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Solving large‑scale discrete 
time–cost trade‑off problem using 
hybrid multi‑verse optimizer model
Pham Vu Hong Son  & Nghiep Trinh Nguyen Dang *

The analysis of the relationship between time and cost is a crucial aspect of construction project 
management. Various optimization techniques have been developed to solve time–cost trade‑off 
problems. A hybrid multi‑verse optimizer model (hDMVO) is introduced in this study, which combines 
the multi‑verse optimizer (MVO) and the sine cosine algorithm (SCA) to address the discrete time–
cost trade‑off problem (DTCTP). The algorithm’s optimality is evaluated by using 23 well‑known 
benchmark test functions. The results demonstrate that hDMVO is competitive with MVO, SCA, the 
dragonfly algorithm and ant lion optimization. The performance of hDMVO is evaluated using four 
benchmark test problems of DTCTP, including two medium‑scale instances (63 activities) and two 
large‑scale instances (630 activities). The results indicate that hDMVO can provide superior solutions 
in the time–cost optimization of large‑scale and complex projects compared to previous algorithms.

In project management, optimization is a highly useful tool to satisfy desired objectives under specific constraints. 
The productivity of different components of a project can be increased by optimization. The importance of 
optimization in a construction project has been emphasized for decades as it is used to find the ideal plan and 
schedule for completing a project. Cost optimization, time optimization, and Pareto front are three common 
forms of time–cost trade-off problems. The objective of the cost optimization problem is to minimize the total 
cost under specific conditions, including project implementation time and penalty costs for delays. Meanwhile, 
the time optimization problem is aimed at choosing alternative solutions to shorten the project implementation 
time while ensuring that the project cost does not exceed the revenue on the early operation of the project. The 
Pareto front is a multi-objective optimization problem to simultaneously optimize both project cost and  time1.

Mirjalili,  Mirjalili2 proposed a multi-verse optimizer (MVO) algorithm inspired by the Big Bang theory to 
satisfy the need for solving single-and multi-objective optimization problems. For result assessment, MVO is 
compared with other metaheuristic algorithms, such as particle swarm optimization (PSO), Genetic Algorithm 
(GA), Ant colony optimization (ACO), etc. The results show that the MVO algorithm can provide competitive, 
even superior results than those of other algorithms in most tested optimization problems. However, MVO has 
issues in balancing the exploration and exploitation mechanism of the search area and limitations in the search 
area exploitation during fast convergence, thus resulting in local  optimization3.

The Sine Cosine Algorithm (SCA)4 was developed for focusing on the exploration and exploitation of the 
search space during optimization. The results of the test problems show that SCA can explore different regions 
of the search space, avoid local optimization, converge towards global optimization, and effectively exploit the 
promising region of the search space during optimization. In addition, the study shows that SCA converges 
significantly faster than PSO, GA, ACO, etc. SCA has been utilized to address optimization challenges in diverse 
domains since  20165. Like MVO, SCA has limitations. Specifically, its search area exploitation mechanism is not 
clearly expressed; therefore, it easily encounters fast  convergence6, which results in local optimization.

Two algorithms with opposite advantages and disadvantages motivated us to develop a hybrid algorithm 
between MVO and SCA for optimal exploration and exploitation of the search area based on the strengths of 
each algorithm to achieve a balance between the two mechanisms. The hDMVO algorithm was developed by 
preserving MVO’s mechanisms of white and black holes to ensure good exploration of the search area by MVO. 
Concurrently, good search area exploitation by the algorithm is guaranteed by SCA through the fact that the 
value closest to the global optimum is stored in a variable as the target and is never lost during the optimization. 
Therefore, hDMVO will achieve a reasonable balance between the exploration and the exploitation phases, which 
ensures that the algorithm can achieve global optimization and become an appropriate metaheuristic method 
for solving the DTCTP.
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The resolution of large-scale DTCTPs is a crucial aspect in the management of any construction project. 
Despite the availability of several existing methods, they are not fully equipped to solve large-scale DTCTPs. 
Therefore, a hybrid multi-verse optimizer model (hDMVO) was developed by combining the MVO and the SCA 
to provide efficient solutions for medium- and large-scale DTCTPs and other optimization problems that can 
be applied in actual construction projects. This model also significantly enhances the decision-making ability 
of decision-makers.

The rest of this paper is organized as follows. Section "Literature review" summarizes the literature on the 
time–cost trade-off problems. Section "Model development" outlines the development of our hybrid multi-verse 
optimizer model. Section "Computational experiments" presents the results from the validation and application 
of our model. Finally, Sections "Conclusion" and "Recommendations for future work" conclude the study and 
outline future research directions.

Literature review
The stochastic optimization method is widely used in many fields of  study7,8, which develops meta-heuristic 
techniques. Some popular meta-heuristic methods are inspired by animals in nature. For example, ant lion 
optimization (ALO) algorithm is modeled after the hunting behavior of antlions in nature. The Dragonfly algo-
rithm (DA) is based on the static and dynamic swarming behaviors observed in  dragonflies9. Africa Wild Dog 
Optimization Algorithm (AWDO) originates from the hunting mechanism of Africa wild dogs in  nature10. 
Meanwhile, Genetic Algorithm (GA) is inspired by evolutionary principles, such as heredity, mutation, natural 
selection, and  crossover11.

The development of new algorithms or improvement of current algorithms has recently attracted immense 
interest from researchers, which is related to the No Free Lunch (NFL)  theorem12. Evidently, the NFL has enabled 
researchers to improve and adapt current algorithms for solving different problems or propose new algorithms 
to provide competitive results against current algorithms. There are a significant number of developed hybrid 
metaheuristic algorithms, including the ant colony system-based decision support system (ACS-SGPU)13, drag-
onfly algorithm–particle swarm optimization  model14, quantum-based sine cosine  algorithm15, the improved 
sine–cosine algorithm based on orthogonal parallel  information16, the hybrid sine cosine algorithm with multi-
orthogonal search  strategy17.

