commonly-
used set of radiomic features from lung cancer patients and show that radiomic features can be reproducible over 
a wide range of imaging parameters, but smooth and sharp reconstruction algorithms can induce variability in 
radiomic features. Meyer et al.9 have also shown that most radiomic features are highly affected by CT acquisition 
and reconstruction, resulting in non-reproducible features in liver lesions.

Screening studies have been previously used to establish a predictive score for assessing lung diseases10. In 
this study we aim to establish the feasibility of a radiomics approach for characterizing intrinsic lung parenchy-
mal patterns as potential surrogates of early signs of lung disease or other types of lung inflammation, which 
may predispose to an increased risk for lung cancer. Our main hypotheses are that lung cancer screening LDCT 
contain enough latent structural and functional information such that a set of comprehensive radiomic features 
can assess the intrinsic heterogeneity of the lung parenchyma, and that these phenotypes can be inherently 
robust to common CT acquisition parameters, such as reconstruction kernels. Our long-term hypothesis is that 
these radiomic phenotypes can serve as precursors of lung diseases as well as to characterize the extent of such 
diseases and to identify patients at higher risk of developing lung cancer.

Methods
Human data.  The multicenter National Cancer Institute (NCI) Population-based Research to Optimize the 
Screening Process (PROSPR) lung cancer screening consortium11 aims to address disparities in lung cancer 
mortality through research on the receipt and effectiveness of lung cancer screening within and across diverse 
healthcare systems and patient populations. Our study was designed as a single-institution feasibility study 
within the NCI PROSPR-Lung consortium. This study design was approved by the institutional review board 
(IRB) of the University of Pennsylvania. Patient data was fully anonymized and adequate precautions were 
undertaken to ensure protection of patient privacy and confidentiality.

CT acquisition parameters.  We obtained LDCT scans (n = 308) acquired with Siemens Healthineers 
scanners from patients undergoing routine lung cancer screening at our institution between 2015–2018, that 
had two different sets of image reconstruction kernels available (i.e., medium (I30f.), sharp (I50f.)) for the same 
acquisition (Two-kernel data set). LDCT images had the lowest slice thickness of 1 mm. Within the same insti-
tutional lung cancer screening cohort, we also identified an independent sample of patients screened who also 
had Pulmonary Function Test (PFT) data and COPD obstruction information available in their clinical record 
(n = 88) (PFT data set). Additional available clinical covariates for all patients included in our study were age, 
BMI, sex, Lung-RADs12, smoking status, smoking pack-years and cancer diagnosis (i.e., biopsy confirmed can-
cer cases). Lung-RADs categories were collapsed into two groups based on scan findings: Group A: negative scan 
(Lung-RADS 1 and 2) and Group B: positive scan (Lung-RADs 3/4A/4B/4X). The demographics and clinical 
information of the two independent data sets are summarized in Tables 1 and 2, respectively.

Table 1.   Demographics of study sample with two LDCT reconstruction kernels by SIEMENS scanners. 
Numerical data presented as Means (standard deviations). Lung-RADs categories 1and 2 are grouped as (A) 
and 3/4A/4B/4X as (B). Value range: Age (48–68), BMI (18–31).

Demographics of study sample

N = 308

Age 64.8 (5.84)

BMI 27.08 (6.04)

Smoking pack-years 52.47 (24.85)

