
1

Vol.:(0123456789)

Scientific Reports |         (2023) 13:1740  | https://doi.org/10.1038/s41598-023-28991-5

www.nature.com/scientificreports

An objective absence data 
sampling method for landslide 
susceptibility mapping
Yasin Wahid Rabby 1*, Yingkui Li 2 & Haileab Hilafu 3

The accuracy and quality of the landslide susceptibility map depend on the available landslide 
locations and the sampling strategy for absence data (non-landslide locations). In this study, we 
propose an objective method to determine the critical value for sampling absence data based on 
Mahalanobis distances (MD). We demonstrate this method on landslide susceptibility mapping of 
three subdistricts (Upazilas) of the Rangamati district, Bangladesh, and compare the results with 
the landslide susceptibility map produced based on the slope-based absence data sampling method. 
Using the 15 landslide causal factors, including slope, aspect, and plan curvature, we first determine 
the critical value of 23.69 based on the Chi-square distribution with 14 degrees of freedom. This critical 
value was then used to determine the sampling space for 261 random absence data. In comparison, we 
chose another set of the absence data based on a slope threshold of < 3°. The landslide susceptibility 
maps were then generated using the random forest model. The Receiver Operating Characteristic 
(ROC) curves and the Kappa index were used for accuracy assessment, while the Seed Cell Area Index 
(SCAI) was used for consistency assessment. The landslide susceptibility map produced using our 
proposed method has relatively high model fitting (0.87), prediction (0.85), and Kappa values (0.77). 
Even though the landslide susceptibility map produced by the slope-based sampling also has relatively 
high accuracy, the SCAI values suggest lower consistency. Furthermore, slope-based sampling is 
highly subjective; therefore, we recommend using MD -based absence data sampling for landslide 
susceptibility mapping.

Landslides are the movement of rock, soil, and earth along a  slope1 when the shear stress on the slope materials 
exceeds the shear  strength2. It causes damage to infrastructure and the loss of human lives  worldwide3–5. Land-
slide inventory and susceptibility mapping are critical to mitigate the losses caused by  landslides2,6–9. Landslide 
inventory documents previously occurred  landslides10, while landslide susceptibility describes the probability 
of landslides over an  area11. Landslides are affected by various causal factors, such as slope, curvature, land use/
land cover, geology, and  elevation7,12,13. Landslide inventory and its relationship with different causal factors can 
be used to derive the landslide susceptibility  map14.

Various statistical methods have been used for landslide susceptibility mapping, including logistic regres-
sion, support vector machines, random forest, and gradient  boosting15–17. These statistical methods use landslide 
causal factors as independent variables and landslide locations (presence data) and non-landslide locations 
(absence data) as dependent  variables4. The presence data are mainly from the landslide inventory. In contrast, 
the absence of data are usually unavailable and requires a specific strategy to sample locations where the prob-
ability of landslide is  low7,18. The quality and accuracy of the landslide susceptibility maps depend not only on 
the quality of causal factors and presence data but also on the absence data sampling method and sometimes the 
accuracy depends on how this sampling is  conducted18.

Random sampling is the most common approach for the absence data. It considers all locations other than 
the recorded landslides for absence  data19,20. This method requires a representative landslide inventory of the 
entire  area21. It is suitable for landslide susceptibility mapping in a relatively small area but faces challenges at 
a large area or regional  scale12. The accuracy of the landslide susceptibility map based on random sampling 
is generally low and biased toward the known landslide  locations21. Various absence-data sampling methods 
have been proposed to improve the accuracy and quality of landslide susceptibility mapping, including prior 
data exploratory analysis, buffer-controlled sampling, distance and density-based measures like Kernel density 
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estimation, Euclidean distance, one class or presence-only classification method, and species density distribution 
modeling like  Bioclim7,8,12,21.

Prior data exploratory analysis determines a safe zone for absence-data sampling based on the available 
landslide  locations7,8,22. This method generally chooses one of the most important causal factors, such as slope 
and geology, to determine the safe zone for the absence-data  sampling8,12. However, the results generated using 
this method are biased towards the selected factor. For instance, if the safe zone is determined based on slope, the 
model will likely be biased towards the  slope8. Yao et al.23 used a buffer-controlled sampling method, assuming 
that the areas near each other are more similar than those distant apart. The selection of the buffer distance is 
subjective because it depends on expert  knowledge21. Hong et al.24 proposed a one-class classification or presence 
only method similar to the one-class support vector machine method. In this method, classification like absence 
and presence data are not given in the model’s training stage. Only the presence data is used to classify an area 
into two parts: one part is similar to the presence data or landslides, and the other has dissimilarities with the 
landslides. The area with high dissimilarities is used for absence-data sampling.

