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Quantifying microstructures 
of earth materials using 
higher‑order spatial correlations 
and deep generative adversarial 
networks
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The key to most subsurface processes is to determine how structural and topological features at 
small length scales, i.e., the microstructure, control the effective and macroscopic properties of 
earth materials. Recent progress in imaging technology has enabled us to visualise and characterise 
microstructures at different length scales and dimensions. However, one limitation of these 
technologies is the trade-off between resolution and sample size (or representativeness). A promising 
approach to this problem is image reconstruction which aims to generate statistically equivalent 
microstructures but at a larger scale and/or additional dimension. In this work, a stochastic method 
and three generative adversarial networks (GANs), namely deep convolutional GAN (DCGAN), 
Wasserstein GAN with gradient penalty (WGAN-GP), and StyleGAN2 with adaptive discriminator 
augmentation (ADA), are used to reconstruct two-dimensional images of two hydrothermally rocks 
with varying degrees of complexity. For the first time, we evaluate and compare the performance of 
these methods using multi-point spatial correlation functions—known as statistical microstructural 
descriptors (SMDs)—ultimately used as external tools to the loss functions. Our findings suggest 
that a well-trained GAN can reconstruct higher-order, spatially-correlated patterns of complex earth 
materials, capturing underlying structural and morphological properties. Comparing our results with a 
stochastic reconstruction method based on a two-point correlation function, we show the importance 
of coupling training/assessment of GANs with higher-order SMDs, especially in the case of complex 
microstructures. More importantly, by quantifying original and reconstructed microstructures via 
different GANs, we highlight the interpretability of these SMDs and show how they can provide 
valuable insights into the spatial patterns in the synthetic images, allowing us to detect common 
artefacts and failure cases in training GANs.

Many geological phenomena within the Earth result from physicochemical processes occurring at length scales 
ranging from nanometers to micrometres. For example, the motion of tectonic plates is associated with the move-
ment of atomic imperfections (i.e., dislocations) within individual mineral grains (e.g.,1). Likewise, the transport 
of fluids within the crystalline lithosphere2,3 and reservoirs for the storage of CO2

4 and hydrogen5 are governed 
by processes occurring at grain contacts and within microscopic pore spaces. However, it is not the individual 
dislocation nor pore that controls phenomena at larger length scales but the interaction of many dislocations 
and pores in tandem. Hence, to understand and model geological processes at larger length scales, we need to 
(i) quantitatively characterise microstructures that both include existing samples and generalise beyond them 
and (ii) establish a link between these microstructures and the physical properties of rocks across length scales.

In the past decades, rapid advances in imaging technologies have made it possible to characterise earth 
materials at different length scales. For example, electron backscattered diffraction is a 2D imaging technique 
used to describe polycrystalline rocks and gives valuable information such as the lattice-preferred orientation of 
minerals in multiphase systems, grain shape, and distribution at different scales6,7. Scanning electron microscopy 
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(SEM) utilising backscattered electron (BSE) imaging is another technique that can be used to acquire high-
resolution images of large areas of rock surfaces. However, applications of such 2D imaging techniques remain 
limited as many geological processes such as rock deformation and fluid transport in porous media are inher-
ently volumetric.

X-ray tomography is a widely used technique to obtain three-dimensional images of rock microstructures, 
which provides detailed information about internal structures with a maximum pixel size of ± 0.5µm which 
would not be sufficient to resolve much smaller features observed in complex heterogeneous media such as 
carbonates8, shales9 or dense crystalline rocks. In such circumstances, techniques such as focused ion beam 
nanotomography (e.g.,10,11) can be employed, which acquires images with nanometer pixel size but at the expense 
of the field of view (FoV). This tradeoff highlights the inherent limitation of imaging technologies; resolution 
and FoV are in direct competition. Moreover, while tiny structures may control the overall behaviour of a given 
medium, the modelling domain (i.e., FoV) needs to be sufficiently large to be representative of the whole system12.

Another challenge in heterogeneous systems is that the microstructural properties can significantly vary 
from one sample to another, so their variabilities also need to be evaluated to have a more realistic model. The 
variability assessment is typically done by conducting several imaging experiments or numerical simulations 
on different samples, allowing us to obtain a distribution over larger samples and capture the heterogeneity of 
the medium (e.g.,13). However, acquiring large image datasets comes with high costs and a severe time penalty.

