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Disease severity classification 
using passively collected 
smartphone‑based keystroke 
dynamics within multiple sclerosis
Aleide Hoeijmakers 1, Giovanni Licitra 1*, Kim Meijer 1, Ka‑Hoo Lam 2, Pam Molenaar 2, 
Eva Strijbis 2 & Joep Killestein 2

Multiple Sclerosis (MS) is a progressive demyelinating disease of the central nervous system 
characterised by a wide range of motor and non‑motor symptoms. The level of disability of people 
with MS (pwMS) is based on a wide range of clinical measures, though their frequency of evaluation 
and inaccuracies coming from objective and self‑reported evaluations limits these assessments. 
Alternatively, remote health monitoring through devices can offer a cost‑efficient solution to gather 
more reliable, objective measures continuously. Measuring smartphone keyboard interactions is a 
promising tool since typing and, thus, keystroke dynamics are likely influenced by symptoms that 
pwMS can experience. Therefore, this paper aims to investigate whether keyboard interactions 
gathered on a person’s smartphone can provide insight into the clinical status of pwMS leveraging 
machine learning techniques. In total, 24 Healthy Controls (HC) and 102 pwMS were followed for one 
year. Next to continuous data generated via smartphone interactions, clinical outcome measures were 
collected and used as targets to train four independent multivariate binary classification pipelines 
in discerning pwMS versus HC and estimating the level of disease severity, manual dexterity and 
cognitive capabilities. The final models yielded an AUC‑ROC in the hold‑out set above 0.7, with the 
highest performance obtained in estimating the level of fine motor skills (AUC‑ROC=0.753). These 
findings show that keyboard interactions combined with machine learning techniques can be used 
as an unobtrusive monitoring tool to estimate various levels of clinical disability in pwMS from daily 
activities and with a high frequency of sampling without increasing patient burden.

Multiple Sclerosis (MS) is a progressive and chronic disease of the central nervous system (CNS) and is the most 
common cause of non-traumatic disability in young  adults1. Although the clinical course is highly variable, 
approximately 85% of people with MS are diagnosed with relapsing-remitting MS (RRMS), which is character-
ized by unpredictable relapse resulting in neurological deficits separated by periods of remission (i.e. apparent 
quiescence or stability of disease)2. People with RRMS may develop a progressive course of the disease second-
ary progressive MS (SPMS) with a gradual increase in disability with or without relapses within a few decades. 
primary progressive MS (PPMS) has an onset with gradual accumulation of  disability3. The clinical spectrum of 
MS covers a wide range of motor and non-motor  symptoms4. Motor symptoms are seen as the clinical hallmark 
of the disease and can present with changes in mobility and coordination of lower and upper limb extremities. On 
top of motor deficits, problems with cognition are frequently seen, and more generally, symptoms vary according 
to the location of active lesions in the  CNS4.

The clinical status of people with MS is based on a wide range of clinical measures, including Magnetic 
Resonance Imaging (MRI) scans, the Expanded Disability Status Scale (EDSS), Multiple Sclerosis Functional 
Composite Score (MSFC) and self-reported questionnaires during a hospital  visit4,5. However, these measures 
are limited by the evaluation frequency and are influenced by the expert’s subjective experience and self-reported 
measures. Conversely, objective measures coming from physical biometrics and captured via electronic devices 
can provide insight into the disease status and offers a cost-efficient addition to on-site clinical monitoring with 
the opportunity to monitor symptoms passively and support disease  management6.
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Nowadays, typing on keyboards is a common task carried out multiple times daily, requiring motors and 
non-motor functions, like eye/hand coordination, manual dexterity and cognition. Therefore, it is hypothesised 
that these “typing signatures” are influenced by alterations in motor and non-motor symptoms, as is frequently 
seen in neurological diseases such as MS and thus could provide insight into the status of a person at any given 
time. Recent studies have shown that such timing information associated with keystrokes, namely Keystroke 
Dynamics (KD), can be potentially used to detect fine motor skills decline in early-stage Parkinson’s  disease7, 
psycho-motor impairment, such as sleep  inertia8, and identification of depressive  tendency9. Furthermore, KD 
have been found to be effective as a computer system protection while maintaining a high level of  usability10.