Distance-based sampling assumes that areas with similar environmental conditions (explained by the causal 
factors) experience similar geomorphic processes like  landslides8,21. A distance threshold, known as the critical 
value, is needed to determine the sampling space for absence  data19. Although several distance-based measures 
have been used, determining this critical value has yet to be  explained21. Generally, users select the critical value 
subjectively to maximize the accuracy of the landslide susceptibility  map8. Moreover, only one method, like the 
area under the curve or Continuous Boyce Index, is used to assess the mapping  accuracy17,21 without considera-
tion of the mapping  consistency17,25. A landslide susceptibility model can achieve high accuracy by increasing the 
area under high and very high landslide-prone zones. However, it may overestimate the landslide susceptibility 
by assigning landslide-free areas as prone  zones26. Implementing the overestimated map for practical purposes is 
impossible as it loses its  consistency17. Zhu et al.21 found that decreasing the sampling space of the absence-data 
increases the accuracy of the landslide susceptibility map but may overestimate the landslide  susceptibility8,21. 
Choosing the critical value or threshold is essential to satisfy both accuracy and consistency.

Various sampling methods have been proposed, and each has some shortcomings. Prior data exploratory 
analysis can be biased method. As for the distance-based method, the selection of distance threshold has an 
impact on the accuracy of the landslide susceptibility map. Moreover, for slope and distance-based method vari-
ous thresholds can be applied and based on the accuracy a threshold is selected, which reduces the objectivity of 
these methods. In this regard, there is a need for a objective method which is applicable for any part of the world 
and also not dependent on the variables or landslide causal factors of susceptibility mapping. To fill up this gap, 
in this work, we proposed an objective method to determine the critical value of absence-data sampling based 
on the Chi-square distribution of the Mahalanobis distance and a user-specified confidence level. We applied this 
proposed method to the landslide susceptibility mapping in the three Upazilas (sub-district) of the Rangamati 
district, Bangladesh, and compared the model performance with a traditionally used slope-based method for 
absence-data sampling.

Methodology
This study employed the third law of  geography21 to determine sampling space for absence-data sampling. 
According to the third law of geography, if two areas have the same geographical environment, they will experi-
ence the same geographical processes such as  landslides21. The characteristics of the geographic environment 
used in this study are the landslide causal factors. Since we are searching for sampling space for (landslide) 
absence-data sampling, we must find out areas with the least similarities to the landslide locations. We assume 
that landslide locations will have a geomorphic environment defined by landslide causal factors. For example, 
the slope is a landslide causal factor, and for all the landslide locations, there will be a typical value of slope (e.g., 
the average slope for the observed landslide locations). We seek locations whose slope possesses the highest 
dissimilarities with the typical slope of the landslide locations. If we have n number of landslide locations and p 
number of causal factors, then these locations will have a mean environmental condition based on the p causal 
factors. Non-landslide locations will be farther away from that mean condition. This study employs Mahalanobis 
distance to measure the distance between the mean landslide condition and the condition of a potential site to 
determine the extent of its dissimilarity with the landslide locations.

Mahalanobis Distance. Mahalanobis Distance (MD) is a distance metric that measures the distance 
between a data point location and the distribution of  datasets27,28. MD is an extension of the Euclidean Distance 
metric and can improve clustering and classification  algorithms19. The Euclidean distance measures the distance 
between two points in p-dimensional space. It works well when the dimensional spaces are independent of each 
 other28. MD is a generalization of the Euclidean distance that allows for potential interdependency among the 
dimensional spaces by dividing the Euclidean distance with the covariance  matrix19. More specifically, the MD of 
a potential point represented by a vector of causal factors X from the centroid representation of a landslide point 
cloud with mean vector m and a covariance matrix C is:

As illustrated in Eq. (1), MD reduces the correlation of variables by dividing the distance matrix by the covari-
ance  matrix27. MD has been generally used in outlier detection and multi-class  classifications28. In landslide 
susceptibility mapping, MD can be used to define the sampling space for absence-data. The recorded landslide 
locations only cover a very small portion of the study area. Therefore, a large part of the area is not classified as 
landslides or non-landslides28. Based on landslide locations and distribution of the causal factors, MD defines 

(1)MD =
√

(X −m)TC−1(X −m)
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the similarity of an area to landslides’ conditions. If the similarity is high, the area has a high chance for landslide 
and is not suitable for absence-data sampling.