Two steps need to be taken to go beyond the limitations of available imaging techniques and bridge the gap 
across different scales. First, samples of complex earth materials need to be imaged with sufficient resolution (to 
capture the smallest features of interest in a given system) and quantified using reliable statistical tools- a process 
known as microstructure characterisation. The second step is to reconstruct synthetic but realistic images of the 
microstructure at a representative scale which is statistically equivalent to the original sample. Thus, statistical 
characterisation is a key here to assess how similar the original and synthetic images are in terms of structural 
and morphological properties. The fundamental underlying assumption of this approach is that the geometrical 
patterns of a limited number of samples are representative of a large class of materials sharing those patterns. 
As such, these patterns, often represented in terms of spatial statistics, must be implicitly or explicitly exploited 
in the reconstruction process. Thus, the reconstruction of heterogeneous media is an inverse problem in which 
a limited amount of microstructural information is used to (re)construct realistic microstructures and evaluate 
macroscopic properties14,15. Consequently, image reconstruction has become an essential aspect of digital rock 
physics to produce representative samples for upscaling, multi-scale modelling, and uncertainty assessment.

Several methods have been developed for image reconstruction in recent years, which can be grouped into 
two main approaches: stochastic methods and deep-learning-based reconstructions. Despite their differences, 
both methods should be supplemented with microstructure characterisations of the system. Characterisation 
refers to statistically quantifying and representing the morphology of a system using spatial correlation func-
tions, also known as statistical microstructure descriptors (SMDs)16. Traditional stochastic methods take such 
correlation functions as an input and construct a synthetic microstructure with the same characteristics. On the 
other hand, although deep-learning methods do not require such information a priori, it is necessary to com-
pute the correlation functions from original and reconstructed images to evaluate the reconstruction accuracy.

Most research on stochastic methods formulates the image reconstruction as an optimisation problem in 
which n-point correlation functions, defined as the probability of n random points to lie in a phase of interest 
(e.g., solid, liquid, or void), are calculated from original images and used as target functions. Next, these methods 
seek to reconstruct a medium for which the calculated correlation function(s) matches the target function(s) 
derived from the original image. This match can be obtained by applying stochastic optimisation techniques 
such as simulated annealing (SA)14,17,18. While such a framework is shown to be able to reconstruct single-scale 
microstructures such as Fontainebleau sandstone using a simple two-point correlation function17, it fails in the 
case of multi-scale complex heterogeneous systems since it only captures the largest scale features19,20. Recently, 
Karsanina et al.21 proposed a novel hierarchical optimisation approach to incorporate two-point correlations of 
different scales in SA for reconstructing coarse and fine microstructures in a single image.

An alternative to two-point correlation is to employ multi-point statistics (MPS), or high-order n-point corre-
lation functions ( n ≥ 3 ). These methods have been used for 3D image reconstruction from 2D images, showing to 
be more effective in long-range connectivity22,23. While reconstructing more realistic images, these methods and 
improved variants24–26 are computationally costly and limited to isotropic media. Chen et al.27 developed a set of 
hierarchical descriptors, termed n-point polytope functions, which successively capture higher-order correlations 
of a given phase in an image. In contrast to MPS, these polytope functions can be computed significantly faster 
since only the probability of n vertices of a randomly- or user-selected regular polytope (e.g., triangle, square, 
hexagon for n = 3, 4, and 6, respectively) is considered, i.e., they can be seen as a subset of n-point correlation 
functions with a fixed edge length. It has been shown that incorporating these higher-order correlation functions 
in SA as target functions will improve the reconstruction accuracy. However, adding more correlation functions 
increases the computational costs and makes convergence harder to achieve during SA28.

In recent years, the advent of deep learning (DL) has opened up unprecedented opportunities and insight into 
image reconstruction. Generative adversarial networks (GANs) are among the advanced DL-based generative 
models which have been successfully applied for 2D29 and 3D13,30–34 microstructures reconstruction. Notably, 
a growing body of literature has recently investigated 2D to 3D image reconstructions intending to infer 3D 
morphological and structural properties using features extracted from 2D images in specific orientations35–38.

