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Persistent homology analysis 
distinguishes pathological bone 
microstructure in non‑linear 
microscopy images
Ysanne Pritchard 1*, Aikta Sharma 4,6, Claire Clarkin 4, Helen Ogden 1,3,5, 
Sumeet Mahajan 2,3,7 & Rubén J. Sánchez‑García 1,3,5,7

We present a topological method for the detection and quantification of bone microstructure from 
non‑linear microscopy images. Specifically, we analyse second harmonic generation (SHG) and two 
photon excited autofluorescence (TPaF) images of bone tissue which capture the distribution of matrix 
(fibrillar collagen) structure and autofluorescent molecules, respectively. Using persistent homology 
statistics with a signed Euclidean distance transform filtration on binary patches of images, we are 
able to quantify the number, size, distribution, and crowding of holes within and across samples 
imaged at the microscale. We apply our methodology to a previously characterized murine model of 
skeletal pathology whereby vascular endothelial growth factor expression was deleted in osteocalcin‑
expressing cells (OcnVEGFKO) presenting increased cortical porosity, compared to wild type (WT) 
littermate controls. We show significant differences in topological statistics between the OcnVEGFKO 
and WT groups and, when classifying the males, or females respectively, into OcnVEGFKO or WT 
groups, we obtain high prediction accuracies of 98.7% (74.2%) and 77.8% (65.8%) respectively for SHG 
(TPaF) images. The persistence statistics that we use are fully interpretable, can highlight regions of 
abnormality within an image and identify features at different spatial scales.

A wide range of imaging techniques are used to investigate and analyse bone tissue to quantify the effects on 
structure and morphology as a result of genetic alterations or disease, both for research and diagnostic purposes. 
Non-linear microscopy imaging techniques such as two photon excitation fluorescence (TPEF) and second 
harmonic generation (SHG) are well-suited to imaging biological tissue in their native state without the need to 
label components with dyes or stains to generate image contrast, yet can provide chemical and structural details 
of samples. These label-free non-linear techniques use a near infrared pulsed laser source to expose samples 
instantaneously to high-intensity light while keeping the average (total) power within the damage threshold of 
the tissue. Both TPEF images and SHG images are greyscale, and each image can be encoded as an n×m matrix 
with integer pixel intensities between 0 (black) and 255 (white). In  TPEF1,2, molecules are excited to a higher 
energy level by near simultaneous absorption of two photons, causing the excited molecules to ‘fluoresce’ spon-
taneously i.e. emit a single photon, with more energy than one of the absorbed photons. We use TPEF images of 
the natively fluorescent (autofluorescent) molecules in bone, which we refer to as two photon auto-fluorescence 
images (TPaF), which provide detail of the overall morphology. In SHG imaging, the second harmonic wave is 
only generated by media that are non-centrosymmetric i.e. lack structural inversion symmetry in the  plane3, 
such as crystalline quartz, myosin, tubulin and fibrillar  collagen4,5. Therefore, SHG is ideal for selectively imaging 
collagen fibres and their distribution in human skin, tissues, tendons and  bones4. Collagen is the most abundant 
protein in human tissue and is a predominant component of the extracellular matrix in tissues. The role of the 
extracellular matrix in health conditions and disease processes is increasingly becoming established and is now 
often studied by using SHG  imaging6,7. In bone tissue, SHG specifically images type I collagen fibres and their 
distribution, that is, the bulk of the bone matrix. Together, two photon autofluorescence (TPaF) and second 
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harmonic generation (SHG) form a set of complementary techniques to image the chemical and structural 
changes, providing a label-free imaging readout of the bone microstructural properties (characterised by the 
absence of TPaF and SHG signals).

Correspondingly to these imaging techniques, there is a need for automated and quantitative methods that 
can effectively analyse the structure in these images in a biologically meaningful way. Topological data analysis 
(TDA) refers to a collection of topology-based methods that are able to quantify ‘shape’ within data, so are a 
natural choice to capture structural differences in the samples without requiring large sample sizes and can 
provide interpretable summaries in the context that each statistic is a measure of specific features in the images 
(Table 1). This is in contrast to data-driven techniques such as machine learning, which often lack interpretability 
and require a large training data set for similar classification tasks, something typically infeasible in animal or 
human research.

We define the term ‘micro-holes’ on three levels: mathematically, they are connected regions of black pixels 
in a binary image. For microscopy imaging, micro-holes are regions with low signal, that is, pixels that convert 
to background in the binary image (where the TPaF signal is autofluorescence, the SHG signal is largely collagen 
in these samples). At the biological level, for the bone samples we analyse, micro-holes encompass a range of 
structures including osteocyte lacunae and vascular canals  (see7,8 for the details). Using a powerful and versatile 
TDA technique called persistent homology, we can analyse the distribution of micro-holes in cortical bone 
samples i.e. we can quantify the number, size, connectivity, crowdedness and organisation of the micro-holes 
in the sample.

Persistent  homology9,10 is a topological method which tracks the evolution of connected pieces, loops and 
higher-dimensional holes of a ‘continuous shape’, i.e. a topological  space11, represented as a discrete structure 
such as a simplicial or cubical complex, as a scale parameter varies (Fig. 2b). This gives a persistence diagram 
of points (Fig. 2c), which is a plot of births (scale parameter value at which the feature appears) against deaths 
(scale parameter value at which the feature disappears, namely the pieces join or the loops or higher-dimensional 
‘holes’ fill). To combine persistent homology with classification algorithms, the format of persistence diagrams 
needs to be adapted into feature vectors, which can be done through the use of persistence statistics and sum-
mary  functions12–15, persistence  images16, or persistence  landscapes17,18, with the former being our choice as we 
can tailor specific persistent summaries to bone microstructure measures of interest. TDA methods, including 
persistent homology, are being increasingly applied to biomedical image data including the cortical thickness 
of brain from magnetic resonance (MR) images in autistic  patients19; chronic obstructive pulmonary  disease20; 
identifying regions of interest in images of the  colon21; the classification of diabetic retinopathy  images12; hepatic 

Figure 1.  Non-linear microscopy images adapted  from7 and methodology schematic. Tibiofibular junction 
(TFJ) bone section of a male Osteocalcin-specific Vegf knockout (OcnVEGFKO) with SHG (a) and TPaF (b) 
images from a custom multiphoton  microscope7, with zoomed regions. Scale bars are 250µm . Schematic in (c) 
gives a high level overview of the method process.
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 lesions22; skin  lesions23; and endoscopy images of the  stomach24. Previous TDA applications to biomedical images 
relate to X-ray, Computed Tomography (CT) and MRI techniques. As far as we know, our work is the first to use 
persistent homology for TPaF and SHG microscopy images of biological samples.