Within an MS population, it has been shown that KD were significantly different between healthy individuals 
and people with MS, and were associated with clinical outcome measures, which quantifies manual dexterity, 
information processing speed, and clinical  disability11. Additionally, KD have demonstrated a higher sensitivity 
to changes in disease activity, fatigue, and clinical disability compared to commonly used clinical measures via 
detection of important changes beyond measurement error on a group  level12. Finally, the association between 
KD and clinical outcomes in longitudinal settings has been shown, namely that worse arm function corresponds 
with longer latencies in typing across and within patients, and worse processing speed corresponds with higher 
latencies relating to punctuations and backspaces across  subjects13.

The current study investigates whether keystroke-related data combined with machine learning-based meth-
ods yield sufficient predictive power to discriminate between people with Multiple Sclerosis (pwMS) and a 
Healthy Control (HC) group and between different levels of disease severity, including clinical disability, manual 
dexterity and cognition. The data comes from an observational cohort study of 126 subjects (24HC/102MS 
patients) carried out at the Amsterdam University Medical Center, located at the VU University Medical Centre. 
This study included five clinical visits with three-month intervals for a total duration of 12 months. The keystroke-
related data was collected passively by the Neurokeys App designed by the Dutch company Neurocast B.V.14. 
The Neurokeys App is a customized keyboard developed for Android and iOS that replaces the user’s native 
keyboard and allows to cache keyboard interactions of interest, namely alphanumeric keys, backspaces, space 
bars and punctuation keys. The time-stamped raw keystroke sequences were used to construct various statistical 
features of keystroke dynamics variables aggregated on a daily level. Keystroke features were further clustered 
into composite scores to reduce the number of input variables and consequently minimize overfitting issues.

Material and methods
Study procedures. The study protocol was approved by the Medisch-Ethische Toetsingscommissie Vrije 
Universiteit Medisch Centrum (medical-ethical committee, approval IRB reference 2017.576), and the institu-
tional data protection officer conforming to the General Data Protection Regulation (GDPR). In compliance 
with Dutch legislation regarding clinical research involving medical devices, Dutch Health and Youth Care 
Inspectorate were notified of the study (reference VGR2006948). Subjects held the right to withdraw from the 
procedure without providing any justification. Written informed consent was obtained from all participants. 
Finally, the study was registered at trial regis ter. nl(NL7070) .

Clinical outcomes. In this cohort study, several clinical outcomes widely used within an MS population 
were included: assessment of clinically reported relapses and conventional MRI for disease activity; EDSS, 
MSFC, patient-reported outcomes, quantitative MRI to evaluate domain-specific, overall severity of the disease 
and disease progression over time. As keystroke dynamics is most directly related to upper limb function and 
cognition, this work focus on the 3-monthly clinically assessed Nine Hole Peg Test (NHPT) and Symbol Digit 
Modalities Test (SDMT). Furthermore, the disease severity based on EDSS and clinical diagnosis (HC versus 
pwMS) are also analysed to quantify the prediction capabilities of keystroke dynamics on clinical disability.

The  NHPT15 is a measure of manual dexterity, and the test consists in placing and removing nine pegs into and 
from nine holes using one hand. The test is performed twice for each hand, and the four trials are averaged into 
a single score (measured in seconds) where a higher score reflects poor performance, such as higher fine motor 
function impairment. The  SDMT16 is a symbol substitution test that measures information processing speed, 
the cognitive domain that is most commonly affected and indicative of overall cognitive functioning in MS. The 
test consists of matching nine symbol-digit pairs within a 90-second trial. The final score is adimensional and 
lies between 0 and 105. The higher the score, the better the patient’s cognitive performance. Finally, the EDSS 
is used to quantify the overall disease severity in pwMS and monitors changes in the level of disability over 
 time17. The EDSS assigns a functional system score in eight functional systems.As reported in the literature, the 
lower scale values (0-4.0) are influenced by impairments detected by the neurological exam of eight functional 
systems, while the values above 4.0 are mainly based on the walking ability, and values above 6 are mainly on 
patients’  handicaps18.