The time–cost trade-off is extended to the discrete version, including various realistic assumptions and solved 
by the exact, heuristic, and metaheuristic methods. PSO and GA are metaheuristic methods commonly used in 
the DTCTP.  Bettemir18 found that among eight metaheuristic methods, including a sole genetic algorithm, four 
hybrid genetic algorithms, PSO, ant colony optimization, and electromagnetic scatter search, PSO was one of 
the leading algorithms together with the hybrid genetic algorithm with quantum annealing for the large-scale 
cost optimization. Zhang and  Xing19 proposed an algorithm combining PSO and fuzzy sets theory to solve the 
fuzzy time–cost–quality trade-off problem. Aminbakhsh and  Sonmez20 developed the discrete particle swarm 
optimization method to solve the large-size time–cost trade-off problem. Aminbakhsh and  Sonmez21 used Pareto 
front particle swarm optimizer (PFPSO) to simultaneously optimize the time and cost of large-scale projects. 
Sonmez and  Bettemir22 presented a hybrid strategy based on GAs, simulated annealing, and quantum simu-
lated annealing techniques for the cost optimization problem. Zhang et al.23 proposed a GA for the DTCTP in 
repetitive projects. Naseri and  Ghasbeh24 used GA for the time–cost trade off analysis to compensate for project 
delays. Network analysis algorithm is also metaheuristic techniques used to solve the  DTCTP25. Son and  Khoi26 
presented a slime mold algorithm model to solving time–cost–quality trade-off problem.

Despite their wide applications in solving the DTCTP, the metaheuristic techniques have several limitations. 
Therefore, hybrid metaheuristic methods are being developed and widely used in the DTCTP. An adaptive-
hybrid genetic algorithm was proposed by  Zheng27 for time–cost–quality trade-off problems. Said and  Haouari28 
developed a model wherein the simulation–optimization strategy and the mixed-integer programming formula-
tion were used to solve the DTCTP. Tran, Luong-Duc29 presented an opposition multiple objective symbiotic 
organisms search (OMOSOS) model for time, cost, quality, and work continuity trade-off in repetitive projects. 
Eirgash et al.30 proposed a multi-objective teaching–learning-based optimization algorithm integrated with a 
nondominated sorting concept (NDS–TLBO), which is successfully applied to optimize the medium- to large-
scale projects. A hybrid GALP algorithm combined with GA and linear programming (LP) was proposed by 
Alavipour and  Arditi31 for time–cost tradeoff analysis.  Albayrak32 developed an algorithm combining PSO and 
GA to solve the time–cost trade-off problem for resource-constrained construction projects. A population-based 
metaheuristics approach, nondominated sorting genetic algorithm III (NSGA III) was developed by Sharma and 
 Trivedi33 to ensure the quality and safety in time–cost trade-off optimization. Li et al.34 presented an epsilon-
constraint method-based genetic algorithm for uncertainty multimode time–cost–robustness trade-off problem.

This paper presents a hybrid multi-verse optimizer (hDMVO) model based on MVO and SCA, which can 
provide high-quality solutions for large-scale discrete time–cost trade-off optimization problems.

Model development
Discrete time–cost trade‑off problem. The common objective of discrete time–cost tradeoff problem 
(DTCTP) is to minimize the total direct and indirect costs and such costs can be formulated as  follows35:

subject to:

(1)C = min

S
∑

j=1

m(j)
∑

k=1

(

dcjkxjk
)

+ D × ic
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where C is the project cost; dcjk is the direct cost of mode k for activity j; xjk is a 0–1 variable which is 1 if mode k 
is selected for executing activity j, and 0 otherwise; ic is the daily indirect cost; D is the project duration; djk is the 
duration of mode k for activity j; Stj is the start time for activity j; and Scj is the set of immediate successors for j.

Hybrid multi‑verse optimizer model for DTCTP. Multi‑verse optimizer—MVO. The MVO algorithm 
is inspired by concepts which theoretically exist in astronomy, including white holes, black holes, and worm 
holes. White holes are the elements which form the universes and have been unobservable until now. Mean-
while, black holes are observable and characterized by a giant gravitational force which attracts all surrounding 
objects. The last element can exchange objects between different universes or different parts of a universe. In the 
MVO, the above three elements are mathematically modeled to develop an optimal method, simulate the tel-
eportation and exchange of objects between universes through white/black and worm hole tunnels. In addition, 
the idea of the inflation of the universe is also applied to the MVO based on the inflation rate.

The model of the MVO algorithm is shown in Fig. 1. In this figure, the universe with a higher inflation rate 
will have a white hole, while a universe with a lower inflation rate will have a black hole. The objects will then 
be transferred from the white holes of the source universe to the black holes of the target universe. In order 
to improve the overall inflation rate of single universes, an assumption was made that the universes with high 
inflation rate would be more likely to have white holes. In contrast, the universes with low inflation rate are 
more likely to have black holes. In Fig. 1, the white points represent celestial bodies travelling through the worm 
holes. It can be observed that worm holes stochastically change celestial bodies regardless of their inflation rates.

The roulette wheel mechanism will be used. (Eq. 6) to mathematically model white or black hole tunnels 
and exchange celestial objects between universes. When optimization problems are solved with the maximized 
objective function, –NI will be changed into NI. In each iteration, universes will be rearranged based on their 
inflation rate (fitness value), and by the roulette wheel mechanism, one universe will be selected in the occur-
rence of white hole, assume that:

(2)
m(j)
∑

k=1

xjk = 1,∀j = {1, . . . , S}

(3)
m(j)
∑

k=1

djkxik + Stj ≤ Stl , ∀l ∈ Scj and ∀j = {1, . . . , S}

(4)D ≥ StS+1

Figure 1.  Conceptual model of the proposed MVO algorithm.
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where d is the number of parameters (variables) and n is the number of universes (candidate solutions):

where xji indicates the jth parameter of ith universe, Ui shows the ith universe, NI(Ui) is normalized inflation rate 
of the ith universe, r1 is a random number in [0, 1], and xjk indicates the jth parameter of kth universe selected 
by a roulette wheel selection mechanism.