We validate our methodology using previously published TPaF and SHG images of a murine osteocalcin-
specific Vegf knockout (OcnVEGFKO) bone exhibiting increased cortical  porosity8 in CT images and pathologi-
cal extracellular matrix  organisation7 (Fig. 1). Our topological analysis (summarised in Fig. 4) summarises the 
micro-holes providing insight into micro-hole organisation and structure (Table 1, Fig. 5). These statistics can 
be refined to include only features at specific scales of biological interest (Fig. 4c), and can be compared across 
patches for intra-sample analysis (Fig. 4d). The statistical significance of our topological summaries is tested 
directly using permutation hypothesis tests, as shown by Table 2. These tests show significant differences in 
persistence statistics of image patches (Table 2). Finally, we train a support vector classifier to predict whether 
unseen patches of samples are from the WT (control) or OcnVEGFKO (test) categories. The performance results, 
shown in Table 3, confirm the strong predictive power of the topological features, particularly from SHG images.

Adapting persistent homology to analyse biologically or clinically relevant features in non-linear microscopy 
images expands the set of available tools that capture skeletal morphology. The topological approach that we 
present is not limited to this bone cell specific OcnVEGFKO or mouse models, and can be used in biological 
sample images where the analysis of micro-holes or hole-like structures may be required, including in a diag-
nostic context.

Our article is organised as follows. A detailed description of our methodology is given in section “Methods”, 
including the specimen preparation, SHG and TPaF imaging, pre-processing of the images, a short introduction 
to persistent homology, a description of the filtration called the signed Euclidean distance transform (SEDT) 
that we use as input for the persistent homology, the persistence statistics per quadrant, the permutation hypoth-
esis tests, and the classification using a support vector machine. In section “Results”, we present the results of 
our topological methodology applied to mice bone images, including the outcome of the hypothesis tests, the 
interpretation of the most meaningful persistence statistics between groups of mice, and the results of the clas-
sification. The article finishes with a discussion and some conclusions in sections “Discussion” and “Conclusion”.

Methods
Specimen preparation. The data presented herein were acquired previously on samples used in the studies 
by Goring et al. and Sharma et al.7,8. The tibiae were derived from 16 week-old littermate matched mice evenly 
split between male and female, and OcnVEGFKO and  WT7,8.  Briefly8, the tibiae were fixed in 4% paraformalde-
hyde for 48 hours, dehydrated in 70% ethanol and embedded in poly-methyl methacrylate, prior to taking 5µm 
thick sections from the tibiofibular junction (TFJ). The use of animal tissue was carried out in compliance with 
the Animals (Scientific Procedures) Act 1986 and the regulations set by the UK home office, as  in7,8.

SHG and TPaF microscopy imaging. Two photon excitation autofluorescence (TPaF) and (circularly 
polarised) second harmonic generation (SHG) images of each bone section were previously acquired by Sharma 
et  al.7 using a custom multiphoton microscopy setup. For full details of the imaging system and acquisition 
methodology  see7. Example images are shown in Fig. 1. The images are 2D greyscale images with integer pixel 
intensities between 0 (black) and 255 (white). The TPaF images show the mineralised matrix and the SHG images 
capture the collagen fibres. Per imaging technique, there are 12 images of the 2–3 mm bone sections described in 
section “Specimen preparation”. Note that the breaks in the bone are irrelevant for our microstructure analysis.

Preprocessing images. We thresholded all images of the mouse samples to binary using Otsu’s  method25, 
which divides the image pixels into two classes (black and white) by maximising the between-class variance. We 
trimmed the binary images of empty borders, padded them to an integer multiple of the desired patch shape, 
and split each image into 300× 300 pixel patches, which is equivalent to a 183µm× 183µm (3 s.f.)  view7. Note 
the number of patches is not an input but is determined by patch size and how many fully background patches 
are discarded. For these images, this scale allows for the largest meaningful features to be present in a patch. The 
patches were taken with a stride of 300 pixels to ensure they did not overlap, and we discarded any patches that 
were entirely background. This gave us a total of 475 patches and 476 patches from the original 12 TPaF and 
SHG images respectively, which were treated as separate sets of images in the analysis process. Note that edge 
patches have varying amounts of bone and, due to the irregular sample shape and to differences in the size of the 
bone sections, each individual image may produce a different number of patches. For the SHG (TPaF) images 
respectively there were 93 (93) female KO patches, 103 (101) female WT patches, 163 (160) male KO patches, 
and 117 (121) male WT patches.

Topological data analysis method. Persistent homology tracks the evolution of connected pieces, loops 
and higher-dimensional ‘holes’ by calculating the homology groups of an increasing sequence of complexes 
(called a filtration) built using a scale parameter (Fig. 2b). We used cubical homology (section “Persistent homol-
ogy of cubical complexes”) and a signed Euclidean distance transform (SEDT) filtration (Fig. 3, section “Signed 
Euclidean distance transform”) on pre-processed binary image patches (Fig. 4a, section “Preprocessing images”). 
The quadrants of the resulting persistence diagrams (Fig. 4b) quantify specific features, such as separate micro-
holes, connected networks of micro-holes, and loops in bones surrounded by micro-holes (Fig. 4b, Table 1). 
Using this, we calculated summary statistics per patch (Fig. 5, section “Persistence statistics”), which quantify the 
quantity, size and organisation of the micro-holes within each patch, and can be visualised on the whole sample 
to highlight regions of interest (Fig. 4d).
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All calculations were done in python 3 on a laptop with 5 cores and 8GB RAM running Windows 10. Image 
data and dataframes were handled in PIL, numpy, and pandas, persistent homology was calculated using the 
homcloud package, and for classification we used sklearn. The figures were created using matplotlib, seaborn 
and statannot. All computer code, documentation and an example computation are available on  github26. Cal-
culating the persistent homology, the longest part of the computation, took under 2 seconds per patch, and can 
be parallelised.