It is, however, hard to determine if the similarity of an area is different enough for the absence-data sam-
pling. Some studies used the 5th quantile value to define the absence sampling  space19. Zhu et al.21 tested a set 
of user-defined thresholds to determine the appropriate value for landslide susceptibility mapping. Their work 
demonstrated that reducing absence sampling space continuously increases accuracy but overestimates the 
landslide susceptibility. However, this simple try-out strategy does not provide a statistical means to determine 
the optimal threshold value for absence-data sampling.

We proposed an approach to offer a statistical means for determining the MD threshold for absence-data 
sampling. The MD is a normalized quantity. If the causal factors have a distribution that the p-variate Gaussian 
distribution can approximate, the MD follows a Chi-squared distribution with p-1 degrees of freedom. Fur-
thermore, even if the causal factors do not have an approximate p-variate Gaussian distribution, the MD has an 
approximate Chi-squared distribution with p−1 degrees of freedom, as long as the number of causal factors is 
large enough (Nader et al.). Based on this assumption, a critical value can be determined for a specified signifi-
cance level, such as the commonly adopted significance level of 0.05. For example, if we use 15 causal factors in 
our study, the critical value of the MD, i.e., an MD beyond which we would conclude a potential non-landslide 
location is a viable sample, is 23.69. That is, when the MD is greater than this critical value, it is considered as an 
outlier or different enough from the rest of the  data27. Therefore, we use such a critical value to determine the 
locations for absence-data sampling.

Figure 1 shows the flow chart of our proposed method. As stated above, n represents the number of avail-
able landslide locations, and p represents the number of causal factors. A critical value is determined based on 
the p−1 degrees of freedom. This critical value determines if a new point or location is a potential candidate for 
absence-data sampling. For any new candidate location, MD was calculated based on the mean value and the 
covariance matrix of the distribution of the causal factors of the n landslide locations. A location or point with 
an MD value greater than the critical value is designated as a safe zone for absence-data sampling.

To demonstrate the efficiency of this proposed method, we applied it to the landslide susceptibility mapping 
on three Upazilas of the Rangamati district, Bangladesh, and compare its derived landslide susceptibility map 
with the map produced based on a traditional slope-based method for absence-data sampling.

Case study
Study area and landslide inventory. This study focused on three Upazilas of the Rangamati district, 
Bangladesh: Rangamati Sadar, Kaptai, and Kawkhali (Fig. 2). Rangamati Sadar is the largest city in this area. In 
June 2017, more than 100 people were killed by landslides (Fig. 3) in this district, and these three Upazilas were 
the most affected  areas29. This district covers 1145  km230 with an elevation range from 7 to 576 m above mean 
sea level and a slope range from 0° to 52°. The western part of the area has a comparatively gentle slope, while the 
west and central regions are relatively steep. The bedrock of this area comprises several geological formations, 
including Dihing, Dupitila, Girujan Clay, Bhuban, Bokabil, and Tipam  Sandstone31. Most of the area is covered 

Figure 1.  Flow chart of the MD based absence-data sampling.
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by natural vegetation or plantation agricultural fields. Plantation agriculture and unplanned land use/land cover 
changes create conducive conditions, and intensive rainfall triggers landslides in this  area6,25.

A total of 261 landslide locations (Fig. 2) were recorded from January 2001 to January 2019. These landslides 
were collected  by32 based on the integrated field and Google Earth mapping and Rabby et al.31 based on Google 
Earth mapping.

Landslide causal factors. We used 15 landslide causal factors for landslide susceptibility mapping (Figs. 4 
and 5) based on the availability of data and previous  literature29,33. The raster maps of these factors were prepared 
by Abedin et al.29, and we modified the maps using Arcmap 10.8. Table 1 lists the factors, resolutions, types, and 
data sources of these raster maps. Since the resolution of most factors is 30-m, we selected 30-m as the resolution 
for the landslide susceptibility mapping.