Study design. An observational cohort study was conducted at Amsterdam University Medical Centres, 
location VU University Medical Centre. The study cohort comprised two groups of Dutch-speaking people, 
the MS patient group, which consisted of 102 subjects with MS and the HC group, which included 24 healthy 
subjects. Other inclusion criteria were regular smartphone usage on both iOS and Android and ages between 18 
and 65. The exclusion criteria were an EDSS score of 7.5 or higher, clinical disease activity or changes in disease-
modifying drugs in the past two months, significant visual or upper extremity deficits affecting the ability to 
type on a smartphone, and clinically significant mood, sleep, or behavioural disorders assessed via a screening 
 physician11.

The study consisted of five clinical visits collected at baseline (m00) and then at three-month intervals fol-
lowing baseline (m03, m06, m09, m12) for pwMS, only. For each clinical visit, the SDMT, NHPT and EDSS were 

https://trialsearch.who.int/Trial2.aspx?TrialID=NTR7268
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collected, while HC collected on average 88 days of keystroke data starting from baseline (see Fig. 1). The level 
of cognitive disability was defined based on the SDMT cutoff proposed by Parmenter et al.19, where a value of 
SDMT > 55 denotes a low level of cognitive deficit. Regarding both NHPT and EDSS, the scores were binarized 
using a median split approach. In this way, sufficient fine motor skills and a low disease severity are given by a 
NHPT ≤ 20.40s and EDSS ≤ 3.5 , respectively. Any other score outside the above ranges is associated with low 
fine motor skills and high disease severity. Throughout the study, keyboard interaction data were remotely col-
lected in a real-world environment using a mobile application, namely Neurokeys. The Neurokeys  app14, available 
for Android and iOS, was installed on the participants’ phone to collect keystroke data in a real-world setting 
unobtrusively. Neurokeys consists of a software QWERTY keyboard designed similarly to the default keyboard 
with comparable functionalities, such as auto-correction and word suggestions. After the app installation, the 
default keyboard is replaced by the Neurokeys keyboard and data from each typing session are automatically 
gathered. The raw data contain timing information of pressing and releasing events during a typing session. Note 
that neither letters nor the corresponding (x, y) coordinates relative to the key presses are collected to guarantee 
the participant’s privacy. All data gathered were temporarily stored locally on the mobile device before being 
sent in batches to secure cloud storage whenever an internet connection was available.

Feature engineering. Let us define tpn and trn as the timestamp in milliseconds relative to the key press and 
release event, respectively. For each keystroke event, one can compute sequences of keystrokes that are purely 
related to the typing rhythm, precisely the time between a key is released and the next key press, the time a key is 
pressed, the time between successive key presses and the time between successive key releases, a.k.a. Flight Time 
( FTn ), Hold Time ( HTn ), Press-Press Latency ( PPLn ) and Release-Release Latency ( RRLn ), respectively. These 
sequences can be expressed mathematically as follows:

where N is the amount of keys pressed during a specific interval, for example, daily, hourly, or session typing 
intervals. Similarly, one can construct additional keystroke sequences which are conditional to certain events, i.e. 
the flight time after a punctuation event a.k.a. After Punctuation Pause ( APPn ) and the flight time prior to and 
post a backspace event, denoted as Pre-Correction Slowing ( PreCSn ) and Post-Correction Slowing ( PostCSn ), 
respectively (see supplementary material Table A2 for a summary table). Note that, prior to any further math-
ematical operation, FTn and HTn are filtered to avoid outliers from edge cases, such as when the keyboard is on-
screen without any typing activity or when special characters are required. The continuously collected keystroke 
sequences are subsequently aggregated per day using several summary statistics shown in the supplementary 
material Table A1.

Finally, composite scores are created by averaging a cluster of features into single scores to reduce potential 
information  overload13. More precisely, two Fine Motor Composite Score (FMCS), and a Cognition Composite 
Score (CCS) are derived, based on the hypothesis that timing-related features ( PPLn , RRLn , HTn , and FTn ) are 
more related to fine motor skills, while error-related ( PreCSn , and PostCSn ) and paralinguistic ( APPn ) features 
are more related to cognitive processes. In addition to this theory-driven clustering, only highly correlated 
features were selected. Finally, besides keystroke sequences, additional features coming from counting the total 
number of events or relative to a specific event (e.g. the amount of times a user makes use of suggestion buttons) 
were constructed. Figure 2 graphically summarizes the keystroke data preprocessing pipeline introduced above.