Sex (female/male) 147/161

Smoking status (current/former) 158/150

Lung-RADs (A/B) 262/46

Cancer (no/yes) 293/15
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Radiomic phenotyping of the lung parenchyma.  The lung field in all LDCT images for these two 
datasets was segmented. Our segmentation method is an automated 3-dimensional, intensity-based algorithm 
using K-means clustering to properly determine cluster centers of air / lung tissue versus soft tissue attenuation. 
The threshold-based segmentation excludes vessels when segmenting the lung domain and furthermore, we 
have clinical information about patients with nodule cases and we cross-checked this with our segmentation 
result. After segmentation, the lattice-based texture feature extraction pipeline13 was applied to extract 26 three 
dimensional (3D) radiomic features from three major statistical approaches, gray-level histogram, co-occur-
rence, and run-length descriptors. Briefly, gray-level histogram features are first-order statistics describing the 
distribution of gray-level intensities. Co-occurrence features consider the spatial relationships of pixel intensities 
in different directions and are based on the gray-level co-occurrence matrix that encodes the relative frequency 
of neighboring intensity values. Run-length features capture the coarseness of texture in specified directions by 
measuring strings of consecutive pixels that have the same gray-level intensity along specific linear orientations 
(please see the supplementary section for feature definitions). Different window sizes (W) from 4 to 20 mm were 
used to assess texture information at different spatial scales at each lattice point with an intent to evaluate differ-
ent spatial levels of texture alterations. Furthermore, for each window size W, measures from lattice points were 
averaged over each 3D feature map to create a per-patient measure for each feature. This resulted in a feature vec-
tor of 26 features characterizing parenchymal complexity for each patient. The overall feature extraction pipeline 
is shown in Fig. 1 and the schematic of the lattice approach is depicted in Fig. 2. The pipeline is fully automated 
including preprocessing (anonymization and normalization), segmentation and machine learning part (cluster-
ing and statistical analysis).

Feature harmonization.  The extracted imaging feature vectors from both datasets (two-kernel and PFT) 
were harmonized to correct for differences in imaging parameters using ComBat14. ComBat is a harmoniza-
tion method originally developed for genomic datasets that can address and correct variation in imaging fea-
tures due to heterogeneity in imaging parameters—such as reconstruction kernel—by assuming a location and 
spread variation in the distribution of each feature due to the imaging parameter value, using an empirical Bayes 

Table 2.   Demographics of study sample with lung obstruction information obtained from pulmonary 
function test (PFT). Numerical data presented as Means (standard deviations). Lung-RADs categories 1 and 2 
are grouped as (A) and 3/4A/4B/4X as (B). Value range: Age (49–71), BMI (18–32).

Demographics of the PFT dataset

N = 88

Obstruction (no/yes) 49/64

Age 64.76 (5.89)

BMI 28.04 (6.91)

Smoking pack-years 48.67 (21.45)

Sex (female/male) 52/35

Smoking status (current/former) 32/56

Lung-RADs (A/B) 73/15

Cancer (no/yes) 82/6

Figure 1.   The schematic of the LDCT analysis pipeline including lung field segmentation, radiomic feature 
extraction, and unsupervised hierarchical clustering for phenotype generation.
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approach to estimate these location and spread parameters, and inverse transforming the values by these esti-
mated parameters to harmonize the data. When it is expected that other non-feature covariates will affect the 
feature values—for instance, if we expect the features to be associated with sex—these covariates can be specified 
as protected variables in the ComBat procedure, and variation due to these covariates will be preserved in the 
ComBat harmonization. Before applying ComBat, outlying texture feature values were identified, as previous 
work had shown that excluding outliers improved the effectiveness of ComBat harmonization. To identify outli-
ers, in each dataset, each feature was residualized as the dependent variable in each of three univariable linear 
regression models, with age at index scan, BMI, and smoking pack-years as the predictors. Any image in which 
any of the three residuals, for any feature, was outside the range of the median ± 2.5 × IQR was tagged as an out-
lier. ComBat was used to harmonize features from the datasets both with and without the outliers dropped, using 
the Python neurocomBat package, with kernel as the batch effect for the two-kernel dataset and manufacturer as 
the batch effect for the PFT dataset. Sex, Lung-RADS score, smoking status, age, BMI, and smoking pack-years 
were protected variables in the ComBat harmonization.

Clustering and statistical analysis.  With the extracted feature vectors for each patient, and for each 
window size W, an unsupervised hierarchical clustering approach was applied to the feature vectors extracted 
from each scan, and separately for each of the two reconstruction kernels, to group patients that share similar 
lunch parenchymal patterns. Therefore, the clusters of patients were derived for each reconstruction kernel. 
Consensus clustering was used to find the optimal number of clusters for each reconstruction kernel15. Entangle-
ment parameters16 showing the quality of the alignment between different trees of hierarchical clustering from 
the two kernels were computed (Fig.  S2). Entanglement is a measure between 1 (full entanglement) and 0 (no 
entanglement), where a lower entanglement coefficient corresponds to a better alignment between the clustering 
dendrogram structures.