Despite showing promising results, training GANs stably and efficiently is a non-trivial task. Some of the 
challenges and different approaches to meet them are provided in the following sections. In this work, we employ 
three different variants of GANs for microstructure reconstruction: deep convolutional GAN (DCGAN)39, Was-
serstein GAN with gradient penalty (WGAN-GP)40,41, and StyleGAN2 with adaptive discriminator augmen-
tation (StyleGAN2-ADA)42. We first compare the performance of a well-trained GAN to stochastic method 
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to reconstruct two-dimensional electron microscopy images taken from two of the most common fluid-rock 
interactions within the Earth’s lithosphere; (1) the hydrothermal alteration of feldspar in igneous rocks and (2) 
the hydration of upper mantle rocks to induce serpentinisation. While only two-point correlations are used in SA 
as a target function, polytope functions are calculated to evaluate the accuracy of both methods in reproducing 
higher-order structural information in the systems. To our knowledge, previous studies only used two-point 
correlation and a subset of the so-called Minkowski functionals (e.g., specific surface area and Euler connec-
tivity) to assess image reconstruction performance - none of these choices, however, have explicitly addressed 
how machine-learning-based reconstructions perform in reproducing high-order spatial correlations. When 
determining how well we can reconstruct higher-order complexity, our results show that while a reconstructed 
microstructure can have the same two-point correlation as the original one, they can be morphologically differ-
ent. Therefore, it is necessary to couple higher-order correlation functions with reconstruction methods. Further-
more, we compare the performance of three types of GANs on representative images using the proposed polytope 
functions. First, we assess quantitatively the accuracy of GANs by computing the error between SMDs of original 
and reconstructed microstructures. Then, we interpret the SMDs derived from each GAN and argue how such 
an analysis can shed light on different geometrical patterns, as well as artefacts reproduced by different GANs.

Theoretical approach
Rock samples and dataset.  We focus on two commonly occurring rock types affected by fluid-rock inter-
action. The first example is an altered igneous rock representative of fluid-rock interactions of the Earth’s crust2 
and the second example is a partially serpentinised peridotite representative of alteration within the Earth’s 
uppermost mantle43. For simplicity, we refer to these two rock samples as meta-igneous rock and serpentinite 
from here on.

For the meta-igneous rock, a small core was drilled with a diameter and height of 2.5 mm and 1 cm, respec-
tively. The core was cut, and the surface was imaged in backscattered electron (BSE) mode using the Zeiss 
Atlas software installed on a Zeiss Gemini 450 SEM. Zeiss Atlas allows large-area BSE imaging of up to several 
centimetres. Acquisition conditions were 20 kV acceleration voltage and 2 nA beam current. The pixel size was 
set to 50 nm. Subsequently, a region of interest with dimensions of 17,920 by 54,784 pixels (0.9 mm by 2.7 mm) 
was imaged.

For the partially serpentinised peridotite, the Atlas software-based BSE imaging approach was utilised on 
various samples from selected Norwegian peridotites previously described in43 and44. The rock samples are 
characterised by a lizardite-mesh texture with remaining olivine and secondary magnetite. The serpentinisation 
process produces a fracture network creating pathways for fluid flow. In this case, a small part of a thin section 
was scanned with an acceleration voltage of 15 kV, 2 nA current, and pixel size of 500 nm, resulting in a large 
image of dimensions 15,000 by 30,000 pixels (7.5 mm by 15 mm).

To remove the noise and artefacts that are often present in raw images, the acquired grayscale BSE images 
were first denoised by applying an edge-preserving denoising algorithm known as bilateral filtering. This filter 
smooths an image by averaging pixels based on their spatial distance and pixel value similarities. For more details, 
please see the original work by45 and the scikit-image Python package’s documentation46. The filtered images were 
subsequently segmented into binary images where a pixel value of 1 corresponds to the phase of interest, which 
is the reaction-induced pore network in igneous and the fracture network in serpentinite samples, respectively. 
Image segmentation employed a convolutional neural network (CNN) with U-Net architecture47. This method is 
supervised deep learning and thus, requires previously annotated images for training. These labeled images were 
created using the ilastik software; an interactive software developed for image classification and segmentation48. It 
is worth mentioning that although one can do the image segmentation using ilastik alone, the benefit of training 
a CNN is that, once trained, it can be used to quickly segment future images either directly (if the sample and 
imaging conditions are the same) or using transfer-learning.

n‑point correlation functions.  Correlation functions have been proposed as an effective means to 
describe complex heterogeneous microstructures mathematically. The most widely used microstructural cor-
relation function is the two-point correlation, S2(r) , which is the probability P of two random points of distance 
r to occur in the same region of phase i, Vi , within a d-dimensional space Rd49:

where x is an index showing the location of a pixel in the microstructure image. This is a radial form of two-
point correlation calculated by averaging the functions in horizontal and vertical orientations for a statistically 
isotropic and homogeneous system. According to this definition, the probability of one random point (r = 0) 
to occur in phase region Vi is a one-point correlation corresponding to the volume fraction of that phase, i.e., 
S
(Vi)
1 = S

(Vi)
2 = φi.