Persistent homology of cubical complexes. The first step to apply a topological method to a data set is to build a 
‘shape’ (formally, a topological space) from the data points and some measure of similarity or distance between 
them. We build a topological space by gluing together basic building blocks (typically triangles or squares, and 
their higher-dimensional counterparts) with the data points as vertices. For images (pixels on a rectangular 
grid), using squares, cubes, etc., is the most natural option, resulting in what we call a cubical complex. More 
precisely, a cubical  complex27 is a topological space made of any number of n-cubes (0-cubes are points, 1-cubes 
are edges, 2-cubes are squares, 3-cubes are cubes, etc.), for different n, glued together along their faces (the verti-
ces of an edge, the sides of a square or a cube, etc.) and embedded in Rd (for d large enough). A cubical complex 
is a combinatorial model of a topological space, or, in our case, an image. See Fig. 2b for some examples,  and27 
for a formal definition.

Suppose that we want to encode a greyscale image as a cubical complex, taking into account both the pixel 
positions and their intensities (0 black to 255 white). A standard way is using a levelset filtration: we only include 
pixels below a certain threshold intensity level, and always join adjacent pixels (pixels whose coordinates dif-
fer by exactly 1), filling in squares (or cubes, for 3-dimensional images) when all the edges are present. As we 
increase the threshold intensity level, we include more and more pixels and obtain a sequence of increasingly 
larger complexes, called a filtration (see Fig. 2b for an example). There are other ways to construct a filtration 
of cubical complexes from an image and we use the Signed Euclidean Distance Transform (SEDT) filtration, 
explained in section “Signed Euclidean distance transform”.

Before describing the SEDT filtration, we will briefly and informally discuss persistent homology (for a formal 
treatment, see e.g.9,28,29). The homology groups Hk(X) of a topological space X (such as a cubical complex) detect 
the number of k-dimensional ‘holes’ in X, for k = 0, 1, 2, . . . For k = 0 , H0(X) detects the connected ‘pieces’ 
that make up X, while H1(X) detects the cycles (loops) in X (see Fig. 2b). The rank of the homology groups (the 
number of k-dimensional ‘holes’) are called the Betti numbers, written βk , and uniquely determine Hk(X) for 
each k (assuming coefficients in a field F, which is F = R in our case). For full details on the homology of cubical 
complexes,  see27. Persistent homology extends homology from a single topological space to a filtration (a nested, 
increasing sequence of topological spaces). It calculates the homology groups across the filtration, keeping track 
of when a feature is born (appears) or dies (disappears). The result is encoded in a persistence diagram, such 
as the one shown in Fig. 2c. Note that, since we analyse 2D images, we only consider homology for dimensions 
k = 0, 1 , as the homology is zero for larger k. Each persistent diagram is a plot of pairs of points (bi , di) , where bi , 
di are respectively the birth and death time, of the ith k-dimensional feature in Hk . A feature can only die after it is 
born, hence bi < di and all points shown in a persistent diagram must be above the diagonal. It can be shown that 
all features eventually die (at most when the connectivity between data points is maximal), except in H0 where a 
final connected ‘piece’ of X remain indefinitely (shown with the symbol ∞ in our persistent diagrams). In Fig. 2, 
we show a sample greyscale image, levelset filtration, and resulting persistent homology diagram, for illustration.

Signed Euclidean distance transform. We analyse the micro-holes in the SHG and TPaF images (which we refer 
to as ‘microstructure’) of bone samples using persistent homology with a signed Euclidean distance transform 
(SEDT) filtration (Figs. 3, 4). The SEDT filtration allows us to encode the different structural features of an image 
as points in specific quadrants of the resulting persistence diagrams. This filtration has been successfully used to 
study the structure of bead packing, sand packing, limestone and sandstone samples on micro CT images  in30, 

Figure 2.  Cubical levelset filtration of a greyscale image. (a) Example greyscale image with pixel intensity values 
between 0 (black) and 1 (white), as in the colour bar. (b) Some ordered steps of the cubical levelset filtration 
of the image in (a). As the threshold parameter δ increases from 0 to 1, pixels (of intensity lower than δ ) are 
included as points (0-cubes), with two adjacent pixels joined by edges (1-cubes), and 4 adjacent pixels joined 
by squares (2-cubes). Note the ring we see in the image is captured by the third step of the filtration shown. (c) 
Persistence diagram for H0 and H1 of the image (a) with respect to the levelset filtration described in (b). The 
blue dots ( H0 ) correspond to connected pieces, which ‘die’ as they join one another. The final connected piece 
never ‘dies’, so has infinite persistence (marked as ‘ ∞’). The green diamond ( H1 ) corresponds to a loop (b, panel 
3) capturing the ring structure in the image (a). This loop disappears (‘dies’) as we add more pixels (b, panel 4).
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and to analyse the flow of fluids and trapping of bubbles in sandstone samples in 3D X-ray CT  scans31. In medical 
imaging, the SEDT filtration has been recently adapted to tumour images by Moon et al.32 to study the relation 
between topological shape features in tumour progression and survival risks. Further, a similar (Manhattan) 
distance transform filtration approach has been used  in33 to predict transepidermal water loss from skin images.

The input of the signed Euclidean distance transform (SEDT) is a binary (black/white) image, rather than 
a greyscale image. It takes the binary image and assigns to every pixel in both phases (white, or black, pixels) 
the shortest Euclidean distance to the opposite phase of the image. Pixels in the white (‘bone’) phase are given a 
positive distance, and pixels in the black (‘micro-hole’) phase are given a negative distance, as in Fig. 3a. We use 
persistent homology with a signed Euclidean distance transform filtration as  in31, that is, the filtration where we 
include pixels from the most negative distance to the most positive distance, with respect to the SEDT. The pixels 
with the most negative distance values are the micro-hole centres and are included first in the filtration, while 
the pixels with the greatest positive distances are bone pixels furthest from any micro-holes and are included last 
in the filtration. In Fig. 3, we show an example of the persistent homology of a binary image with respect to the 
SEDT filtration in detail. In Fig. 4, we explain the process taking a patch of a greyscale image to binary, before 
calculating the persistent homology using an SEDT filtration, and showing the quadrants of the persistence 
diagrams and how the features captured in each quadrant relate back to the micro-holes in the binary image.