Feature selection. Several feature selection techniques were used to prune away non-useful features and to 
reduce the model’s complexity. First, features with a high percentage of missing values were discarded to avoid 
possible biases introduced by imputation methods. Missing values in keystroke data can arise whenever a user 

(1)

HTn = trn − t
p
n , n = 1, 2, ...,N ,

FTn = t
p
n+1 − trn, n = 1, 2, ...,N − 1,

PPLn = t
p
n+1 − t

p
n , n = 1, 2, ...,N − 1,

RRLn = trn+1 − trn, n = 1, 2, ...,N − 1.

Figure 1.  Graphical visualization of the study design. The MS patient group consisted of 102 subjects with MS 
and the HC group included 24 healthy subjects without any sign of MS. The study consisted of five clinical visits, 
collected at baseline (m00) and then at three-month intervals following baseline (m03, m06, m09, m12) for 
pwMS. Each clinical visit included the collection of the following clinical outcomes measures for the MS patient 
group: SDMT, NHPT, and EDSS.
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does not type within a specific time interval of interest, though they can also occur based on the individual typ-
ing style, e.g., a person that does not consistently use punctuations would lead to missing values in APP . Features 
with low variance are also discarded as they indicate low information content adding unnecessary computation 
 burden20.

The remaining features are evaluated using wrapper methods, namely via Recursive Feature Elimination (RFE). 
In short, RFE is a greedy optimization algorithm that aims to find the best performing feature set by repeat-
edly training models and keeping aside the best performing features at each iteration. Such a method relies on 
the machine learning model used; hence the best feature set will ultimately depend on the model architecture 
and the underlying cost function used during the training phase. In this work, five different estimators were 
separately trained using the RFE schema that selects the optimal features based on the Area Under the Receiver 
Operating Characteristic (AUC-ROC) and using a group K-fold cross-validation scheme with k = 5 . The final 
feature set for a given target was obtained by considering only the features yielding the best average AUC-ROC 
in cross-validation across all classifiers. An example of this procedure is graphically shown in Fig. 3 using the 
NHPT class as target.

Classification pipeline and performance evaluation. Before any analysis and model training, the 
dataset is randomized and divided into a hold-out (20%) and training set (80%) with non-overlapping groups so 
that the same user will not appear in two different sets, preventing overestimating the generalization error due to 
data leakage  issues21. The model selection and hyper-parameter tuning were carried out in the training set using 
a Leave-One-Group-Out Cross-Validation (LOGOCV) scheme where all samples from the ith subject are left 

Figure 2.  The keystroke data are continuously collected through the Neurokeys app. Various features are 
constructed from the raw data, and a graphical representation of keystroke sequences is provided. Here, the hold 
time keystroke variable HT1,2,3 represents the time for which a key is pressed, whereas the flight time ( FT ) is the 
time between two key presses. The Pre-Correction Slowing ( PreCS ), Post-Correction Slowing ( PostCS1 ), and 
After Punctuation Pause ( APP1 ) are specific cases of flight time relative to the time before and after a backspace 
and the time after punctuation. After several preprocessing steps, the keystroke sequences are aggregated on a 
daily level using summary statistics such as mean and standard deviation (see supplementary material Table A1 
for a complete list). Finally, composite scores are created by averaging subsets of keystroke features tuned based 
on both a hypothesis and data-driven  approach13.
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out and used for each iteration for performance evaluation. In contrast, the remaining N − 1 subjects are used 
to train and optimize a three-stage multivariate classification model.