As mentioned earlier, two-point statistics is not sufficient to uniquely characterise complex systems containing 
higher-order spatial correlations in different locations of an image. In such cases, an n-point correlation function 
Sn can be defined as a probability of n random points to lie in a given phase. While a complete description of the 
medium can be achieved by a set of Sn with n = 1, 2, 3, . . . ,∞ , calculating and storing probabilities of all pos-
sible n-points statistics is computationally intractable. Thus, to sample high correlations from digitally-sampled 
microstructures, a compromise must be made between geometric completeness and algorithmic practicality. One 
such approach to capture complex microstructures uses n-point polytope functions, defined as a probability of 
n vertices of a random regular n-point polytope having a given edge length that occurs within the same phase 
(Fig. 1).

(1)S
(i)
2 (r) = P(x ∈ Vi , x + 1 ∈ Vi) for x and Vi ∈ Rd
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The polytope functions capture partial higher-order n-point correlations of a specific phase and can be 
directly computed from 2D or 3D images and incorporated in a stochastic optimisation method for image 
reconstruction27. As shown in Fig. 1, for n = 2 , the two-point polytope function is the same as S2 . However, for 
n => 3 , the higher-order polytope functions can be seen as a subset of the n-point correlation functions, which 
can be efficiently computed as the edge length (r) is the only variable. Also, to further quantify morphological 
patterns, we use a lineal-path function L50. This function is a statistical morphological descriptor defined as the 
probability that an entire line of the length r occurs in the same phase. Thus, it can provide additional insight 
into microstructure connectivity and linear clustering. A scaled version of these functions, known as scaled 
autocovariance function, has been introduced by49 and is related to the Pn functions via:

where φ is the phase fraction. According to this equation, Fn(r = 0) = 1 and Fn(r → ∞) = 0 . The latter is 
obtained as for r → ∞ , we have Pn ≈ φn . Although both Fn and Pn functions show the same behaviour for a 
given microstructure, it is more convenient to use the scaled autocovariance as it is normalised by the phase 
fraction - meaning that they describe geometric patterns independently from a given phase’s volume fraction.

Stochastic reconstruction.  In this study, we use the stochastic Yeong-Torquato-based reconstruction 
algorithm developed by Jiao and co-workers as a benchmark14,17. This approach formulates image reconstruc-
tion as an optimisation problem in which reconstruction is performed by minimising a cost function using 
simulated annealing (SA) optimisation51. The algorithm starts with a two-point correlation S2 of an original 
image as a target function and a random initial system configuration with the same volume fraction. An energy 
function is defined as the sum of the square errors between the target function and correlation function of the 
proposed configuration Ŝ2:

To evolve the random reconstruction towards the original image, the values of two random pixels associated with 
different phases (i.e., black and white pixels) are exchanged, ensuring that the volume fraction of both phases is 
preserved. Hence, a new energy Enew corresponding to the new configuration, and the energy difference between 
two successive configurations �E = Enew − Eold are calculated. Finally, the pixel exchange is accepted according 
to the Metropolis acceptance rule:

where p(�E) is the acceptance probability of the pixel exchange, T is an imaginary temperature that is initially 
set to a high value and decreases by a factor of α (selected to be less than but close to 1) after each annealing stage 
of the algorithm i.e., T = α × T0 . Accordingly, when the temperature is high at the initial steps, the acceptance 
probability of the pixel exchange can be higher even if Enew � Eold , i.e., the error between target and sampled 
two-point correlation in the new configuration is higher than the old one. Thus, the probability of accepting 
a bad configuration is higher. This helps to explore the whole solution space and prevents the algorithm from 

(2)Fn(r) =
Pn(r)− φn

φ − φn

(3)E =
∑

r

[

Ŝ2 − S2(r)
]2

(4)p(�E) =

{
1, if Enew < Eold
exp(−�E/T), if Enew � Eold

Figure 1.   Illustration of polytope functions in meta-igneous rock (a) and serpentinite (b) samples. P3H , and 
P3V indicate the probability of vertices of horizontal and vertical triangles, and P4 and P6 are those of a square 
and hexagon, respectively. L is the lineal-path function.
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trapping in local minima. These steps are repeated until the energy (error) of the reconstructed image is less than 
a predefined threshold value or a maximum number of iterations is reached. In this study, 1e−7 , 0.97, and 250 
were selected for the initial temperature ( T0 ), the decreasing factor ( α ), and the number of iterations, respectively.

Although the Yeong-Torquato SA is a well-known, flexible optimisation method that allows the incorporation 
of correlation functions to improve the reconstruction process, the computational costs significantly increase 
by including additional functions or dimensions - because they must be sampled at any iteration. And, similar 
to most stochastic optimisation methods, inference (reconstructions) accuracy is achieved after relatively large 
numbers of iterations. Hence, we only use the two-point correlation function as a benchmark against our GAN 
models.