Let us discuss a few properties of the SEDT persistent homology which are relevant to our analysis (cf. section 
“Persistence statistics” and Table 1). We can divide the persistent diagram into four quadrants (positive/negative 
birth/death), which we label 1 to 4 from the top right, proceeding anti-clockwise (see Fig. 3c). Since all points 
are above the diagonal, there are no points in quadrant 4. All black pixels (and thus all micro-holes, which we 
define formally as connected regions of black pixels in the micro scale binary images of the samples) are born by 
δ = 0 (let us call δ the parameter in the SEDT filtration), hence there are no H0 points in quadrant 1. There can 
be H0 points in quadrant 3, for connected micro-holes born at different pixels (see Fig. 3c) and merged later (at 
most by δ = 0 , when all black (micro-hole) pixels are included). More irregular (e.g. less ‘circular’) micro-holes 
can be born at different pixels (at each local minimum of the SEDT distance within the same micro-hole). By 
δ = 0 , all micro-holes have been included: the number of H0 points in quadrant 2 (including the point labelled 
∞ ) equals the number of micro-holes, and each of the remaining points in quadrant 3 corresponds to a unique 
point (micro-hole) in quadrant 2. Moreover, the birth of each of these points equals the radius of the largest 
(open) circle that can be inscribed in the micro-hole, which follows from the definition of the SEDT. We refer to 
this quantity as the size of the micro-hole. Hence, the larger the micro-hole, the earlier it is born (more negative 
δ) , with the largest micro-hole appearing first and persisting indefinitely in the filtration (labelled ‘ ∞ ’ in the 
persistent diagram). Although not entirely obvious, the introduction of white (bone) pixels cannot create new 
connected pieces: a new white pixel will join its closest micro-hole(s), possibly merging two or more micro-holes. 
All in all, the persistence diagram for the 0th homology group contains the disconnected micro-holes in quadrant 
2 and the connected micro-holes in quadrant 3, with empty quadrants 1 and 4. Finally, note that the death value 
for micro-holes in quadrant 2 of H0 is half of the shortest distance from the micro-hole to its nearest micro-hole 
(the distance between two micro-holes A and B is the minimum distance between a pixel in A and a pixel in B), 
as both micro-holes expand by including the white pixels between them and thus it is a measure of micro-hole 
‘crowdedness’. To visualise the features from the quadrants of the persistence diagrams under the SEDT filtra-
tion, see Fig. 4b. The birth pixels and optimal  volumes34 of the features have been plotted on the images for H0 
quadrant 2 (green), and H1 quadrant 1 (red), using homcloud.

For the 1st homology group ( H1 ), any loop born before δ = 0 would be a loop of black (micro-hole) pixels, 
containing white (bone) pixels, so it will not die until some δ > 0 . Therefore, there are no H1 points in quadrant 
3, but there could be points in quadrant 2 (micro-hole loops). Points in quadrant 1 of H1 correspond to loops 
in the bone between micro-holes, that is, white (bone) pixels connecting black regions (micro-holes) in a ring 
(loop) fashion (see Fig. 3), with larger loops indicating regions with sparser micro-hole distribution.

For reproducibility, we include the following technical note. The 0th persistence diagram contains a point 
with the most negative birth value (known as ‘essential birth’) and infinite death (labelled ‘ ∞ ’ in Fig. 3c), which 
naturally falls in quadrant 2 and corresponds to the largest micro-hole (connected region of black pixels) in the 
binary image patch. These points were omitted when calculating the statistics, since for most patches, the largest 
negative distance was a point in the background region surrounding the bone sample.

Persistence statistics. For each image patch, we calculate the persistence statistics for quadrant 2 of the 0th per-
sistence diagram, and for quadrant 1 of the 1st persistence diagram, as these are the most informative quadrants 
for our analysis (see discussion in section “Signed Euclidean distance transform”). Namely, for each quadrant of 
interest, we considered the following summary statistics, calculated per image patch, per homological dimen-
sion ( H0 and H1 ), and for both birth and death distributions: mean, median, quartiles, interquartile range (IQR) 
and standard deviation. We also calculated, for each image patch and dimension, the number of points n in the 
persistent diagram, the total persistence P =

∑n
i=1(di − bi) , and the persistent  entropy35,36 

∑n
i=1 −

pi
P log

( pi
P

)

 . 
The latter is the Shannon  entropy37 of the persistent values di − bi as a probability distribution (divided by the 
total persistence P), and measures the ‘diversity’ of the  persistence23, that is, how close is the uniform distribution 
(where all features are equally persistent).

Each of the chosen persistent statistics has a direct interpretation in terms of the micro-hole (bone) structure, 
as shown in Table 1. Moreover, we can restrict our attention to features within a specific scale of interest, for 
example micro-holes of a specific size (see Fig. 4c). Further, by focusing on a persistent statistic of interest, we 
can give image patches a score, highlighting regions of interest within the sample (see Fig. 4d).
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Figure 3.  Cubical SEDT filtration of a binary image and persistent homology diagram.

Hypothesis tests. We determine the statistical significance of the persistence statistics described in sec-
tion “Persistence statistics” in our data set of image patches using permutation hypothesis  tests38. Namely, we 
test the null hypothesis that two groups (e.g. female test (OcnVEGFKO) v. female control (WT)) have identical 
distributions for the given persistence statistics (e.g. mean birth in H0 quadrant 1). In the following sections, 
OcnVEGFKO is referred to as ‘test’ and WT as ‘control’, as the method is independent of the mouse model. The 
result is a pseudo p-value, which is the probability that the difference in the mean statistic between the two shuf-
fled groups is at least as large as the difference we observe, if the null hypothesis that the two groups have the 
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same distribution is true. If this probability is very small, we reject the hypothesis that the distributions are the 
same for the two groups.

To calculate the pseudo p-value, we randomly assign image patches to two groups (of the same size as the 
two groups we are comparing) and calculate the difference between the means of the given statistic for the two 
randomly selected groups. By repeating this step a large number of times ( n = 10,000 in our tests), we obtain a 
distribution of differences in means. The pseudo p-value is the proportion of the shuffled differences in means 
which fall above the observed difference in our initial groups. That is, the probability of having observed that 

Figure 4.  Persistent homology micro-hole structure analysis in a greyscale microscopy image.
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difference between two randomly selected groups under the hypothesis that the two groups have identical dis-
tributions. This is an estimate of the p-value (thus called pseudo p-value), since computing all possible permuta-
tions is infeasible. In particular, a pseudo p-value of zero should be interpreted as a very small non-zero value.