Absence-data sampling. We computed the MD values for all landslide locations based on the 15 causal 
factors. MD values ranged between 1.2 and 200.8 (Fig. 6). The degree of freedom for the approximate Chi-square 
distribution of MD values based on these 15 factors is 14, resulting in a critical value of 23.69 for the significance 
level of 0.05. We calculated the MD value for each location based on the mean and covariance matrix derived 
from the landslide locations. We then applied this critical value to determine the sampling space for the absence-
data of (Fig. 6). Specifically, the locations whose MD values are greater than the threshold are used for absence-
data sampling to generate 261 absence-data randomly.

For comparison, we also used a slope-based sampling to determine the low landslide probability area for 
absence  data34. The slope threshold is determined based on expert knowledge and judgment. Adnan et al.29 
used the slope threshold of < 2° for absence-data sampling in the Cox’s Bazar district of Bangladesh. Ali et al.37 
determined areas where slope < 3° for absence-data sampling in their study in the Kysuca river basin of Slovakia. 
We used a threshold of slope < 3° to randomly sample the 261-absence-data (Fig. 7).

Figure 2.  Study area: locations of three Upazilas (Rangamati Sadar Kaptai and Kawkhali).
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Figure 3.  Pictures of some of the landslides in the study area (Pictures were taken by the Researchers during 
July 2017).

Figure 4.  Landslide causal factors: (a) elevation; (b) slope; (c) plan curvature; (d) profile curvature; (e) aspect; 
(f) TWI; (g) SPI; (h) Distance from the road network; (i) distance from the drainage network; (j) distance from 
fault lines (modified  from25).
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Landslide susceptibility mapping. We used the random forest model to produce the landslide suscep-
tibility maps. The random forest model proposed by  Breiman38 is an ensemble learning  method39. Bootstrap 
aggregation is employed in RF to select subsets of observations. It generates a set of decision  trees21 and decorre-
lates the  trees39. The ensembles of decision trees decided the class membership of the dependent variables based 
on the highest number of  votes40. While training the model, instead of using all the predictors, RF uses a random 

Figure 5.  Landslide causal factors: (a) Geology; (b) Rainfall; (c) NDVI; (d) Land use/land cover; (e) land use/
land cover change (modified  from25).

Table 1.  Landslide causal factors used in this study.

Factor name Type Resolution Reasons to choose

Elevation Geophysical 30 m Geomorphic, environmental, and anthropogenic processes depend on  elevation34

Slope Geophysical 30 m With the increase of slope probability of slope failure  increase35

Plan curvature Geophysical 30 m Affects the concentration of water over the surface after rainfall and thus can control the pore 
pressure of the  soil36

Profile curvature Geophysical 30 m Affects the concentration of water over the surface after rainfall and thus can control the pore 
pressure of the  soil36

Aspect Geophysical 30 m Aspect involves how much sunlight an area will receive. Consequently, it has effects on several 
geomorphic processes, including erosion and  evapotranspiration35

TWI Hydrological 30 m Represents stream power of  erosion34

SPI Hydrological 30 m Represents stream power of  erosion34

Distance from Road Network Anthropogenic 1000 m Road construction in the hilly areas alters the structure of the landscape, increasing the prob-
ability of  landslides34

Distance from drainage network Hydrological 1000 m The probability of landslide is generally high near the stream  network35

Distance from the fault lines Geological 1000 m Fault lines show the zones of weakness where the probability of landslide is  high32

Geology Geological 1000 m Geological formations: Dihing and Dupi Tila are susceptible to  landslides6

Rainfall Hydrological 1000 m Excessive rainfall in a short time acts as a triggering  factor12

Normalized difference vegetation index (NDVI) Environmental 30 m It shows the vegetation health and in a vegetated surface probability of landslide is  low34

Land use/land cover (2018) Environmental 30 m One of the main driving factors of landslides in the study  area29

Land use/land cover change Environmental 30 m The rate of land use land cover change is high in the study area which creates conducive condi-
tion for  landslides31
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sample of  predictors39. There can be a couple of strong predictors in a study, and in splitting the trees, these pre-
dictors will have an influence. RF uses a subset of predictors to overcome this  problem21. Since all the datasets are 
not used in modeling, the unused data are known as out-of-bag (OOB)40,41. These unselected datasets are used 
in determining the error and importance of the predictors in the  model39. We used the "randomForest" package 
in R to develop the RF model for the landslide susceptibility  mapping42.