Regarding the model architecture, the first stage consists of an iterative  imputer22,23 preceded by a z-score 
normalization. The second stage is an ensemble algorithm that combines the prediction probabilities of multiple 
and independent classifiers into one outcome, which aims to reduce further the generalization  error24. In this 
stage, a prediction probability is derived for each daily aggregated keystroke feature, which yields sufficient typ-
ing events and lies within a predefined time window centred around the clinical visit. Note that the threshold 
relative to the minimum amount of daily typing events τd and the time windows wd were considered unknown 
variables and optimized using a typical hyper-parameter tuning procedure; hence both values were tailored for 
each target. The prognosis of the subject’s status is computed in the third and last stage by averaging the prob-
abilities from the previous step. An illustration of the classification pipeline is depicted in Fig. 4. The classification 
pipelines are optimized with respect to the AUC-ROC; however, additional metrics are also supplied. A logistic 
regression test is conducted by regressing the binarized subject’s status on the prediction probability (outputted 
by the best-performing pipeline), demographic variables, and the daily average keystroke collected to assess their 
association and corresponding strength. Finally, the output of each machine learning model and features set is 
explained using SHapley Additive exPlanations (SHAP)25.

Figure 3.  Example of feature selection using RFE schema with NHPT as a target. The x-axis shows the number 
of selected features, while the y-axis denotes the mean of AUC scores over k=5 folds for a given classifier. The 
final feature set is constructed by considering the most recurring features among all trained models where the 
mean AUC-ROC is maximized. One can also observe a performance plateau whenever more than eight features 
are used as predictors, regardless of the type of classifier.

Figure 4.  The classification pipeline for a given clinical outcome inference is a three-stage non-linear mapping, 
formally � : ℜf×d → ℜ . The pipeline requires a matrix containing f composite scores generated over d 
consecutive days as an input for a single subject. During the learning phase, the time window of length d is 
centred around the clinical visit where EDSS, NHPT, and SDMT scores are recorded. The matrix values are 
subsequently normalized, and missing values (due to insufficient data within a day) are imputed via chained 
 equations22,23, a.k.a. Iterative Imputer. The second stage pipeline delivers an output ỹ ∈ ℜd with d predicted 
probabilities coming from an ensemble model composed of three classifiers (two for the clinical diagnosis) 
pointing to a soft voting meta learner. The third and last stage of the pipeline yields the actual prediction 
denoted as ŷ ∈ ℜ obtained by averaging the probabilities, i.e. ŷ =

∑d
i=1 ỹi . Depending the target and the 

corresponding feature set, ŷ provides the estimation relative to the clinical diagnosis (HC versus pwMS), 
disease severity level based on EDSS, manual dexterity and cognitive function level based on NHPT and SDMT, 
respectively.
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Results
In total, 102 pwMS and 24 HC were included of whom demographical and clinical characteristics are summa-
rised in Table 1 and supplementary material Table A4. The retention rate of patients with active keyboard use 
was 83.3% (for further information, refer  to13). For the discrimination between pwMS and HC, an ensemble of 
two models was the best performing, consisting of a Random Forest (RF) and a Logistic Regression (LR), both 
trained with a balanced sample weight in order to counteract the class  imbalance26. The cross-validation (CV) set 
yielded an AUC=0.762 [0.677-0.838; 95% CI] and a AUC-ROC=0.726 with 0.750/0.429/0.48 sensitivity/specific-
ity/accuracy with a prevalence=0.16 in the Hold Out (HO) set. Regarding the estimation of the overall disability 
level quantified by the EDSS score, the best performing ensemble model consisted of a RF, a LR and a Quadratic 
Discriminant Analysis (QDA). An AUC=0.739 [0.686-0.788; 95% CI] was measured within the LOGOCV, while 
a AUC-ROC=0.736 with 0.821/0.533/0.644 sensitivity/specificity/accuracy with a prevalence=0.384 was obtained 
in HO set. The best classification pipeline for predicting fine motor skills based on NHPT consisted of a LR, a 
Gaussian Naive Bayes (GNB) and a Support Vector Machine (SVM). For this target, an AUC-ROC=0.813 [0.772-
0.852; 95% CI] in LOGOCV and in HO set a AUC-ROC=0.753 with 0.837/0.556/0.709 sensitivity/specificity/
accuracy with a prevalence=0.544 was obtained. Finally, the best performing machine learning pipeline for 
classifying the level of cognition deficit based on SDMT was a voting ensemble consisting of three models, a LR, 
a K-Nearest Neighbors (KNN) and a SVM. The model achieved an AUC-ROC=0.781 [0.737-0.824; 95% CI] in 
CV and AUC-ROC=0.720 with 0.600/0.891/0.789 sensitivity/specificity/accuracy with a prevalence=0.352 in 
the HO set. The Receiver Operating Characteristic (ROC) curves showing the performance of each classifica-
tion pipeline for both the LOGOCV and HO set are presented in Fig. 5. The results provided in Table 2 show 
that the prediction probabilities generated by the classification pipelines are significantly associated with the 
corresponding clinical outcomes. Furthermore, a non-negligible relationship was also found, namely the level 
of education with both the EDSS and NHPT and age with the EDSS.