With the above-mentioned mechanism, universes keep the objects exchanged without interference. For accu-
rate determination of the diversity of universes and exploitation, each universe has a wormhole to stochastically 
transport its objects through space. In order to provide local changes for each universe and improve inflation 
rate by using wormholes, worm hole tunes are assumed to always be established between a universe and a best 
universe formed so far. This mechanism is presented as follows:

where Xj indicates the jth parameter of best universe formed so far, TDR is a coefficient, WEP is another coef-
ficient, lbj shows the lower bound of jth variable, ubj is the upper bound of jth variable, xji indicates the jth 
parameter of ith universe, and r2, r3, r4 are random numbers in [0, 1].

Two main coefficients, namely the wormhole existence probability (WEP) and travelling distance rate (TDR) 
can be seen in Eq. (7). The coefficient WEP was used to determine the wormhole existence probability in the 
universe. Such coefficient will linearly increase over the iterations (Eq. 8).

where the min variable is the minimum value, the max variable is the maximum value, l presents the number of 
the current iteration, and L presents the termination criteria (the maximum number of iterations).

TDR is a factor to determine the distance rate (variation) by which an object can be displaced by a wormhole 
around the best universe formed so far. (Eq. 9). In contrast to WEP, TDR decreases over iterations for more 
precise exploitation or local search around the best universe formed so far (Fig. 2).

where p presents the exploitation rate through the iterations. The larger p, the earlier and more precise exploita-
tion/local search.

In the MVO algorithm, the optimization process starts with generating a set of random universes. At each 
iteration, objects in universes with higher inflation rates tend to travel to universes with lower inflation rates 
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Figure 2.  Wormhole existence probability (WEP) versus travelling distance rate (TDR).



5

Vol.:(0123456789)

Scientific Reports |         (2023) 13:1987  | https://doi.org/10.1038/s41598-023-29050-9

www.nature.com/scientificreports/

through white or black holes. Meanwhile, every universe has to face random processes of celestial bodies through 
wormholes to reach the best universe. This process is repeated until the termination criteria are satisfied (such 
as a predetermined maximum number of iterations).

Sine cosine algorithm‑SCA. Stochastic population-based techniques have in common is to divide the optimiza-
tion process into two phases: exploration and  exploitation36. In the exploration phase, the optimization algo-
rithm will abruptly combine solutions with a high random rate to find the promising region of the search space. 
However, in the exploitation phase, there will be gradual changes in the stochastic solutions, and the stochastic 
variations will be significantly less than those in the exploration phase.

In SCA, the mathematical equations for updating positions are given for both phases, see Eqs. (10) and (11):

where Xt
j  is the position of the current solution in ith dimension at tth iteration, α1, α2 and α3 are random num-

bers, Dt
j  is position of the destination point in ith dimension, and || indicates the absolute value.

The above two formulas are combined into a general formula as follows:

where α4 is a random number in [0,1].
In Eq. (12), it can be seen that SCA has 4 main parameters: α1, α2, α3, and α4. α1 defines the movement direc-

tion, α2 determines how far the movement should be towards or outwards the destination, α3 denotes random 
weights for destination. Finally, the parameter α4 switches between the sine and cosine components in Eq. (12).

A general model in Fig. 3 shows the effectiveness of the sine and cosine functions in the range [− 2, 2]. This 
figure shows how the range of sine and cosine changes in order to update the location of a response. Random-
ness is also achieved by determining a random number for α2 in [0, 2π] (Eq. (12)). Therefore, this mechanism 
ensures the exploration of the search space.

In each iteration, the range of Sine and Cosine functions in Eqs. (10)–(12) will be changed to balance the 
exploitation and exploration phases in order to find the promising regions of the search space and finally achieve 
the global optimization by Eq. (13):

where v is a constant, t is the current iteration and T is the maximum number of iterations. Figure 4 shows the 
reduction in the range of the sine and cosine functions over the course of iterations.

Hybrid multi‑verse optimizer model for DTCTP. By taking advantage of SCA and MVO, the hDMVO is built 
to change the MVO’s exploitation mechanism by the SCA’s exploitation mechanism while preserving the MVO’s 
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Figure 3.  Sine and cosine with the range in [− 2, 2] allow a solution to go around (inside the space between 
them) or beyond (outside the space between them) the destination.
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mechanisms of roulette wheel selection Eq. (14), thereby improving the hDMVO’s search area exploration and 
exploitation.

where xji indicates the jth parameter of ith universe, Ui shows the ith universe, NI(Ui) is normalized inflation rate 
of the ith universe, δ1 is a random number in [0, 1], and xjk indicates the jth parameter of kth universe selected 
by a roulette wheel selection mechanism.

A new formula which combines two algorithms MVO and SCA will be developed from Eq. (9) and Eq. (12) 
as follows:

where Xj indicates the jth parameter of best universe formed so far. TDR is wormhole existence probability 
was calculated by Eq. (8) with min = 0.2 and max = 3. WEP is travelling distance rate was calculated by Eq. (9) 
with p = 10. lbj shows the lower bound of jth variable, ubj is the upper bound of jth variable, xji indicates the jth 
parameter of ith universe, and δ2, δ3, δ4 are random numbers in [0, 1]. δ5 are also random numbers in [0, 2π]. The 
parameter δ5 defines how far the movement should be towards or outwards the destination. The pseudo-code 
and flowchart of our hDMVO method is given in Figs. 5 and 6. The set of parameters that are summarized in 
Table 1 provided an adequate combination for the hDMVO, MVO and SCA.

The complexity of the hDMVO algorithm is influenced by various factors such as the number of activities, 
schedules, iterations, roulette wheel selection mechanism, and sorting mechanism. The roulette wheel selection 
method, which is applied for every activity in each solution over the course of iterations, has a complexity of 
O(log N). The sorting of solutions is carried out at each iteration by utilizing the Quicksort algorithm, which 
has a complexity of O(N^2) in the worst-case scenario. As a result, the overall computational complexity is:

where n is the number of activities, N is the number of schedules, and T is the maximum iterations.
In the optimization process, the solution a is evaluated to be better than solution b if:

In case the project cost is equal (Ca = Cb), The option with the shortest completion time is considered the 
best one:

In case both options a and b have the same project cost and project duration, the optimal solution will be 
stochastically selected.
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Figure 4.  Decreasing pattern for range of sine and cosine.
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The exploration and exploitation of the search space will be significantly improved thanks to the hDMVO 
algorithm. Such hybrid algorithm not only searches for the optimal solution from the sets of solutions stochas-
tically generated at the initial phase, but can also exploit the space between solutions through each iteration to 
find new promising regions of the search space.