As described earlier, we generated the same number of non-landslide locations (261). This produced a dataset 
of 522 (261: presence data; 261 absence-data). We divided the dataset into training (391: 75%) and validation 
datasets (130:25%) for the landslide susceptibility mapping. In the MD-based sampling method, we used all 15 
factors for the landslide susceptibility mapping. We did not include slope in the landslide susceptibility mapping 
for the slope-based method because the absence-data were sampled based on the slope threshold.

Evaluation of the model performance and consistency. Performance assessment. We use statistical 
index-based measures: true positive rate (TPR) (sensitivity), true negative rate (TNR) (specificity), and Kappa 
index. TPR is the proportion of landslide locations that were classified correctly as landslide locations by the 
model. TNR is the proportion of absence-data that are correctly classified as absence-data by the  model7. Kappa 
index (Eq. 2) is the ratio of observed and expected agreement, representing the model’s  reliability7,40.

Figure 6.  Spatial distribution of Mahalanobis distance (MD) and sampling space (Maps were produced using 
ArcMap 10.8).
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where  Pobs = observed correct classification rate,  Pexp = expected correct classification rate

where TP = true positives (landslide locations classified as landslide locations by the model); TN = true negatives 
(non-landslide locations classified as non-landslide locations by the model); FN = false negatives (landslide loca-
tions classified as non-landslide locations by the model); FP = false positives (non-landslide locations classified 
as landslide locations by the model); n = proportion of pixel that are classified correctly; N = the number of total 
training locations; Kappa index ranges from 0 to 1 where 0 indicates the agreement occurred due to random 
guess, whereas 1 indicates a perfect agreement.

The statistical index-based measures above are computed using a posterior threshold value of 0.5. That is, if 
the estimated posterior probability of a location being a landslide location, given its observed values of causal 
factors, exceeds 0.5 then the model classifies it as a landslide location. Otherwise, it classifies it as a non-landslide 

(2)Kappa =
Pobs − Pexp

1− Pexp

(3)Pobs=
TP + TN

n

(4)Pexp=
(TP + FN)(TP + FP)(FP + TN)(FN + TN)

√
N

Figure 7.  Absence-data sampling area based on different thresholds of slope (Maps were produced using 
ArcMap 10.8).
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location. However, a threshold value of 0.5 could be excessive and these metrics are not very ideal for risk pro-
filing landslide locations. For this reason, we also use the receiver operating characteristics (ROC) curve for 
assessing model performance. ROC curve is a graphical representation of a models’ classification performance 
at different posterior probability threshold  values35. It is produced by plotting the false positive rates (FPR) on 
the X-axis and the true positive rates (TPR) on the y-axis obtained from a grid of posterior probability threshold 
values. To compare the models, we used the area under the ROC curves (AUC), which shows the area in terms 
of the percentage of area under the  graph43. The training dataset was used for assessing model fitting perfor-
mance, whereas the validation dataset was used to evaluate the model prediction  performance17. AUC values 
for the ROC curve range from 0 to 1. The greater the value, the better is the model in risk profiling landslide 
locations. Generally, AUC > 0.7 is considered as fair model, and AUC < 0.5 indicates that the model classifies the 
data  randomly13,44.

Consistency assessment. The seed cell area index (SCAI) proposed by Suzen and  Doyuran45 was used for the 
consistency assessment of the models. SCAI is the ratio between the areal extent of susceptibility classes and the 
percentage of landslides that occurred in the susceptibility classes and can be described as Eq. (5).

where  Ni = percentage of area under i susceptibility class;  ni = percentage of landslides under i susceptibility class.
SCAI value ranges from 0 to ∞. The smaller the SCAI value, the more consistent the model is. SCAI value 

decreased from low to high susceptibility  zones46. This index determines whether landslide locations or pixels 
spread over a conservative areal  extent47. It can identify if a model overestimates landslide susceptibility. An 
overestimated landslide susceptibility map tends to classify most areas as high susceptibility zones (the percent-
age of high susceptibility zones is comparatively higher than other zones).

Results
Variable importance of the causal factors. Variable importance shows which causal factors have the 
most predictive power in a random forest  model8. In our proposed MD-based sampling method (Fig. 8), eleva-
tion (100.0) is the most important causal factor, followed by the distance from drainage network (75.7), distance 
from the fault lines (66.1), slope (61.6) and geology (50.1). Factors like profile curvature (0.0), NDVI (11.0) has 
the least importance in the model.