Discussion
The findings of this study show that remotely collected keystroke interactions can potentially be used to dis-
criminate between pwMS and HC and between different levels of clinical disability assessed by commonly used 
clinical outcome measures, including the disability status, upper limb function and information processing 
speed. Although typing on a smartphone is a very common and daily activity, it requires a broad range of upper 
extremity motor and visual skills to perform coordinated and successive hand/finger movements. Problems with 
these required skills are common in people with MS, including upper extremity motor  coordination27–29, eye-
hand  coordination28, and manual  dexterity28,30. Next to the motor skills, all cognitive skills are involved in typing 
behaviour, including attention and information processing speed. Problems with these two cognitive domains 
are commonly seen and present early in the  disease31–33.

The study’s findings show that pwMS had different typing profiles than HC, probably driven by the symptoms 
pwMS experience. The extent to which specific functions are affected by the disease is assessed during a clinical 
visit by using a wide variety of clinical outcome measures. Four independent machine learning-based algorithms 

Table 1.  Summary of the study cohort, demographic and clinical characteristics concerning each group (HC 
and pwMS). Clinical outcomes are also provided and shown solely for pwMS since such assessments were not 
carried out on healthy subjects. More information regarding the education demographics can be found in the 
supplementary material Table A4. HC healthy controls; pwMS people with multiple sclerosis; EDSS expanded 
disability status scale; NHPT nine-hole peg test; SDMT symbol digit modalities test; SD standard deviation; 
IQR interquartile range. a  Independent t-test. b  Fisher’s Exact test.

HC (n = 24) pwMS (n = 102) p value

Demographics

 Age, years, mean (SD) 42.42 (15.09) 46.41 (10.44) 0.248
a

 Sex, n (%) 0.085
b

 Female 13 (54.16) 75 (73.53)

 Male 11 (45.84) 27 (26.47)

 Level of education, n (%) 0.233
b

 Low 5 (20.83) 37 (36.27)

 Middle 11 (45.83) 46 (45.09)

 High 8 (33.33) 19 (18.62)

 MS type, n (%) n.a.

 Relapsing-remitting n.a. 61 (59.80)

 Secondary progressive n.a. 30 (29.41)

 Primary progressive n.a. 11 (10.79)

Clinical outcomes

 EDSS, median (IQR) [n] n.a. 3.50 (2.5 – 4.5)[387] n.a.

 NHPT, median (IQR) [n] n.a. 20.40 (18.6 – 22.6) [418] n.a.

 SDMT, median (IQR) [n] n.a. 59.00 (50.0 – 66.0) [419] n.a.
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that leverage passively collected smartphone keystroke dynamics have been trained in discerning pwMS versus 
HC, estimating the level of disease severity, manual dexterity and cognitive capabilities. The interpretation of the 
prediction models’ output is addressed using the SHAP  framework25 and shown in Fig. 6. In short this method 
indicates how much each predictor contributes, either positively or negatively, to the target variable with respect 
to the expected value of the target. supplementary material Table A3 lists the predictors used in this work with 
their respective keystroke features and aggregation type.

The discrimination between pwMS and HC is derived using three predictors: a time-related cluster, a cogni-
tive-related cluster and the number of times a subject uses one of the three suggested words provided by a word 
suggestions implemented within the Neurokeys app. According to the proposed model, pwMS tend to type slower, 
have longer maximum latencies before and after correcting their text, have prolonged delays in starting a new 
sentence, and make more use of word suggestions throughout the day compared to healthy subjects (See Fig. 6a).