Computational experiments
Convergence behaviours. To assess the optimization capabilities of hDMVO, a comprehensive analysis 
was conducted using twenty-three well-known benchmark test functions. Comparisons were made to the results 
obtained from four other optimization algorithms, including MVO, SCA, DA, and ALO. These benchmark func-

Figure 5.  Pseudo-code of the proposed hDMVO algorithm.
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tions are grouped into three categories: unimodal, multimodal, and fixed-dimension multi-modal functions, as 
detailed in Tables 2, 3 and 4.

In order to ensure a fair comparison, all of the algorithms were executed 30 times for each benchmark func-
tion. Statistical results, including the mean value (ave) and standard deviation (std), were collected from 30 runs 
of the algorithm. It is important to note that 30 search agents and a maximum of 500 iterations were utilized in 
the analysis. The statistical results of the hDMVO algorithm, as well as those of other comparative algorithms 
(DA, ALO, SCA, and MVO), can be found in Tables 5, 6 and 7.

It should be noted that unimodal functions possess a single global optimum, making them an appropriate 
choice for evaluating the exploitation mechanism. An examination of the results presented in Table 5 reveals 
that hDMVO exhibited superior exploitability when compared to other swarm-based optimization algorithms 
(DA, ALO, SCA, and MVO) in the unimodal test functions, as demonstrated by its performance in 7 out of 7 for 
MVO and DA, 5 out of 7 for ALO and 4 out of 7 for SCA.

Unlike unimodal functions, multimodal benchmark functions possess a global optimization point in addi-
tion to many local optima. Therefore, multimodal test functions are well-suited for evaluating the exploration 
capabilities of hDMVO. The results for multimodal test functions (Table 6) show that hDMVO performs better 
than MVO, DA and ALO, and is comparable to SCA (6 out of 6 for MVO, ALO and DA, 5 out of 6 for SCA). 
Therefore, the ability of hDMVO to effectively avoid local optima and explore the search space has been dem-
onstrated through its performance.

The composite test functions, as the name implies, are a combination of various unimodal and multimodal 
test functions, which include variations such as rotation, shifting, and bias. These composite test functions have 
a similar real search space with multiple local optima, which is beneficial for testing the balance between explo-
ration and exploitation of the search space. The results of the hDMVO algorithm’s performance with composite 
test functions (F14–F23) are presented in Table 7. The results indicate that the hDMVO outperforms other 
population-based optimization algorithms in terms of average values, thus demonstrating its ability to effectively 
balance search space exploration and exploitation.

Figure 6.  Flowchart of the proposed hDMVO algorithm.
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The performance of the hDMVO algorithm in terms of convergence, in comparison to other state-of-the-art 
algorithms (DA, ALO, SCA, and MVO), is depicted in Figs. 7, 8 and 9. Through the use of 10 agents and 150 
iterations, the study generated convergence curves which demonstrate that hDMVO has a higher likelihood of 
reaching optimal convergence on a majority of the benchmark test functions.

Medium‑scale instances of DTCTP. The medium-scale instances include two 63-activity problems 
wherein each activity has maximum five  modes22. The network diagram of this problem is shown in Fig. 10. The 
time–cost alternatives for these instances are listed in Table 8. The medium-scale instances, including 1.37 ×  1042 
possible solutions will be tested at two different levels of indirect costs. The indirect cost in the first problem 
(63a) is 2300USD/day, while that in the second problem (63b) is 3500USD/day. The optimal solutions for these 
two problems are 5,421,120USD and 6,176,170USD, respectively. The hDMVO algorithm has been implemented 
in Python and is compatible with Visual Studio Code. The testing of all instances of DTCTP were performed on 
a personal computer featuring an Intel Core i7-8750H 2.20 GHz CPU and 8.0 GB of RAM.

hDMVO obtains exceptional results in medium-scale experimental problems, wherein the best values among 
the ten runs are 5,444,670USD for problems 63a (Table 9) and 6,211,720USD for problems 63b (Table 10). The 
distribution of percentage deviations for hDMVO, MVO, and SCA are illustrated in Figs. 11 and 12, using ten 

Table 1.  Parameter settings of the hDMVO, SCA and MVO.

Algorithm Parameter Description Value

hDMVO

N Number of iterations 250

i Number of solutions 200

min Minimum value 0.2

max Maximum value 3

p Exploitation rate 10

δ1 Random number [0, 1]

δ2 Random number [0, 1]

δ3 Random number [0, 1]

δ4 Random number [0, 1]

δ5 Random number [0, 2π]

SCA

N Number of iterations 250

i Number of solutions 200

v Constant value 3

α2 Random number [0, 2π]

α3 Random number [0, 2]

α4 Random number [0, 1]

MVO

N Number of iterations 250

i Number of solutions 200

min Minimum value 0.2

max Maximum value 3

p Exploitation rate 10

r1 Random number [0, 1]

r2 Random number [0, 1]

r3 Random number [0, 1]

r4 Random number [0, 1]

Table 2.  Uni-modal test functions.

Funtion Dim Range fmin

f 1(x) =
∑n

i=1x
2
i 10 [− 100, 100] 0

f 2(x) =
∑n

i=1|xi | +
∏n

i=1|xi | 10 [− 10, 10] 0

f 3(x) =
∑n

i=1

(

∑i
j−1xj

)2 10 [− 100, 100] 0

f 4(x) = max{|xi |, 1 ≤ i ≤ n} 10 [− 100, 100] 0

f 5(x) =
∑n−1

i=1

[

100
(

xi+1 − x2i
)2

+ (xi − 1)2
]

10 [− 30, 30] 0

f 6(x) =
∑n

i=1(|xi + 0.5|)2 10 [− 100, 100] 0

f 7(x) =
∑n

i=1ix
4
i + random[0, 1) 10 [− 1.28, 1.28] 0
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trials of the 63a and 63b DTCTP problems. The figures demonstrate that hDMVO has a smaller deviation per-
centage compared to MVO and SCA, indicating its ability to effectively balance exploration and exploitation 
when solving medium-scale DTCTP problems.