In the slope-based sampling (Fig. 8), TWI (100.0) is the most important causal factor, followed by the distance 
from the road network (86.8) and elevation (49.7). TWI is a slope-related index. It becomes the most important 
causal factor because the absence-data was determined by the slope threshold and the slope factor was removed 
from the landslide susceptibility model. Factors like aspect (0.0), SPI (9.3), and PR (17.4) were the least critical 
causal factors. SPI is another slope-related index; because TWI has already become an essential causal factor, 
another slope-related index is likely less important in the model. The comparison of the two methods indicates 
that different sampling methods result in different variable significance. In MD-based sampling, elevation is 
the most important causal factor, while it is the third most important causal factor in the slope-based sampling 
method. In MD-based sampling, comparatively smaller areas were used for absence-data sampling, but the 
sampling space spread over the whole area. On the other hand, in the slope-based sampling, only Kaptai lake, 

(5)SCAI =
Ni

ni

Figure 8.  Variable importance plot of random forest model. CF causal factors, VI variable importance, PR 
profile curvature, PL plan curvature, LULCC land use/land cover change, LULC land use/land cover, DRN 
distance from road network, DFF distance from fault lines, DDN distance from drainage network.
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its nearby areas, and the areas with gentle slopes in the southwest were designated for absence-data sampling. 
Even with the same landslide locations, the use of different absence-data sampling methods produces different 
landslide susceptibility maps.

Landslide susceptibility maps. Each landslide susceptibility map provides landslide probabilities from 
0.0 to 1.0. We used a natural break method to classify the landslide probabilities into five susceptibility zones 
(Fig. 9): very low, low, moderate, high, and very high.

In the landslide susceptibility map produced using our proposed MD-based sampling, valleys in the southeast 
areas (Fig. 9) near the Rangamati Lake were classified as low or very low susceptibility zones. High and very 
high susceptibility zones spread around the surrounding areas of the landslide locations. The high susceptibility 
zones in the northwest of the study area contain the Chittagong-Rangamati highway because the distance from 
the road network has higher variable importance in the model. Elevation and slope are the other two important 
causal factors. As a result, the areas on higher elevations and steeper slopes were classified as high or very high 
susceptibility zones. The distance from fault lines is another causal factor with high variable importance in the 
model. The fault lines in this area stretch from northwest to south-west; thus, the areas near those fault lines 
were classified as high or very high susceptibility zones.

Figure 9.  Landslide susceptibility maps based on the random forest model using: (a) Mahalanobis distance 
based absence-data sampling; (b) Slope-based absence-data Sampling (Maps were produced using Arcmap 
10.8).
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On the other hand, for the slope-based absence-data sampling, the Kaptai lake, its nearby areas, and some 
small patches in the southeast were classified as very low or low susceptibility zones. The visual comparison of 
the landslide susceptibility maps generated by the slope and MD-based methods shows that comparatively, more 
areas were classified as high or very high susceptibility zones for the slope-based sampling method than the MD-
based sampling method. Some areas in the southeast of the area were classified as low or moderate susceptibility 
zones for the MD-based sampling method. Still, the same areas were classified as high or very high susceptibility 
zones in the slope-based sampling method. The areas close to the fault lines were classified as high or very high 
susceptibility zones in the slope-based sampling method, but only some patches in these areas were classified as 
very high and high susceptibility zones in the MD-based sampling method.

Performance of landslide susceptibility maps. The ROC curve. The performance of MD-based 
and slope-based landslide susceptibility maps using the ROC curve is shown in Fig. 10. The AUCs for training 
dataset (Fig. 10a) for MD and slope-based sampling were 0.87 and 0.89, respectively. The AUCs for validation 
datasets (Fig. 10b) for MD and slope-based sampling were 0.85 and 0.86, respectively. It seems that the slope-
based sampling method slightly outperforms the MD-based sampling. Nonetheless, the AUCs for both sampling 
methods are similar and fall in the good category of 0.8–0.944. The visual comparison indicates that the map of 
the slope-based sampling method classified slightly more areas as high or very high susceptibility zones. How-
ever, it failed to differentiate low susceptibility from high susceptibility zones and classified most of the areas as 
high susceptibility zones, overestimating landslide susceptibility.