We have also included paired permutation hypothesis tests for each of the 26 statistics to determine if there are 
significant differences between the statistic calculated on the TPEF and SHG images. We test the null hypothesis 
that the statistic has identical distributions from the TPEF and SHG imaging types. Each statistic is paired per 
image patch per sample and are shuffled ( n = 10,000 times) between the TPEF and SHG statistic column. For 
each shuffle we calculate the mean of the shuffled differences normalised by the standard deviation of the shuf-
fled differences. We use a two-tailed test and the p-value is the proportion of shuffled differences more extreme 
than the measured difference.

When comparing a large number of persistence statistics using hypothesis tests, we should account for the 
multiple comparison problem. Given that we do not intend to claim biological discoveries based on a single 
statistic, the effect that a single false positive has for our experiment is not overly damaging. Thus, for this data, 
we chose a less-strict measure by using a Benjamini–Hochberg p-value  adjustment39 which controls the false 
discovery rate (expected proportion of all positives that are false) FDR = E

(

FP
FP+TP

)

 , where TP and FP are the 
number of true positives and false positives respectively.

Classification. In addition to the hypothesis tests (section “Hypothesis tests”), we assessed the usefulness of 
the persistent statistics for classification purposes by training a classifier on the images to predict whether unseen 
patches are from our test (OcnVEGFKO) or control (WT) set. That is, we addressed the question whether all or 
some of the persistent statistics that we considered are enough to distinguish the test condition images from the 
control images.

We used a support vector classifier (SVC)40 with a radial basis function (RBF) kernel, which performed bet-
ter than the more standard linear kernel for our dataset of image patches. Cross-validation41 was used to split 
the data into training and test sets, specifically a 10-fold cross-validation stratified into groups where both the 
training and test sets contain a number of patches from each of the four categories (male OcnVEGFKO, male 

Table 1.  Interpretation of persistence statistics. An advantage of using persistent homology with a SEDT 
filtration is its interpretability. Here we list the persistent statistics that we use and their morphological 
interpretation. We use ‘Q.’ for quadrant, ‘p.’ for percentile, ‘st. dev.’ for the standard deviation, IQR for the 
interquartile range, and micro-hole radius or size refers to the radius of the largest inscribed (open) circle. The 
inter-micro-hole distance is half the distance from one micro-hole to the next nearest micro-hole.

H∗ Q Persistent statistic Interpretation

H0 2 Number of points Number of micro-holes

H0 2 Mean birth Mean micro-hole radius (of largest inscribed circle)

H0 2 Median birth Median micro-hole radius

H0 2 25p. birth Minimum radius of largest 25% of micro-holes

H0 2 IQR birth Range in radii of middle 50% of micro-holes

H0 2 St. dev. birth Spread of micro-hole radii

H0 2 Mean death Average micro-hole crowding (mean of inter-micro-hole distance)

H0 2 Median death Median inter-micro-hole distance

H0 2 25p. death Maximum of smallest 25% of the inter-micro-hole distances

H0 2 IQR death Range in the middle 50% of the inter-micro-hole distances

H0 2 St. dev. death Spread of inter-micro-hole distances

H0 2 Persistent entropy Diversity of micro-hole lifetimes

H0 2 Number micro-holes r ≥ 2 Number of micro-holes with radius greater than or equal to 2

H0 2 Number micro-holes r < 2 Number of micro-holes with radius less than 2

H1 1 Number of points Number of bone regions surrounded by micro-holes

H1 1 Mean birth Mean distance from micro-holes at which loop is formed

H1 1 Median birth Middle of the distances from micro-holes at which loop is formed

H1 1 25p. birth Distance 25% through distances from micro-holes when loop is formed

H1 1 IQR birth Range of middle 50% of distances from micro-holes when loop is formed

H1 1 St. dev. birth Spread of distances from micro-holes at which loop is formed

H1 1 Mean death Mean of the radii of regions surrounded by micro-holes

H1 1 Median death Radius of middle-sized bone region surrounded by micro-holes

H1 1 25p. death Max radius of smallest 25% of bone regions surrounded by micro-holes

H1 1 IQR death Range in radii of middle 50% of bone regions surrounded by micro-holes

H1 1 St. dev. death Spread of radii of bone regions surrounded by micro-holes

H1 1 Persistent entropy Diversity of lifetimes for bone regions surrounded by micro-holes
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WT, female OcnVEGFKO, female WT). The resulting prediction accuracy, precision, recall and F1  score42 on 
the unseen test sets are given in Table 3.

Results
Separately for each image type (SHG and TPaF), we took 476 patches from the 12 images, and using hypothesis 
testing, we compared the persistent statistics (section “Persistence statistics”) for the four groups: male OcnVEG-
FKO, male WT, female OcnVEGFKO, female WT. Note that we divided the samples not only into WT (control) 
and OcnVEGFKO (test), but also by sex, due to the known differences per sex of this condition on  bone7,8. In 
this section, we present the results of the hypothesis tests (Table 2), which show where the persistent statistics 
are significantly different between groups of mice, interpret these differences in the persistence statistics (Fig. 5), 
and show the performance results of the support vector classifiers (Table 3).

As discussed (section “Signed Euclidean distance transform”), each micro-hole is represented by a (birth, 
death) point in quadrant 2 of the H0 persistent diagram, with the birth the largest distance from the bone matrix 
(the maximal radius of a circle inscribed in the micro-hole) and the death is (half) the distance at which it 
merges into other pieces originating from surrounding micro-holes (so the death tells us about the local crowd-
ing behaviour). Hence, as in Table 1, the following 13 statistics that summarise this quadrant can summarise the 
microstructure of the holes: number of points (number of micro-holes), persistent entropy (diversity of persis-
tence), mean and median birth (averages of micro-hole radius), mean and median death (averages of micro-hole 
crowding), 25th percentile of births (minimum radius of largest 25% of micro-holes), 25th and 75th percentiles 