The average percent deviation (APD) of hDMVO from the global optimal for problems 63a and 63b is sum-
marized in Table 11. The results show that hDMVO outperforms ACO, GA, and electromagnetism mechanism 
(EMS)18, sole genetic algorithm (GA), hybrid genetic algorithm (HA)22, modified adaptive weight approach 
with genetic algorithms (MAWA-GA), modified adaptive weight approach with particle swarm optimization 
(MAWA-PSO) and modified adaptive weight approach with teaching learning based optimization (MAWA-
TLBO)37. hDMVO also outperforms the two original algorithms named MVO and SCA when its ADPs are 
0.61% and 0.71% for problems 63a and 63b, respectively, within 50,000 schedules. As evident from Table 11, 

Table 3.  Multi-modal test functions.

Funtion Dim Range fmin

f 8(x) =
∑n

i=1 − xisin(
√
|xi |) 10 [− 500, 500] –2820.8

f 9(x) =
∑n

i=1[x
2
i − 10cos(2πxi)+ 10] 10 [− 5.12, 5.12] 0

f 10(x) = −20exp

(

−0.2

√

1
n

∑n
i=1x

2
i

)

− exp
(

1
n

∑n
i=1cos(2πxi)

)

+ 20+ e 10 [− 32, 32] 0

f 11(x) = 1
4000

∑n
i=1x

2
i −

∏n
i=1cos

(

xi√
i

)

+ 1 10 [− 600, 600] 0

f 12(x) = π
n

{

10sin2(πy1)+
∑n

i=1(yi − 1)2
[

1+ 10sin2(πyi+1)
]

+ (yn − 1)2 +
∑n

i=1u(xi , 10, 100, 4)
}

yi = 1+ xi+1
4

u(xi , a, k,m) =

{

k(xi − a)mxi > a
0− a < xi < a

k(−xi − a)mxi < −a
10 [− 50, 50] 0

f 13(x) = 0.1
{

sin2(3πx1)+
∑n

i=1(xi − 1)2
[

1+ sin2(3πxi + 1)
]

+ (xn − 1)2[1+ sin2(2πxn)]
}

+
∑n

i=1u(xi , 5, 100, 4) 10 [− 50, 50] 0

Table 4.  Fixed-dimension multi-modal test functions.

Funtion Dim Range fmin

f 14(x) =

(

1
500 +

∑25
j=1

1

j+
∑2

i=1(xi−aij)
6

)−1

2 [− 65, 65] 1

f 15(x) =
∑11

i=1

[

ai −
x1(b

2
i +bix2)

b2i +bix3+x4

]2 4 [− 5, 5] 0.0003

f 16(x) = 4x21 − 2.1x41 +
1
3 x

6
1 + x1x2 − 4x22 + 4x42 2 [− 5, 5] –1.0316

f 17(x) =
(

x2 −
5.1
4π2 x

2
1 +

5
π
x1 − 6

)2
+ 10

(

1− 1
8π

)

cosx1 + 10 2 [− 5, 5] 0.398

f 18(x) =
[

1+ (x1 + x2 + 1)2(19− 14x1 + 3x21 − 14x2 + 6x1x2 + 3x22)
]

×
[

30+ (2x1 − 3x2)
2 ×

(

18− 32x1 + 12x21 + 48x2 − 36x1x2 + 27x22
)]

2 [− 2, 2] 3

f 19(x) = −
∑4

i=1ciexp
(

−
∑3

j=1aij(xj − pij)
2
)

3 [0, 1] –3.86

f 20(x) = −
∑4

i=1ciexp
(

−
∑6

j=1aij(xj − pij)
2
)

6 [0, 1] –3.32

f 21(x) = −
∑5

i=1

[

(X − ai)(X − ai)
T + ci

]−1 4 [0, 10] –10.1532

f 22(x) = −
∑7

i=1

[

(X − ai)(X − ai)
T + ci

]−1 4 [0, 10] –10.4028

f 23(x) = −
∑10

i=1

[

(X − ai)(X − ai)
T + ci

]−1 4 [0, 10] –10.5363

Table 5.  Results of unimodal benchmark functions.

F

hDMVO MVO SCA DA ALO

ave std ave std ave std ave std ave std

F1 1.588E−03 1.791E−03 1.519E−02 4.661E−03 2.966E−11 1.148E−10 1.550E+01 2.913E+01 1.183E−05 6.369E−06

F2 9.787E−03 2.555E−03 4.339E−02 9.607E−03 6.977E−09 6.947E−09 1.359E+00 1.178E+00 9.683E+00 1.039E+01

F3 1.160E−02 2.206E−02 1.714E−01 1.128E−01 6.278E−01 3.267E+00 4.137E+02 9.523E+02 7.644E+02 3.653E+02

F4 2.507E−02 1.137E−02 1.203E−01 3.002E−02 5.852E−03 1.203E−02 3.041E+00 1.730E+00 1.003E+01 3.991E+00

F5 5.334E+00 1.243E+00 4.746E+02 7.199E+02 1.511E+01 2.943E+01 2.476E+03 9.311E+03 1.029E+03 7.344E+02

F6 1.287E−03 1.038E−03 2.321E−02 6.481E−03 6.067E−01 8.437E−02 1.220E+01 2.244E+01 1.088E−05 8.070E−06

F7 7.937E−04 2.949E−04 5.013E−03 1.613E−03 7.475E−03 3.299E−03 2.417E−02 1.674E−02 2.157E−01 4.782E−02
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hDMVO outperforms both native algorithms (MVO and SCA) in medium-scale instances. By searching only 
50,000 solutions out of 1.37 ×  1042 potential solutions, hDMVO can identify high-quality solutions that were 
highly close to the optimal value.

Large‑scale instances of DTCTP. The large-scale instances include two 630-activity problems, wherein 
each activity has a maximum of five modes, including 2.38 ×  10421 possible  solutions22. These cases represent the 
size of an actual construction project. The indirect costs for large-scale instances (630a and 630b) are similar to 
those of medium-scale instances (2300USD/day and 3500USD/day for 63a and 63b, respectively).