Phenotype associations with demographics and PFT data.  We evaluated associations between the 
identified radiomic lung parenchymal phenotype clusters with the available demographic and clinical covariates. 
The Kruskal–Wallis and chi-square tests were used to assess differences from continuous and categorical varia-
bles, respectively, across phenotypes where P value = 0.05 was used as the threshold for determining significance 
in all tests. All data analysis was performed using the software R (version 3.1.1).

To assess the degree of reproducibility (validation) of cluster characteristics from one data set to another, 
the derived clusters in one data set (i.e., the two-reconstruction kernel dataset) were mapped to another data 
set domain (i.e., the independent PFT dataset). First, the centroids of two clusters from the Kernel data set were 
calculated. Then, the mapped clusters were assigned in the PFT data set by assigning each patient to the closest 
cluster centroid learned by the hierarchical clustering algorithm in the Kernel data set (please see supplementary 
section for details).

Figure 2.   The schematic of the lattice-based feature extraction approach, with window size (W). This approach 
can extract a range of local tissue texture features obtained within a window (i.e., the green rectangle with size 
of W) surrounding each lattice point (i.e., the red intersection points on the regular grid drawn using blue lines) 
for characterizing the parenchymal tissue heterogeneity.
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Ethics approval and consent to participate.  Ethics were approved by the IRB and the PROSPR steering 
committee. Waiver of consent was approved by the IRB. We confirm that all methods were carried out in accord-
ance with relevant guidelines and regulations.

Informed consent.  This was a retrospective study. Waiver of Informed consent was obtained by our IRB for 
all subjects and/or their legal guardian(s).

Results
Feature harmonization.  Differences in feature distributions between kernel groups in the raw features 
and ComBat-harmonized features were assessed with the Kolmogorov–Smirnov (KS) test at a P value signifi-
cance level of 0.05. KS testing on the feature distributions of the two-reconstruction kernel dataset prior to 
harmonization demonstrated statistically significant differences between features for kernel groups with differ-
ent window sizes. Also the number of features with statistically significant differences decreased when residual 
outliers were dropped after harmonizing by ComBat (Table S1).

Similarly, the PFT dataset features showed statistically significant differences between manufacturer groups 
prior to harmonization for different window sizes. After applying ComBat and outlier dropping, the number of 
features with statistically significant differences decreased (Table S2).

Two clusters and imaging‑based characteristics.  A consensus clustering approach was applied to the 
harmonized imaging feature vectors, and the number of clusters K = 2 with a significant difference (P < 0.05) was 
selected as the optimal number based on their consensus matrices, which was consistent across the different 
window sizes (W) used for feature extraction (see supplementary materials for details). The optimal number of 
clusters was calculated using consensus clustering (Fig. S1).

Heatmaps generated by radiomic features identified with two distinct parenchymal phenotype patterns across 
different window sizes for both reconstruction algorithms are depicted in Figs. 3 and 4, consistently showing two 
statistically significant phenotypes across both reconstruction kernels and all window sizes (P < 0.05). The number 
of patients differed slightly between kernels and windows sizes. The clustering results are tabulated in Table 3.

Entanglement parameters assessing the degree of similarity between clustering dendrograms were calculated 
to be 0.26, 0.16, 0.9 for W = 4, 8, and 20 mm, respectively (Fig. S2). The smaller entanglement parameters indicate 
that the two clusters for the two different kernels are more similar to each other when using W = 4 and 8 mm as 
compared to 20 mm. Furthermore, the mapped PFT dataset also produced two statistically significant clusters 
(P < 0.05) for different kernels and window sizes (Table 4).

Clusters associations with demographic and PFT data.  Association between clusters (phenotypes) 
for the two reconstruction kernels with demographics is tabulated in Table 3 for the different lattice window sizes 
(W = 4, 8 and 20 mm). BMI showed a significant difference between clusters (P < 0.05), consistently across all 
window sizes. Furthermore, smoking pack-years showed significant levels for W = 8 and 20 mm. Cancer diagno-
sis showed a significant difference for two clusters for smaller window sizes W = 4 and 8 mm while this difference 
was not significant for W = 20 mm (P > 0.05). Lung-RADs did not show any significant difference across the two 
phenotype clusters for any window size.