The EDSS aims to quantify the general disability of a pwMS, including motor and non-motor characteristics. 
For this target, the proposed model leverages four clusters of timing-related keystroke features. First, the model 
predicts a high level of disability for pwMS with high latency between keypresses and simultaneously holding 

Figure 5.  The mean AUC-ROC with the 95% confidence interval, computed over 1.000 bootstraps within the 
LOGOCV set, and the corresponding AUC-ROC carried out in the hold-out set, both coming from the best 
performing pipeline relative to each clinical outcome.
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Table 2.  Results of the Logistic Regression test. The demographic variables (age, gender and education), 
the average of the daily keystroke and the prediction probability of the best performing model are treated as 
independent variables, while binarized clinical outcomes are considered dependent variables. Results show that 
the prediction probabilities of all models exhibit a statistically significant association with the subjects’ status. 
Significant value are in value [bold].

Diagnosis EDSS NHPT SDMT

coef
significance 
(p-value) coef

significance 
(p-value) coef

significance 
(p-value) coef

significance 
(p-value)

Age −0.0244 (p=0.925) 1.2126 sig. (p<0.05) 0.0940 n.s. (p=0.793) 0.1101 n.s. (p=0.774)

Education 0.2970 (p=0.178) −0.6623 sig. (p<0.05) 0.7062 sig. (p<0.05) −0.2395 n.s. (p=0.358)

Gender −0.3259 (p=0.152) −0.0931 n.s. (p=0.769) 0.6346 n.s. (p=0.051) −0.2243 n.s (p=0.457)

Daily Keystroke −0.0321 (p=0.891) 0.5128 n.s. (p=0.090) −0.4434 n.s. (p=0.164) 0.2380 n.s (p=0.390)

Prediction 0.5753 (p<0.05) 0.7342 sig. (p<0.05) 1.4200 sig. (p<0.001) 1.1028 sig. (p<0.05)

Figure 6.  Model Interpretation using SHapley Additive exPlanations (SHAP). The left column provides the 
summary plots relative to the impact of features on the model prediction. Each point on the summary plot 
denotes a Shapley value for a given feature and an instance, while the colour represents the value of the feature 
from low to high. Overlapping points are jittered in y-axis direction to provide insight into the distribution of 
the Shapley values per feature. The right column provides the global importance of each predictor, which is 
achieved by averaging the absolute Shapley values per feature across the daily samples.
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the keys longer than usual. Furthermore, the model is prone to estimate a higher likelihood of EDSS values big-
ger than the sample median when the typing rhythms change over time without a regular pattern. Conversely, 
subjects who exhibit a fast and stable typing behaviour are more likely to have low EDSS score, hence a mild 
disability level See Fig. 6b).

Regarding the estimation of the upper limb function for pwMS, subjects who type slowly are more likely to 
require more time to complete the NHPT task. In the opposite direction, the faster the subject types, the less 
time it takes to complete the NHPT task, and by extension, the better the upper limb function. Further effects 
that drive the model prediction towards a higher probability of declining fine motor skills are an increment in 
typing speed change within days See Fig. 6c).

Finally, regarding the estimation of information processing speed, measured by SDMT, it was observed that 
pwMS who are fast in formulating sentences and capable of quickly correcting or adjusting their text are more 
likely to obtain a high score on the SDMT, which indicates adequate cognitive skills and vice-versa See Fig. 6d).

One can observe that the proposed wrapper-type feature selection strategy selects a different subset of features 
per target. However, the central value of the Fine Motor Score is chosen more frequently than the remaining 
composite scores, and it provides the highest impact on the model’s output for both NHPT and EDSS, but also 
relative to the clinical diagnosis between HC and pwMS. In Lam et al.11 it was shown that the keystroke features 
used to construct this cluster yielded very high test-rest reliability suggesting that these features can be considered 
an accurate representation of the participant’s performance and robust against irrelevant artefacts in the testing 
session such as environmental, psychological or methodological  processes34.