Figure 5.  Box plots of persistence statistics per image patch, with three (a–c) from quadrant 2 of H0 which 
summarise the micro-holes and three (d–f) persistence statistics from quadrant 1 of H1 , which summarise 
the loops in the filtration that are regions of bone surrounded by micro-holes. The box plots show the median 
and quartiles, with outliers marked as points outside of 1.5 times the interquartile range. We annotate their 
significance using the adjusted p-values comparing male OcnVEGFKO to male WT on each imaging type (TPaF 
or SHG). Here the stars indicate significance levels: ‘ns’ if it is not significant 0.05 < p ≤ 1 , ‘*’ if 0.01 < p ≤ 0.05 , 
‘**’ if 0.001 < p ≤ 0.01 , ‘***’ if 0.0001 < p ≤ 0.001 , and ‘****’ if p ≤ 0.0001 . We include only the male patches 
and two of eight significance annotations for readability; for the full p-value results, see Table 2.
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Table 3.  Performance results (for OcnVEGFKO vs WT mice image patches) of an SVC (support vector 
classifier) with an RBF (radial basis function) kernel ( C = 3 ) with stratified 10-fold cross validation, using 
10 or 20 persistence features (see main text) to predict whether an image patch in the test set is from a 
OcnVEGFKO or WT mouse. Classifiers with 10 features use only quadrant 2 of H0 , whereas 20 features adds 
additional features from quadrant 1 of H1 , with no improvement. All given measures are mean measures over 
100 repeats. Numbers in bold show the best performance results (SHG images, 10 features).

Images Groups Features Accuracy Precision Recall F1 score

SHG Males 10 (20) 0.987 (0.986) 0.986 (0.984) 0.994 (0.993) 0.989 (0.989)

TPaF Males 10 (20) 0.742 (0.740) 0.810 (0.800) 0.736 (0.747) 0.766 (0.768)

SHG Females 10 (20) 0.778 (0.773) 0.785 (0.777) 0.765 (0.765) 0.767 (0.762)

TPaF Females 10 (20) 0.658 (0.663) 0.704 (0.713) 0.556 (0.553) 0.609 (0.611)

Table 2.  Benjamini–Hochberg adjusted pseudo p-values (3 d.p.) from permutation tests for 28 test statistics 
with paired tests to compare the imaging types and tests between OcnVEGFKO (labelled KO above) and WT 
males and female groups using either the SHG or TPaF images. To see if there is a significant difference from 
the imaging technique we paired the TPaF and SHG image patches per statistic. Also, for SHG and TPaF 
separately we tested the hypothesis that the distributions are the same for males between OcnVEGFKO (test) 
and WT (WT); females between OcnVEGFKO and WT; OcnVEGFKO between male and female; and WT 
between male and female. All p-values in bold are significant at the 5% level. The adjustments were made 
separately for the statistics from TPaF and SHG images in the OcnVEGFKO/WT M/F group comparisons. 
Here H∗ is the homology group, Q is the quadrant and we have included statistics from the H0 quadrant 2 
(separate micro-holes) and from H1 quadrant 1 (loops in bone surrounded by micro-holes). We write p. for 
percentile, r for radius and st. dev. is the standard deviation. For the interpretation of each persistent statistic, 
see Table 1.

H∗ Q Persistent statistic

All Male only: Female only: KO only: WT only:

SHG KO v WT KO v WT Male v Female Male v Female

v TPaF SHG TPaF SHG TPaF SHG TPaF SHG TPaF

H0 2 Number of points 0.628 0.000 0.000 0.001 0.585 0.000 0.092 0.764 0.523

H0 2 Pers. entropy 0.015 0.000 0.001 0.528 0.243 0.000 0.009 0.138 0.586

H0 2 Mean birth 0.000 0.000 0.000 0.000 0.104 0.000 0.000 0.009 1.000

H0 2 Median birth 0.000 0.000 0.037 1.000 1.000 0.000 0.026 1.000 1.000

H0 2 25p. birth 0.000 0.000 0.000 0.001 0.104 0.000 0.000 0.010 0.523

H0 2 IQR birth 0.000 0.000 0.000 0.001 0.104 0.000 0.000 0.008 0.557

H0 2 St. dev. birth 0.007 0.000 0.000 0.000 0.585 0.000 0.000 0.764 0.430

H0 2 Mean death 0.000 0.000 0.009 0.992 0.365 0.000 0.000 0.000 0.384

H0 2 Median death 0.870 0.000 0.004 0.776 0.104 0.000 0.000 0.000 0.384

H0 2 25p. death 0.000 0.000 0.135 0.528 0.104 0.000 0.091 0.058 0.384

H0 2 75p. death 0.001 0.000 0.002 0.992 0.980 0.000 0.000 0.006 0.586

H0 2 IQR death 0.000 0.000 0.002 0.992 0.980 0.000 0.000 0.007 0.658

H0 2 St. dev. death 0.000 0.000 0.033 0.992 0.104 0.000 0.019 0.000 0.384

H0 2 Number holes r ≥ 2 0.000 0.158 0.000 0.000 0.003 0.149 0.019 0.000 0.384

H0 2 Number holes r < 2 0.344 0.000 0.000 0.000 0.585 0.000 0.091 0.808 0.523

H1 1 number of points 0.000 0.000 0.000 0.144 0.718 0.000 0.085 0.331 0.430

H1 1 Pers. entropy 0.000 0.000 0.001 0.995 0.585 0.000 0.019 0.197 0.982

H1 1 Mean birth 0.000 0.000 0.037 0.797 0.392 0.000 0.019 0.000 0.430

H1 1 Median birth 0.000 0.000 0.182 0.776 0.585 0.000 0.132 0.000 0.384

H1 1 25p. birth 0.000 0.000 0.471 0.470 0.640 0.000 0.001 0.000 0.384

H1 1 IQR birth 0.000 0.000 0.017 0.995 0.585 0.000 0.105 0.000 0.700

H1 1 St. dev. birth 0.000 0.000 0.001 0.991 0.104 0.000 0.177 0.000 0.700

H1 1 Mean death 0.000 0.000 0.037 0.981 0.392 0.000 0.019 0.000 0.430

H1 1 Median death 0.000 0.000 0.170 0.776 0.585 0.000 0.141 0.000 0.384

H1 1 25p. death 0.000 0.000 0.478 0.797 0.640 0.000 0.002 0.001 0.384

H1 1 75p. death 0.000 0.000 0.037 0.960 0.585 0.000 0.026 0.000 0.523

H1 1 IQR death 0.000 0.000 0.017 0.991 0.585 0.000 0.098 0.000 0.700

H1 1 St. dev. death 0.000 0.000 0.001 0.992 0.104 0.000 0.166 0.000 0.700
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of death distribution (crowding bounds of smallest 25% and largest 25% of micro-holes), the interquartile range 
of births and deaths (radius/crowding difference for middle 50% of micro-holes) and the standard deviation 
of births/deaths (spread of radius and crowding). Analogous persistent statistics for quadrant 1 of H1 , which 
captures loops in the bone matrix surrounded by micro-holes, quantify the number and size of uninterrupted 
regions surrounded by micro-holes. Finally, to show the number of features at a given scale, we also include the 
number of micro-holes of radius less than 2, and the number of micro-holes of radius greater than or equal to 
2, calculated using the births from quadrant 2 of H0.