To assess reproducibility of the clustering approaches between the two datasets, the mapped clusters from the 
two-kernel data set to the PFT data set were assessed. Table 4 shows the associations between the clinical covari-
ates for PFT dataset and their corresponding mapped clusters for different window sizes. The similar clustering 
approaches for the PFT data also showed two statistically significant phenotypes (P < 0.05). Association with the 
available PFT and clinical covariates for the different window sizes is shown in Table 4. While airway obstruction 

Figure 3.   Heatmaps generated by unsupervised hierarchical clustering from extracted radiomic features for 
different window sizes (W) and for the I130f reconstruction kernel (medium kernel). Each column represents a 
subject/LDCT scan and each row a specific radiomic feature. The dendrogram at the top represents the grouping 
of patients in distinct phenotypes, whereas the dendrogram on the left represents groupings of extracted features 
based on their similarity. Associations with the clinical covariates are shown on the top legends.
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Figure 4.   Heat map generated by unsupervised hierarchical clustering of extracted radiomic features for 
I150f (medium kernel) reconstruction parameters for phenotypic patterns (red and blue colors) for different 
window sizes (W). Each column in heat map represents a patient and each row represents a specific radiomic 
feature. Dendrogram at top represents grouping of patients in distinct phenotypes, whereas dendrogram on left 
represents groupings of extracted features with similar information. Associations with the clinical covariates are 
shown on the top legends.

Table 3.   Associations of clinical covariates for the two reconstruction kernels with their corresponding 
imaging phenotype clusters for different window sizes W = 4, 8 and 20 mm after feature harmonization. 
Numerical data presented as Means (standard deviations).

I130f. Kernel

P value

I150f. Kernel

P valueCluster 1 Cluster 2 Cluster 1 Cluster 2

Clinical covariates (window size = 4 mm)

N = 197 N = 111 N = 162 N = 146

Age 64.96 (5.78) 64.25 (5.79) 0.34 65.19 (5.8) 64.16 (5.74) 0.12

BMI 25.63 (5.33) 29.6 (6.52)  < 0.0001 25.03 (5.15) 29.31 (6.26)  < 0.0001

Sex (female/male) 92/105 55/56 0.72 76/86 71/75 0.85

Smoking status (current/former) 105/92 53/58 0.41 85/77 73/73 0.75

Smoking pack-years 54.04 (25.81) 50.21 (23.75) 0.2 55.32 (27.29) 49.71 (22.19) 0.05

Lung-RADs (A/B) 165/32 97/14 0.49 135/27 127/19 0.46

Cancer (no/yes) 183/14 110/1 0.031 150/12 143/3 0.050

I130f. Kernel

P value

I150f. Kernel

P valueCluster 1 Cluster 2 Cluster 1 Cluster 2

Clinical covariates (window size = 8 mm)

N = 146 N = 154 N = 159 N = 141

Age 65.19 (5.92) 64.21 (5.62) 0.143 65.31 (5.84) 63.99 (5.65) 0.045

BMI 24.83 (4.57) 29.26 (6.59)  < 0.0001 24.89 (5.02) 29.6 (6.27)  < 0.0001

Sex (female/male) 64/82 79/75 0.24 73/86 70/71 0.60

Smoking status (current/former) 75/71 77/77 0.90 82/77 70/71 0.83

Smoking pack-years 55.78 (27.75) 50.36 (22.60) 0.064 55.64 (27.62) 50.02 (22.22) 0.055

Lung-RADs (A/B) 126/20 131/23 0.89 134/25 123/18 0.57

Cancer (no/yes) 139/8 147/7 0.25 148/11 138/4 0.091

I130f. Kernel

P value

I150f. Kernel

P valueCluster 1 Cluster 2 Cluster 1 Cluster 2

Clinical covariates (window size = 20 mm)

N = 157 N = 154 N = 152 N = 156

Age 65.43 (5.89) 64.01 (5.58) 0.029 65.14 (6.06) 64.28 (5.48) 0.19

BMI 24.97 (4.67) 29.22 (6.56)  < 0.0001 24.88 (5.17) 29.18 (6.17)  < 0.0001

Sex (female/male) 69/88 78/76 0.28 72/80 75/81 0.99

Smoking status (current/former) 80/77 78/76 0.98 81/71 77/79 0.56

Smoking pack-years 55.8 (27.52) 49.55 (22.26) 0.029 55.08 (26.34) 50.3 (23.71) 0.095

Lung-RADs (A/B) 133/24 132/22 0.93 126/26 136/20 0.37

Cancer (no/yes) 148/9 148/6 0.62 141/11 152/4 0.101
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did not show significant difference, BMI and smoking pack-years demonstrated significant differences across 
clusters for all window sizes.