The hDMVO algorithm also shows its effectiveness in large-scale experimental problems; the best values for 
ten runs in problems 630a and 630b are 54,816,950USD (Table 12) and 62,505,580USD (Table 13), respectively. 
Figures 13 and 14 show the boxplots of ten percentage deviations of hDMVO, MVO and SCA by testing problems 
630a and 630b. From Figs. 13 and 14, the percentage deviations of hDMVO are much smaller than those of MVO 
and SCA. The results thus demonstrated the stability of hDMVO when solving the large-scale DTCTP problem.

For large-scale instances, hDMVO provides superior results (Table 14) against GA, genetic algorithm with 
simulated annealing (GASA), hybrid genetic algorithm with quantum simulated annealing (HGAQSA), genetic 
memetic algorithm with simulated annealing (GMASA), genetic algorithm with simulated annealing and variable 
neighborhood search (GASAVNS), PSO, electromagnetic scatter search (ESS)18, and GA and  HA22. hDMVO 
completely outperforms SCA and performs slightly better than MVO. hDMVO also yields better results than 
NDS–TLBO30 in problem 630b; for problem 630a, hDMVO achieves APD of 1.27% when searching for 50,000 
solutions, while NDS–TLBO achieves APD of 1.1% when searching for 250,000 solutions. hDMVO’s ADP values 
for problems 630a and 630b are 1.27% and 1.28%, respectively (Table 8), which were significantly superior to 
those of the two original algorithms, MVO and SCA. By just searching for 50,000 solutions out of 2.38 ×  10421 
potential solutions, hDMVO can achieve high-quality solutions for large-scale instances. These results indicate 
that hDMVO has overcome the disadvantages of MVO and SCA in search space exploration and exploitation 
to achieve the optimal value.

Conclusion
This study presents a combined model of MVO and SCA for global optimization. The combination’s objective is 
to make use of the exploration of MVO and the search space exploitation of SCA to achieve an effective balance 
between the two phases during optimization. hDMVO is developed to combine the search space exploitation 
mechanism of MVO and SCA while preserving MVO’s mechanisms of roulette wheel selection, thereby improv-
ing hDMVO’s search exploration and exploitation. hDMVO was comprehensively evaluated by twenty-three 
benchmark optimization problems. The results indicate that hDMVO is more likely to achieve global optimiza-
tion compared with SCA and MVO. In this study, hDMVO is proposed to solve the discrete time–cost trade-off 

Table 6.  Results of multi-modal benchmark functions.

F

hDMVO MVO SCA DA ALO

ave std ave std ave std ave std ave std

F8 − 3.296E+03 1.413E+02 − 2.631E+03 1.657E+02 − 1.996E+03 6.324E+01 − 2.713E+03 3.334E+02 − 1.881E+03 5.375E+01

F9 1.181E+01 2.604E+00 2.027E+01 4.340E+00 3.362E+00 5.921E+00 2.606E+01 1.043E+01 4.786E+01 6.938E+00

F10 1.510E−02 4.330E−03 5.682E−01 6.412E−01 8.207E−01 2.255E+00 2.854E+00 1.487E+00 8.339E+00 4.557E+00

F11 1.485E−01 3.619E−02 4.592E−01 7.921E−02 2.346E−01 2.252E−01 5.682E−01 3.300E−01 2.977E−01 9.121E−02

F12 2.252E−05 8.048E−06 1.550E−01 2.116E−01 1.278E−01 2.571E−02 1.992E+00 1.539E+00 1.156E+01 3.978E+00

F13 1.410E−04 1.363E−04 9.961E−03 5.517E−03 4.077E−01 4.464E−02 1.840E+00 3.217E+00 2.218E−02 2.141E−02

Table 7.  Results of composite benchmark functions.

F

hDMVO MVO SCA DA ALO

ave std ave std ave std ave std ave std

F14 9.980E−01 6.206E−13 9.980E−01 4.146E−11 3.241E+00 1.397E+00 1.229E+00 7.947E−01 1.099E+01 3.772E+00

F15 5.491E−04 1.321E−04 1.314E−02 1.486E−02 1.515E−03 7.317E−05 5.974E−03 8.523E−03 1.535E−02 1.233E−02

F16 − 1.032E+00 3.428E−09 − 1.032E+00 2.912E−07 − 1.032E+00 8.055E−05 − 1.032E+00 9.266E−06 − 1.004E+00 1.465E−01

F17 3.979E−01 2.395E−09 3.979E−01 6.596E−07 4.020E−01 2.509E−03 3.979E−01 1.336E−05 3.979E−01 4.733E−13

F18 3.000E+00 5.107E−08 5.700E+00 1.454E+01 3.000E+00 1.130E−04 3.000E+00 1.215E−05 3.000E+00 2.638E−12

F19 − 3.863E+00 1.333E−08 − 3.863E+00 2.664E−06 − 3.852E+00 1.728E−03 − 3.863E+00 2.644E−04 − 3.863E+00 3.780E−06

F20 − 3.322E+00 1.905E−07 − 3.201E+00 2.178E−03 − 2.507E+00 5.012E−01 − 3.265E+00 7.245E−02 − 3.206E+00 4.805E−02

F21 − 1.015E+01 3.950E−05 − 4.098E+00 1.195E+00 − 7.773E−01 1.688E−01 − 7.351E+00 2.616E+00 − 2.658E+00 2.614E−02

F22 − 1.040E+01 1.488E−05 − 8.047E+00 2.955E+00 − 1.168E+00 5.738E−01 − 7.083E+00 2.990E+00 − 3.054E+00 6.087E−01

F23 − 1.036E+01 9.708E−01 − 6.657E+00 3.304E+00 − 1.892E+00 8.817E−01 − 7.517E+00 3.315E+00 − 2.534E+00 2.465E−01
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problem in construction projects. The results of the computational experiments reveal that hDMVO can achieve 
high-quality solutions for medium- and large-scale DTCTP and can be used to optimize the cost–time problems 
for actual projects. With the obtained results, hDMVO is seen as an appropriate metaheuristic method for solving 
the DTCTP problem as well as other optimization problems.