In Fig. 5, we show three example persistent statistics for H0 and three persistent statistics for H1 , which allow 
us to quantify the differences between the male OcnVEGFKO and WT groups with respect to specific interpret-
able topological (persistent) features. For the full significant differences per statistic see Table 2 and for plots of 
other statistics and the female results please see the supplemental information. The statistics shown are divided 
into male OcnVEGFKO and WT groups, so there are patches from bone tissue samples from 3 mice, each 
represented by its respective box plot. Firstly, in Fig. 5a, the male OcnVEGFKO mice have fewer points, hence 
fewer micro-holes, but the micro-holes are much larger as they have more negative birth times in Fig. 5b, i.e. the 
micro-hole centres are farther from the bone pixels. The top 25% of micro-holes have a radius larger than the 25th 
percentile for births and the male OcnVEGFKO set have consistently larger radii across the patches. Similarly, 
the interquartile range (IQR) of births shows the middle 50% of micro-hole sizes have a much greater range of 
sizes in the OcnVEGFKO male patches compared to the other groups whose separate micro-holes are much 
more consistent in size. There is a decrease in persistent entropy for the OcnVEGFKO males, which indicates 
that features are more diverse, as persistent entropy increases with homogeneity of persistence. Importantly, the 
OcnVEGFKO male patches are also less crowded, which is shown by the increase in mean death time in Fig. 5c, 
as micro-holes persist to greater distances from the micro-hole before colliding. This is further supported by 
OcnVEGFKO male patches showing significant increases for deaths in the median, standard deviation, IQR 
and the 75th percentile. It should be noted that, for the SHG images only, there are a few significant differences 
between female OcnVEGFKO and WT patches, including the number of points, mean birth, IQR, standard 
deviation and 25th percentile for birth.

In addition, for quadrant 1 of the 1st persistence diagram (Fig. 5d–f), the male OcnVEGFKO patches contain 
fewer loops formed by bone matrix regions around micro-holes, as there is a lower number of points (Fig. 5d), 
which fits with the expectation given there are fewer micro-holes. These loops have a higher mean birth (Fig. 5e), 
so are born at greater distance from the micro-holes and similarly an increased mean death (Fig. 5f) means they 
are filled in at higher distance values, so are larger. Overall, this shows that the micro-holes in the OcnVEGFKO 
male patches are less crowded, as the bone matrix areas between micro-holes are fewer, larger and less inter-
rupted by smaller features.

We show the Benjamini–Hochberg adjusted p-values for the permutation tests for our choice of persistence 
statistics in Table 2. For each imaging type (SHG, and TPaF), we test the hypothesis that the distributions are the 
same for: males between OcnVEGFKO and WT; females between OcnVEGFKO and WT; OcnVEGFKO between 
male and female; and WT between male and female. The p-values show many significant differences between the 
male OcnVEGFKO and WT image patches, and between the OcnVEGFKO male and female patches. However, 
between the female OcnVEGFKO and WT patches, the statistics show only 5 significant differences for the SHG 
(and none for TPaF). The vast majority of statistics are also significantly different between the OcnVEGFKO 
male and female patches, both for the SHG and TPaF images. For the SHG images, there are also some signifi-
cant differences between the male and female WT patches that are not present in the TPaF images, consistent 
with what we observe in Fig. 5. The SHG images capture the collagen structure of the samples, so the stronger 
significant differences and improved classification performance shown in Table 3 indicate that the differences 
are due to the collagen distribution in the bone matrix (see section “Discussion”).

In Table 2, the first p-value column gives the results of paired permutation tests, comparing the difference 
between an SHG patch and the corresponding TPaF patch, for each statistic. The majority of these p-values are 
significant at the 5% level, demonstrating that the choice of imaging technique results in significantly different 
persistent statistics. In these paired tests, the statistics relating to the sizes of the micro-holes are significantly 
different between the imaging techniques. This is to be expected, as the SHG images are detecting micro-holes in 
the collagen structure, in comparison to micro-holes in the autofluorescence of the TPaF image patches. However, 
the number of micro-holes was not found to be significantly different between the imaging techniques per patch, 
indicating a more consistent count of micro-holes between TPaF and SHG images.

By training a classifier on the persistence statistics, we can predict whether an unseen image patch is typical 
of a condition. Here, we compare image patches from OcnVEGFKO (test) mice to WT (control) mice, per sex. 
We used a support vector classifier (section “Classification”) with 10 of the persistence statistics, per quadrant: 
number of points, persistent entropy, and the mean, median, standard deviation of births and deaths as well as the 
25th percentile of births and the 75th percentile of deaths. We omit the number of micro-holes with specific radii 
as they sum to the number of micro-holes, and similarly we also omit the interquartile ranges (IQR) as they are 
the difference between the quartiles. In addition, the 25th percentile of deaths is omitted due to fewer significant 
differences (see Table 2). The results (Table 3) show a good separation between OcnVEGFKO and WT samples 
in the males, and reasonably strong results for females, given that there are far fewer significant differences. 
Further, when including features from quadrant 1 of H1 , results shown in brackets, there is no improvement, 
which suggests that the features from quadrant 2 of H0 contain enough topological information on their own.
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Discussion
We have presented a topology-based workflow to quantify morphological features, namely microstructure of the 
holes in the bone, in non-linear microscopy images. We extracted fully interpretable topological statistics from 
each image patch (Table 1), which quantify biologically relevant characteristics such as the number, radii and 
crowding of micro-holes throughout the samples. We demonstrated our methodology on mice bone samples 
and found significant differences in topological statistics between samples from OcnVEGFKO (test) and WT 
(control) images (Table 2), in line with previous  observations8. Furthermore, we were able to accurately classify 
unseen image patches, using a support vector machine trained with a subset of the topological statistics. On this 
data, we see improved classification performance on patches from males in comparison to females (Table 3), 
stemming from the stronger significant differences between male OcnVEGFKO and WT (Table 2). The predic-
tions for the SHG images are notably more accurate, which demonstrates the benefits of using a specialised 
microscopy technique, such as SHG, which captures the collagen structure.