Statistical index based measures. The TPR and TNR values of the map produced by the MD-based sampling 
(Table 2) are 0.93 and 0.90, respectively, for the training data, indicating that this map has similar accuracy in 
differentiating the absence and presence data of landslides. These two values reduce to 0.88 and 0.89, respectively 

Figure 10.  ROC curves for MD and slope based susceptibility maps: (a) training dataset (Slope based, 
AUC = 0.89; MD based AUC = 0.87); (b) validation dataset (Slope based AUC = 0.86; MD based AUC = 0.85).
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for the validation dataset, indicating similar performance in distinguishing absence and presence landslides 
for the unknown dataset. The Kappa values is > 0.8 for the training dataset, representing a strong agreement, it 
reduces to 0.77 for the validation dataset, representing a moderate agreement.

In slope-based sampling for the training dataset, TPR and TNR (Table 2) were 0.97 and 0.82, respectively. 
Unlike the MD-based sampling method, slope-based sampling method showed better performance in detecting 
the landslides than the non-landslide locations. This model classified some non-landslide locations as landslides 
or gave false alarms. Kappa indices for the training validation dataset were 0.79 and 0.78, respectively. The 
AUC values for slope-based model were better than the MD-based model. But the Kappa value was better for 
MD-based model. It occurred because slope-based sampling had comparatively lower TNR than the MD-based 
sampling. MD-based model was efficient in detecting both presence and absence data whereas slope-based 
sampling showed low performance in detecting absence data. TPR was comparatively higher for slope—based 
model than the MD-based model.

Map consistency. SCAI assesses the consistency of the landslide susceptibility model. A high consistent model 
would have low SCAI values with the least percentage of the area classified as high susceptibility zones, but most 
of the existing landslides fall within these zones.

For the map generated using the MD-based sampling, around 58.0% of the study area were classified as very 
low and low susceptibility zones and approximately 35.0% of the study area were classified as high and very 
high susceptibility zones that contain around 78.0% of the existing landslides. The SCAI values decreased from 
28.21 to 0.13 from very low to very high susceptibility zones. These results indicate that the susceptibility map 
is consistent and classified a significant portion of the area as very low and low susceptibility zones. The SCAI 
values are 0.13 for high susceptibility zones, indicating the model classified very few percentages of the area as 
very high susceptibility zones.

around 42.0% (Table 3) of the study area was classified as low or very low susceptibility zone in slope based. 
In contrast, around 46.0% of the study area was classified as either high or very high susceptibility zones. Com-
pared to MD-based sampling, slope-based sampling classified almost two times more areas as high and very 
high susceptibility zones. Both slope and MD-based sampling gave similar accuracy. Still, landslide susceptibility 
based on a slope-based sampling classified almost half of the area as high and very high susceptibility zones. It 
indicates an overestimation of landslide susceptibility by the model. With the change of susceptibility, the SCAI 
value decreased. In the very high susceptibility zone, the SCAI value was 0.43, which is three times the SCAI 
value at that susceptibility zone in MD-based sampling. Therefore, the landslide susceptibility map produced 
using slope-based sapling is not as consistent and desirable as the MD-based sampling of absence-data.

Discussion
We proposed an objective MD-based absence-data sampling method and compared it with the slope-based 
method for landslide susceptibility mapping. The MD values were assumed to follow the Chi-square distribu-
tion. The threshold for absence-data sampling was then determined by the degree of freedom of the Chi-square 
distribution and a specific confidence level. Our results indicate that the absence sampling space spreads over 

Table 2.  Statistical measures of random forest model for different thresholds of Mahalanobis distance.

Sampling method Dataset TPR TNR Kappa

MD-based
Training 0.93 0.90 0.84

Validation 0.88 0.89 0.77

Slope-based
Training 0.97 0.82 0.79

Validation 0.96 0.82 0.78

Table 3.  SCAI values for each susceptibility zones of Mahalanobis distance-based landslide susceptibility 
mapping.