Figure 7.  Convergence curves of MVO, SCA, ALO, DA, and hDMVO variants for unimodal functions.
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Recommendations for future work
In this study, the application of hDMVO is limited to solving DTCTP problems with the finish-to-start relation-
ship. However, in actual construction projects, DTCTP problems in construction projects often include the 
start-to-start, finish-to-finish, and start-to-finish relationships. Therefore, in future studies, hDMVO will be used 
to solve DTCTP problems with complicated relationships simultaneously and on a large scale to obtain more 
comprehensive solutions for project management. The hDMVO model has been shown to effectively balance 
exploration and exploitation when compared to other state-of-the-art swarm-based optimization algorithms 
(DA, ALO, SCA, and MVO). Additionally, the hDMVO model also demonstrates competitive performance in 
medium- and large-scale DTCTPs. However, limitations in local optima avoidance are also clearly demonstrated 
by hDMVO when applied to large-scale problems. To overcome these limitations, future research will involve 
the development of a combination model that incorporates hDMVO with other techniques such as modified 
adaptive weight approach and opposition-based learning, to enhance its performance in solving optimization 
problems in the construction industry and other technical fields.

Figure 8.  Convergence curves of MVO, SCA, ALO, DA, and hDMVO variants for multimodal functions.
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Figure 9.  Convergence curves of MVO, SCA, ALO, DA, and hDMVO variants for composite functions.
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Figure 10.  Activity on the node (AoN) representation of the 63-activity network (Aminbakhsh and  Sonmez20).
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Action Pred Dur1 Cost1 Dur2 Cost2 Dur3 Cost3 Dur4 Cost4 Dur5 Cost5

1 – 14 3750 12 4250 10 5400 9 6250 – –

2 – 21 11,250 18 14,800 17 16,200 15 19,650 – –

3 – 24 22,450 22 24,900 19 27,950 17 31,650 – –

4 – 19 17,800 17 19,400 15 21,600 – – – –

5 – 28 31,180 26 34,200 23 38,250 21 41,400 – –

6 1 44 54,260 42 58,450 38 63,225 35 68,150 – –

7 1 39 47,600 36 50,750 33 54,800 30 59,750 – –

8 2 52 62,140 47 69,700 44 72,600 39 81,750 – –

9 3 63 72,750 59 79,450 55 86,250 51 91,500 49 99,500

10 4 57 66,500 53 70,250 50 75,800 46 80,750 41 86,450

11 5 63 83,100 59 89,450 55 97,800 50 104,250 45 112,400

12 6 68 75,500 62 82,000 58 87,500 53 91,800 49 96,550

13 7 40 34,250 37 38,500 33 43,950 31 48,750 – –

14 8 33 52,750 30 58,450 27 63,400 25 66,250 – –

15 9 47 38,140 40 41,500 35 47,650 32 54,100 – –

16 9,10 75 94,600 70 101,250 66 112,750 61 124,500 57 132,850

17 10 60 78,450 55 84,500 49 91,250 47 94,640 – –

18 10,11 81 127,150 73 143,250 66 154,600 61 161,900 – –

19 11 36 82,500 34 94,800 30 101,700 – – – –

20 12 41 48,350 37 53,250 34 59,450 32 66,800 – –

21 13 64 85,250 60 92,600 57 99,800 53 107,500 49 113,750

22 14 58 74,250 53 79,100 50 86,700 47 91,500 42 97,400

23 15 43 66,450 41 69,800 37 75,800 33 81,400 30 88,450

24 16 66 72,500 62 78,500 58 83,700 53 89,350 49 96,400

25 17 54 66,650 50 70,100 47 74,800 43 79,500 40 86,800

26 18 84 93,500 79 102,500 73 111,250 68 119,750 62 128,500

27 20 67 78,500 60 86,450 57 89,100 56 91,500 53 94,750

28 21 66 85,000 63 89,750 60 92,500 58 96,800 54 100,500

29 22 76 92,700 71 98,500 67 104,600 64 109,900 60 115,600

30 23 34 27,500 32 29,800 29 31,750 27 33,800 26 36,200

31 19,25 96 145,000 89 154,800 83 168,650 77 179,500 72 189,100

32 26 43 43,150 40 48,300 37 51,450 35 54,600 33 61,450

33 26 52 61,250 49 64,350 44 68,750 41 74,500 38 79,500

34 28,30 74 89,250 71 93,800 66 99,750 62 105,100 57 114,250

35 24,27,29 138 183,000 126 201,500 115 238,000 103 283,750 98 297,500

36 24 54 47,500 49 50,750 42 56,800 38 62,750 33 68,250

37 31 34 22,500 32 24,100 29 26,750 27 29,800 24 31,600

38 32 51 61,250 47 65,800 44 71,250 41 76,500 38 80,400

39 33 67 81,150 61 87,600 57 92,100 52 97,450 49 102,800

40 34 41 45,250 39 48,400 36 51,200 33 54,700 31 58,200

41 35 37 17,500 31 21,200 27 26,850 23 32,300 – –

42 36 44 36,400 41 39,750 38 42,800 32 48,300 30 50,250

43 36 75 66,800 69 71,200 63 76,400 59 81,300 54 86,200

44 37 82 102,750 76 109,500 70 127,000 66 136,800 63 146,000

45 39 59 84,750 55 91,400 51 101,300 47 126,500 43 142,750

46 39 66 94,250 63 99,500 59 108,250 55 118,500 50 136,000

47 40 54 73,500 51 78,500 47 83,600 44 88,700 41 93,400

48 42 41 36,750 39 39,800 37 43,800 34 48,500 31 53,950

49 38,41,44 173 267,500 159 289,700 147 312,000 138 352,500 121 397,750

50 45 101 47,800 74 61,300 63 76,800 49 91,500 – –

51 46 83 84,600 77 93,650 72 98,500 65 104,600 61 113,200

52 47 31 23,150 28 27,600 26 29,800 24 32,750 21 35,200

53 43,48 39 31,500 36 34,250 33 37,800 29 41,250 26 44,600

54 49 23 16,500 22 17,800 21 19,750 20 21,200 18 24,300

55 52,53 29 23,400 27 25,250 26 26,900 24 29,400 22 32,500

56 50,53 38 41,250 35 44,650 33 47,800 31 51,400 29 55,450

Continued
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Action Pred Dur1 Cost1 Dur2 Cost2 Dur3 Cost3 Dur4 Cost4 Dur5 Cost5

57 51,54 41 37,800 38 41,250 35 45,600 32 49,750 30 53,400

58 52 24 12,500 22 13,600 20 15,250 18 16,800 16 19,450

59 55 27 34,600 24 37,500 22 41,250 19 46,750 17 50,750

60 56 31 28,500 29 30,500 27 33,250 25 38,000 21 43,800

61 56,57 29 22,500 27 24,750 25 27,250 22 29,800 20 33,500

62 60 25 38,750 23 41,200 21 44,750 19 49,800 17 51,100

63 61 27 9500 26 9700 25 10,100 24 10,800 22 12,700

Table 8.  Data for the 63 activity time–cost trade-off problem.