Despite the model outputs’ being all significantly associated with their corresponding clinical outcome when 
demographic variables are taken into account, the effect of age had a higher impact in predicting the EDSS target 
than the algorithm-driven solely by keystroke dynamics (see Table 2). As mentioned in earlier sections, MS is a 
progressive disease; hence, the chance of having significant physical impairment increases as pwMS age, leading 
to a high EDSS score.

An additional analysis was carried out to study the association between age and keystroke features. This 
analysis showed that timing-related features strongly correlate with age, suggesting that older pwMS tend to type 
slower. These findings are in line with the results of  Salthouse35, which described the effect of age on keystroke 
dynamics and reported that older people had a slower tapping rate. Figure 7 shows the correlation values between 
the clinical scores, demographic variables and daily keystroke events, as well as the scatter-plot between age and 
the most recurring predictor, i.e., the central value of the fine motor score. Finally, the correlation values of the 
remaining composite scores w.r.t age are provided in Table A3.

With regards to the level of education, mild correlations have been observed with both EDSS and NHPT. Such 
an outcome is in line with other studies where similar relationships were found between literacy and various 
disease severity scales within an MS  population31,36–38. More information regarding the education demographics 
can be found in the supplementary material Table A4.

Figure 7.  On the left is the correlogram relative to the clinical outcomes actual score measured at baseline, 
the corresponding daily keystroke events averaged within a two-week time window centred at m00, and the 
numerical demographics variables. A cross in the bottom-right quadrant denotes a non-significant r value 
with p value > 0.05. One can observe a non-negligible linear relationship between clinical outcomes and 
demographic variables. On the right is the scatter-plot between age and the most recurring composite score, 
i.e. the central value of the fine motor score, collected at baseline for both HC and pwMS within the same time 
range as previously mentioned. The dot size is tuned based on the average daily keystroke event. For the sake of 
visualization, the x-axis was set between 0 and 1 second, though an additional instance was recorded from an 
MS patient with pair (x = 1.68, y = 59) and average daily keystroke event count equal to 646.
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During the model design phase, one of the requirements was to determine the number of consecutive days 
to feed to the classification pipeline, as also shown in Fig. 4. In Lam et al.13 It was considered a 28-day (clinical 
visit ±14 days) and 14-day (clinical visit ±7 days) aggregation period for the fine motor and cognitive clusters, 
respectively, under the assumption that fine motor and cognitive functions are stable within such time windows. 
Furthermore, a keystroke event count threshold of 50 events was used to remove days with insufficient data. In 
this work, both the time window wd and the event count threshold td were considered hyper-parameters and opti-
mised for each clinical outcome with respect to the AUC-ROC metric. This data-driven approach resulted in the 
following optimal pairs (wd, td) equal to (11, 100), (±10, 125) , (±12, 125) and (±4, 150) for the clinical diagnosis, 
EDSS, NHPT and SDMT, respectively. Figure 8 illustrates the mean AUC-ROC for all pairs (wd, td) considered in 
the grid search, and for this application, no substantial changes in terms of performance were observed for the 
EDSS, NHPT and SDMT prediction. Conversely, the prediction performance relative to the clinical diagnosis 
appeared more sensitive to such parameters with no clear pattern across the grid. Previously, studies regarding 
keystroke dynamics obtained through smartphone interactions have been primarily conducted in a laboratory 
environment, in which participants were asked to transcribe standardised text excerpts, or a specific type of 
smartphone was  provided7,39,40. Contrary to laboratory studies, in this real-world study, data was collected during 
day-to-day use of smartphones. Collecting data in real-world settings allows for insight into the performance of 
patients in their daily life and enables researchers to go beyond data gathered during clinical visits. The findings 
of this study show the potential of keystroke data collected in the real world in providing insight into the per-
formance of patients in between clinical visits and thus could be used to inform disease management strategies. 
However, future studies are needed to study the relationship between typing behaviour in relation to relapses and 
contrast-enhancing lesions while considering signal interferences from other sources, including behaviour (e.g. 
typing style), possible language related differences and technological aspects (e.g. smartphone-related aspects).

Data availability
The data that support the findings of this study are available from the corresponding author but restrictions 
apply to the availability of these data, which were used under license for the current study, and so are not pub-
licly available. Data are however available from the authors upon reasonable request and with permission of the 
corresponding author.
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