The main strengths of our methodology are its interpretability, objectivity, and flexibility. Indeed, we were 
able to directly relate observable, biologically relevant micro-hole characteristics to specific topological statistics 
and determine whether differences were statistically significant. Namely, using an SEDT filtration, we encoded 
geometric information, such as radius or inter-micro-hole distances, using topological summaries of persistent 
homology. Our workflow is automated and objective, relying only on the choice of patch size, which reduces 
the potential for human error or bias. The persistent homology methodology itself is highly flexible, and can 
be customised to analyse other morphological characteristics of interest, by tailoring the filtration and choice 
of persistent statistics, and it can also be used to separate and summarise features of specific sizes (see Fig. 4c 
or Table 2).

By taking patches of the images, we can analyse the localised microstructure of the samples (such as the 
average minimal radius of micro-holes in region), at the cost of ignoring the macrostructure (the overall ‘shape’ 
of the sample), which is irrelevant to our structural analysis. (This is not a real limitation, as our topological 
workflow can be applied to whole sample images, and the topological summaries adapted to global morphologi-
cal features of interest.) By using image patches, we also increase the number of images, and, together with the 
engineered topological features, we make classification tasks feasible on small sample sizes, as demonstrated in 
our mice data set (Table 3). Moreover, the patch-based approach allows for clear, intuitive visualisations of the 
topological statistics on the (binary) whole sample image. These visualisations can be used to indicate atypical 
or interesting regions within a single sample, and allow direct comparison of full sample images across a set of 
samples, which can highlight consistent regional effects or anomalous samples. Also, it should be noted that the 
background outside of the sample will register as a single micro-hole per patch containing background, which 
we mitigated by trimming images to reduce the size of the background component.

There are several existing methods to quantify porosity in bone tissue, including the method  in8,43 applied 
to SR CT images of the same samples  in8. Porosity is a volumetric measure of how porous a sample is. Despite 
analysing micro-holes in 2D images of 3D ‘pore’ structures, the topological method on SHG images that we have 
presented is comparable to this ‘geometric’ method on SR CT image data. However, our topological method 
offers a distinct advantage over existing methods in that it is automated, and encodes a more diverse summary 
of different microstructure characteristics, including micro-hole crowdedness, which can be used in assessing a 
wider range of morphological characteristics in bone samples.

An important limitation when using persistent homology is that it only uses one scale parameter (the SEDT 
values in our analysis), as multi-parameter persistent homology is  problematic44. In particular, the original pixel 
intensities are not used beyond thresholding into a binary image. This is necessary for the SEDT filtration, which 
allows us to separate (and thus summarise) the individual micro-holes (black pixels). Our method, therefore, 
relies on a good separation of the images to a binary format of bone matrix and micro-hole phase. Note that 
the existing geometrical method we mentioned above also relies on converting greyscale images into binary.

Finally, in terms of computational cost, the calculation of the persistent statistics took a couple seconds per 
image patch, and can be run in parallel.

Conclusion
We have provided a new method for the detection and quantification of micro-hole morphology on microscopy 
images. Its input is any greyscale image, which is converted into a binary image, and a patch size, and it uses 
a topological method to summarise micro-holes (regions without signal, or connected pieces of black pixels 
in the binary image) morphology per image patch. Namely, it detects individual micro-holes ( H0 points) and 
their radius (largest inscribed circle, H0 birth), as well as the distance to the closest micro-hole ( H0 death), in an 
automatic way. Additionally, we can also summarise the signal region morphology, by detecting signal regions 
surrounded by micro-holes ( H1 points), and the formation of loops around signal regions ( H1 birth), and the 
radius of such regions ( H1 death). Our topological method is automatic, requiring only a greyscale image and 
patch size, robust, as persistent homology is known to be robust against noise (a small perturbation of the input 
results in a small perturbation of the  output45), and interpretable, in the sense that each topological summary is 
linked to a micro-hole morphological characteristic (Table 1).

We demonstrate how micro-hole morphology analysis using our topological method is sufficient to detect 
significant differences, and classify with high predictive power, on transgenic mice bone TPaF and SHG images, 
despite a small sample size. The use of SHG images provided us with a detailed analysis of micro-holes in the 
collagen structure, which can be directly compared to those in the autofluorescence of TPaF images. There is a 
clear benefit to analysing the SHG images, when we look at the comparative strength of the results between the 
SHG and TPEF images. SHG images are typically used to study collagen  structure46, mostly focusing on analysing 
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or extracting fibres. It would be interesting to combine our topological methods with existing fibre analysis in 
the context of collagen structure in SHG images, but this is beyond the scope of the present article.

Our topological method provides a new tool in bone image analysis, and is applicable to other samples, 
materials and imaging techniques where we want to quantify ‘micro-hole’ (lack of signal regions) morphology. 
We have provided ready-to-use python code for the entire workflow. Note that our topological summaries can be 
combined with other image analysis features, in particular to improve the predictive performance of a classifier. 
In that sense, our method can also be seen as high-quality morphological feature engineering for image analysis.

Our results demonstrate the usefulness, versatility, and potential of topological analysis methods in non-linear 
microscopy imaging. By validating this method on bone samples, we broaden the bone analysis toolkit by adding 
a flexible topological workflow, and new microstructure topological features for bone. We expect our, and similar, 
topological methods to be useful in other biological research settings on tissue samples beyond bone, and for 
a wide range of biological applications. In the future, we plan to adapt our topological method to analyse other 
microscale morphological characteristics beyond the structure of micro-holes in the image data, by modifying 
the filtration and customising the topological summaries. One important avenue for future work is to explore 
the potential for use as a diagnostic aid, and tailor this method to specific diseases which alter bone structure at 
the microscale within human samples.

Data availability
The datasets used and analysed during the current study are available in the figshare repository, under the DOI: 
https:// doi. org/ 10. 6084/ m9. figsh are. 20765 659. v1.
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