Table 9.  Analysis results of problem 63a.

No

SCA MVO hDMVO

Dur Cost Dur Cost Dur Cost

1 656 5,747,490 635 5,475,030 632 5,444,670

2 631 5,748,170 629 5,475,980 638 5,445,380

3 626 5,761,900 637 5,476,980 635 5,453,820

4 638 5,772,130 631 5,477,170 626 5,455,050

5 638 5,772,330 612 5,478,790 635 5,455,620

6 650 5,775,665 636 5,478,930 629 5,456,190

7 632 5,783,255 636 5,479,820 636 5,457,050

8 652 5,788,430 633 5,480,820 630 5,457,270

9 628 5,798,400 632 5,481,190 632 5,458,260

10 629 5,820,580 630 5,481,280 651 5,459,130

Pop. size 200 200 200

Num. of iterations 250 250 250

Num. of function evaluation 50,000 50,000 50,000

Table 10.  Analysis results of problem 63b.

No

SCA MVO hDMVO

Dur Cost Dur Cost Dur Cost

1 628 6,524,960 596 6,252,550 626 6,211,720

2 623 6,515,560 621 6,252,790 592 6,213,340

3 607 6,507,315 602 6,253,410 613 6,214,290

4 601 6,534,900 595 6,254,850 613 6,216,270

5 602 6,525,940 626 6,255,250 618 6,219,720

6 588 6,510,775 623 6,255,420 614 6,219,780

7 618 6,532,965 586 6,256,265 623 6,223,840

8 614 6,567,555 598 6,256,440 621 6,224,580

9 617 6,503,725 602 6,256,790 590 6,225,290

10 571 6,575,900 627 6,257,390 619 6,229,130

Pop. size 200 200 200

Num. of iterations 250 250 250

Num. of function evaluation 50,000 50,000 50,000



18

Vol:.(1234567890)

Scientific Reports |         (2023) 13:1987  | https://doi.org/10.1038/s41598-023-29050-9

www.nature.com/scientificreports/

Figure 11.  Percentage deviations of hDMVO, MVO and SCA in problem 63a.
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Figure 12.  Percentage deviations of hDMVO, MVO and SCA in problem 63b.
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Table 11.  Average percent deviation from the optimal for problem 63a and 63b.

Algorithm

63a 63b

No. of runs APD (%) No. of runs APD (%)

ACO  (Bettemir18) 10 1.30 10 0.80

EMS  (Bettemir18) 10 2.13 10 2.40

GA  (Bettemir18) 10 5.19 10 4.27

GA (Sonmez and  Bettemir22) 10 5.86 10 5.16

HA (Sonmez and  Bettemir22) 10 2.61 10 2.50

MAWA-GA (Toğan and  Eirgash37) 10 7.01 10 4.07

MAWA-PSO (Toğan and  Eirgash37) 10 8.38 10 7.72

MAWA-TLBO (Toğan and  Eirgash37) 10 3.62 10 1.63

SCA (This study) 10 6.56 10 5.73

MVO (This study) 10 1.06 10 1.28

hDMVO (This study) 10 0.61 10 0.71

Table 12.  Analysis results of problem 630a.

No

SCA MVO hDMVO

Dur Cost Dur Cost Dur Cost

1 5654 59,911,250 6323 55,080,630 6317 54,816,950

2 5628 59,980,560 6291 55,082,810 6306 54,820,585

3 5615 60,000,610 6322 55,099,890 6330 54,849,050

4 5612 60,019,530 6296 55,110,705 6300 54,883,485

5 5641 60,082,860 6295 55,111,040 6324 54,897,700

6 5613 60,141,055 6270 55,122,000 6311 54,924,330

7 5632 60,165,040 6273 55,122,360 6322 54,937,240

8 5631 60,196,945 6281 55,135,870 6339 54,949,000

9 5612 60,197,985 6313 55,190,530 6355 54,951,200

10 5586 60,240,730 6334 55,199,825 6291 54,993,930

Pop. size 200 200 200

Num. of iterations 250 250 250

Num. of function evaluation 50,000 50,000 50,000

Table 13.  Analysis results of problem 630b.

No

SCA MVO hDMVO

Dur Cost Dur Cost Dur Cost

1 5604 66,647,315 6052 62,742,405 6097 62,505,580

2 5592 66,676,865 6088 62,759,350 5991 62,526,385

3 5587 66,712,740 5997 62,763,350 6020 62,537,900

4 5597 66,924,805 6027 62,783,920 6117 62,538,830

5 5583 66,961,860 6064 62,798,565 6042 62,544,040

6 5632 66,975,580 6027 62,815,320 6056 62,544,470

7 5642 66,985,310 6016 62,827,245 6105 62,561,260

8 5604 67,006,655 6036 62,839,590 6015 62,570,390

9 5599 67,026,155 5985 62,843,840 5998 62,588,460

10 5609 67,092,830 6097 62,863,315 6060 62,591,215

Pop. size 200 200 200

Num. of iterations 250 250 250

Num. of function evaluation 50,000 50,000 50,000
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Figure 13.  Percentage deviations of hDMVO, MVO and SCA in problem 630a.
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Figure 14.  Percentage deviations of hDMVO, MVO and SCA in problem 630b.
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Data availability
Some or all data, models, or code that support the findings of this study are available from the corresponding 
author upon reasonable request.
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