Discussion
Lung diseases, such as history of emphysema, chronic bronchitis, pneumonia and tuberculosis, are shown to 
influence lung cancer risk, independently of tobacco use17. One of the related hypotheses is that such diseases, 
which obstruct the airflow in the lung airways, are sources of inflammation in the lung tissue and may act as a 
catalyst in the development of lung neoplasms. Clinically established assessment exists for evaluating the extent 
of such diseases, including PFT, which evaluates degree of pulmonary impairment for example after respiratory 
infections, chronic bronchitis and can assess the severity of emphysema and COPD. However, most of these 
diseases are shown to be heterogeneous, both across and within patients, and such measures may have limita-
tions in capturing the extent of the inflammation and obstruction on the lung tissue, likely associated with dif-
ferential cancer risk18. LDCT offers a unique opportunity to characterize the heterogeneity of lung parenchyma 
as a potential surrogate of such diseases conferring increased lung cancer risk using refined quantitative imaging 
measures19. Thus, the main premise of our study is that radiomic imaging features can aid in characterizing 
phenotypes of lung parenchymal heterogeneity from LDCT, and that these phenotypes are relatively robust to 
image acquisition. Ultimately, these phenotypes may relate to underlying biologic heterogeneity of the overall 

Table 4.   Associations of clinical covariates for PFT data with their corresponding clusters for window sizes 
W = 4, 8 and 20 mm after feature harmonization and cluster mapping. Numerical data presented as Means 
(standard deviations).

Data with PFTs

P valueCluster 1 Cluster 2

Clinical covariates (window size = 4 mm)

N = 45 N = 43

Age 65.13 (5.05) 64.7 (6.43) 0.73

BMI 25.56 (5.8) 30.51 (7.45) 0.001

Smoking pack-years 46.56 (18.61) 55.79 (24.45) 0.049

Obstruction (no/yes) 20/25 18/25 0.43

Sex (female/male) 23/22 29/14 0.18

Smoking status (current/former) 21/24 11/32 0.07

Lung-RADs (A/B) 34/11 39/4 0.11

Cancer (no/yes) 44/2 38/4 0.59

Data with PFTs

P valueCluster 1 Cluster 2

Clinical covariates (window size = 8 mm)

N = 45 N = 43

Age 65.53 (5.37) 63.54 (6.55) 0.11

BMI 25.36 (5.4) 31.6 (7.22)  < 0.0001

Smoking pack-years 48.33 (20.2) 49.42 (23.76) 0.05

Obstruction (no/yes) 22/23 16/27 0.42

Sex (female/male) 34/11 18/25 0.18

Smoking status (current/former) 16/31 17/26 0.07

Lung-RADs) (A/B) 42/3 32/11 0.1

Cancer (no/yes) 43/2 39/4 0.6

Data with PFTs

P valueCluster 1 Cluster 2

Clinical covariates (window size = 20 mm)

N = 46 N = 42

Age 64.33 (5.88) 65.54 (6.09) 0.375

BMI 30.24 (6.34) 22.91 (5.43)  < 0.0001

Smoking pack-years 48.51 (23.21) 48.62 (18.39) 0.053

Obstruction (no/yes) 23/24 16/25 0.52

Sex (female/male) 36/11 17/24 0.84

Smoking status (current/former) 17/30 15/26 0.08

Lung-RADs) (A/B) 42/5 31/10 0.2

Cancer (no/yes) 44/3 36/5 0.7
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lung structure, potentially related to lung inflammation or early disease manifestation, that may increase lung 
cancer risk.

We applied unsupervised hierarchical clustering to a comprehensive set of LDCT radiomic features to estab-
lish feasibility of deriving intrinsic lung parenchymal phenotypes in a lung screening cohort, and further evalu-
ated their reproducibility across different reconstruction kernels and feature extraction parameters such as win-
dow size. Furthermore, we applied our approach to an independent dataset with PFT information to assess the 
ability of our phenotypic approach in distinguishing patients with the same imaging and clinical characteristics. 
We found that these phenotypes were relatively robust across settings. This can be helpful when dealing with 
heterogeneous CT image data from different acquisition parameters.