Sampling method Susceptibility Area (%) Landslide (%) SCAI Index

Mahalanobis distance-based

Very low 33.57 1.19 28.21

Low 24.87 4.76 5.22

Moderate 19.34 15.87 1.22

High 15.10 21.83 0.69

Very High 7.12 56.35 0.13

Slope-based

Very Low 32.55 0.0 -

Low 9.41 2.38 3.95

Moderate 8.63 3.97 2.17

High 15.67 13.10 1.20

Very High 33.75 80.56 0.42
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the entire study area for our proposed method, avoiding the sampling bias towards any specific landslide loca-
tions. Although other distance-based matrices, like similarity index, have been  used21, the critical value has 
been determined subjectively for the absence-data sampling. Our proposed method provides an objective and 
statistically robust means to determine the critical value based on the Chi-square distribution of the MD values 
of the landslide locations and a user-specified confidence level.

Slope-based sampling is commonly used in landslide susceptibility  mapping12,19,48. Even though the slope 
is being used in determining the safe zone for absence data sampling it is used as a factor in the model. Slope 
plays the most crucial role in determining the landslide susceptibility of an area. However, unlike MD-based 
sampling, it is impossible to determine the critical value for the slope-based sampling based on our proposed 
method because the degree of freedom is zero. In our comparison study, the size of the sampling space based on 
the threshold of slope < 3° was comparatively larger than the MD-based sampling, but the sampling space was 
more clustered in the Kaptia lake and its nearby area. Therefore, the absence data were sampled only from these 
clustered areas. The slope-based sampling classified most areas as either very high or very low susceptibility zones. 
It also classified some landslide-free zones as vulnerable zones, overestimating the landslide  susceptibility8. In 
addition, we notice that some studies have also included slope in the model, although it has already been used for 
absence-data  sampling12,13 The use of slope in both absence-data sampling and landslide susceptibility modeling 
likely produces a biased model to slope. We recommend excluding the slope in landslide susceptibility model if 
it is used for absence-data sampling.

The ROC curves and statistical measures have been widely used for accuracy assessment, while the con-
sistency and desirability of the map are commonly  ignored12,21,25,31. Both accuracy and consistency should be 
assessed for landslide susceptibility mapping because a map may lose its consistency by continuously increasing 
the classified areas of high and very high susceptibility zones in order to achieve a high  accuracy26. Our study 
showed that our proposed MD-based sampling method produces the landslide susceptibility map with satisfac-
tory accuracy and consistency. In contrast, the slope-based sampling may damage the consistency by classifying 
most areas as high susceptibility  zones12,25.

As mentioned, random sampling is the most common method for absence data  sampling20. But in that case, 
there is a high chance that absence data will be sampled from an area which is highly prone to landslides or areas 
where landslides previously occurred. Moreover, it requires a very detailed landslide inventory and in some areas 
like the developing world a detailed inventory is not available. For such an area our proposed method will be 
helpful since prior to run the statistical or machine learning model based on MD we determine an area safe for 
absence data sampling.

Our proposed method reduces the subjectivity in choosing the threshold by comparing the MD values with 
the Chi-square distribution and applying a widely used statistical confidence level. In contrast, the determination 
of the slope threshold is subjective. Therefore, our proposed method is more statistically robust and scientifically 
viable than the slope-based sampling.

Conclusions
This study proposed an objective MD-based absence-data sampling method for landslide susceptibility mapping. 
We compared our proposed method with a commonly used slope-based absence-data sampling in producing 
landslide susceptibility maps based on a random forest model. Our results indicate that the landslide susceptibility 
map produced using the MD-based method is satisfactory in accuracy and consistency. Our proposed approach 
is less subjective because the critical value was determined based on a Chi-square distribution and a user-spec-
ified significance level. On the other hand, the slope-based sampling is subjective and results in a biased model 
towards the slope. We recommend excluding the slope from the model if it is used in absence-data sampling. 
Although the slope-based method produces almost similar accuracy for landslide susceptibility map in terms of 
AUC, but the SCAI values indicated this method overestimates landslide susceptibility. Moreover, Kappa values 
also showed that MD-based absence data sampling provides better performance. The slope-based absence-data 
sampling method depends on the researcher’s judgment and is based on one landslide causal factor. In contrast, 
multiple factors are used in MD-based absence-data sampling to determine the sampling space. Therefore, our 
proposed MD-based sampling method is more objective and statistically robust than the slope-based method. 
It can be used for landslide susceptibility mapping in other areas, especially where landslide inventory is not 
representative for the whole region.

Data availability
By request to authors and code for Mahalanobis distance method is available at https:// github. com/ yrabby/ Mahal 
anobis- Dista nce- for- Raster- Files. https:// doi. org/ 10. 3390/ data5 010004.
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