Cluster phenotype assignments were dependent on variation in LDCT reconstruction kernels and feature 
extraction parameters. The degree of similarity between clusters was evaluated using the entanglement param-
eter and the window sizes with the smaller entanglement were considered as the optimal region of interest sizes 
in radiomic feature extraction process for decreasing phenotype sensitivity to variation of LDCT parameters. 
The phenotypes were also found to be reproducible in an independent dataset. For this study, window sizes 
of W = 4 mm and 8 mm showed the lowest sensitivity to CT reconstruction parameters. This implies that the 
window size parameter showing the degree of information that can be extracted from images at different spatial 
scales is important in evaluating different levels of lung texture alterations. The lower entanglement parameters, 
along with the fact that a smaller window size can potentially allow for extracting more refined image texture 
information, suggests that smaller window sizes (W = 4 mm and 8 mm) can be the optimal for radiomic feature 
extraction and the corresponding phenotypes.

The two phenotypes across the different kernel and windows settings showed significant differences related 
with BMI. This could be because higher BMI (obesity) can contribute to higher levels of systemic inflammation, 
diabetes, and worse prognosis in many infectious conditions, as suggested by Sood et al.20 and Joppa et al.21, which 
can in turn affect our detected cluster characteristics. Interestingly, and considering that lung tissue inflamma-
tion may be a risk factor for the development of lung cancer, our results also showed a significant difference for 
cancer diagnosis between the two clusters, which was a consistent observation across kernels. These two clusters 
also had significantly different smoking pack-years for W = 4 mm which is another well-established risk factor 
for lung cancer diagnosis22. Thus, together this data suggests that radiomic phenotypes may represent intrinsic 
lung parenchymal characteristics that may reflect underlying biological underpinnings of the lung tissue pre-
disposition to lung cancer, and may ultimately have value in augmenting risk assessment. Better identification 
of patients at high risk from lung cancer continues to be very important when prioritizing the best candidates 
for inclusion in lung cancer screening programs.

When applying our phenotyping approach using cluster mapping on the independent screening LDCT data 
set with PFT information, the degree of lung obstruction as measured by PFT did not show statistically significant 
differences, suggesting that radiomic phenotyping may capture complementary information to the current gold 
standard. However, smoking pack-years showed significant differences across the two phenotypes for smaller 
window sizes (W = 4 mm and 8 mm). Nevertheless, cancer diagnosis and Lung-RADs did not reach significance, 
which may be due to the relatively small number of cancer cases in this lung screening cohort.

Our study has several limitations. First, our work focused on mainly evaluating the effect of LDCT reconstruc-
tion kernel parameters on the extracted phenotypes, which is only one factor of the LDCT acquisition. Future 
analyses should also consider additional LDCT parameters such as dose, image resolution, and slice thickness 
(Fig. S4)23. Also, different important factors such as lung size or diffusing capacity of the lungs for carbon mon-
oxide (DLCO) can be considered for better assessment of correlation with clinical information. Second, for better 
assessment of phenotype stability over time, our analysis can be extended to available longitudinal data. Third, 
our study included a relatively small sample confirmed cancer cases, therefore future larger studies are needed, 
with additional clinical information such as history of pulmonary/vascular conditions, asthma, emphysema, 
and shortness of breath, and more extensive lung obstruction data, including the Fleischner Society emphysema 
grading system24 in order to expand these analyses in more heterogeneous LDCT datasets and further evaluate 
potential associations between such possible phenotypes, lung diseases, and the risk for developing lung cancer.

In conclusion, our study demonstrated the feasibility of leveraging a radiomics-based approach to identify 
potentially intrinsic phenotypes of lung parenchymal patterns in LDCT screening scans. We showed that such 
phenotypes are reproducible in an independent dataset, and are relatively robust when considering variations 
in LDCT reconstruction kernel and the resolution/scale of the radiomics feature extraction approach. We also 
demonstrated a significant association with these phenotypes and BMI and cancer diagnosis, which could rep-
resent a phenotypic manifestation of inflammation to the lung parenchymal structure.

Data availability
The datasets generated and/or analyzed during the current study are not currently publicly available but are 
available from the corresponding author on reasonable request.

Code availability
Codes can be accessible upon request.
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