Generative adversarial networks(GANs).  GANs are unsupervised generative algorithms based on 
game theory52, which can directly learn complex high-dimensional probability distributions from the input 
data. The term adversarial originates from the fact that GANs are composed of two neural networks competing 
against each other: a generator (G) and a discriminator (D). The generator’s task is to generate realistic images 
from the data distribution pdata . This is done by transforming noise (i.e, random) vectors z into x = Gθ (z) , 
with θ being a set of learnable parameters. These noise vectors, also known as latent space, are random variables 
usually sampled from a normal distribution. During training, the discriminator Dθ , which is a binary classi-
fier, receives both real images (from pdata(x) ) and reconstructed images (from pmodel(x) ), and then learns to 
maximise the probability of correctly labeling reconstructed (with label= 0) and real images (with label= 1). At 
the same time, the generator is trained in such a way that a chosen discriminator metric e.g., log(1− D(G(z))) 
is minimised (i.e., to ’fool’ the discriminator into classifying the reconstructed image as real with D(G(z)) = 1 . 
Mathematically, the cost function for such a GAN, which is called DCGAN when convolutional layers are used 
in G and D, is a minimax game with value function V(G, D)52:

Challenges in training GANs.  Although GANs have been successfully applied to reconstruct a wide range of 
images, training GANs stably and efficiently is non-trivial. The training involves achieving a Nash equilibrium 
to a non-cooperative game between the generator and the discriminator, each of them having its cost function: 
J(D)(θ(D), θ(G)) and J(G)(θ(D), θ(G)) for the discriminator D and the generator G, respectively. A Nash equilib-
rium is reached when a combination of parameters (θ(D), θ(G)) is found so that J(D) is minimum with respect to 
θ(D) , and J(G) is minimum with respect to θ(G) . Finding these parameters to reach Nash equilibrium is difficult 
because a change in θ(D) to reduce J(D) may increase J(G) , and similarly, a modification to θ(G) for minimising 
J(G) can increase J(D) . Therefore, although the two players might reach an equilibrium in some cases, updating 
the parameters of both models does not necessarily lead to stable and convergent training. However, this is not a 
specific issue of GANs, but it is a general problem with game-theory-based approaches.

Mode collapse is another common issue in GANs, which occurs when the generator collapses to a set of 
parameters θ that leads to reconstructing the same images, i.e., mapping different noise vectors into the same 
output53. The reason is that the discriminator receives and analyses each image independently. Therefore, when it 
cannot differentiate between real and reconstruction for a specific example, the generator updates its parameters 
to create more of that example and win the game.

Several heuristic methods are proposed to overcome these challenges and improve training stability. Some 
effective techniques are: feature matching, minibatch discrimination, historical averaging, one-sided label 
smoothing, and visual batch normalisations54. Adding Gaussian noise to the discriminator’s input and label 
switching can also stabilise the training process30, though the greater statistical conditions and implications of 
this approach are still to be researched. Furthermore, some studies have investigated the use of other distance 
metrics and value functions than binary cross-entropy (BCE) (Eq. 5). Arjovsky et al.40 used Earth-mover or Was-
serstein-1 distance to measure the distance between the probability functions of real and reconstructed images. 
This method, known as WGAN, can prevent mode collapse and improve stability and convergence behaviour 
by forcing the gradient of the discriminator in a constrained space. This can be done by applying a weighted 
clipping or a gradient penalty, with the latter method known as WGAN-GP41. In this paper, we use WGAN-GP 
to enforce the output of the discriminator in [− 1, 1]:

where x̂ is a mixture of real and the reconstructed image from the generator network calculated via 
x̂ = ε(x)+ (1− ε)G(z) , in which ε is a random number from a uniform distribution U[0, 1]. � is the coefficient 
of the gradient penalty and here is set to 10. The rationale for choosing this value can be found in the Supple-
mentary information.

Miyato et al. 201855 used spectral normalisation in GAN (SNGAN) to solve the stability problem. This 
normalisation technique was later coupled with WGAN by33 for 3D image reconstruction of electrodes. More 
recently, Karras et al. proposed the style-based GANs, namely StyleGAN56, StyleGAN257, StyleGAN2-ADA42, 
and StyleGAN358. In all these versions, the style refers to the variations in images representing different levels of 
detail (e.g., global and local features). Experiments and analyses on different datasets suggest that these models 
can generate high fidelity and more diverse images of larger size, with more control over styles. Despite the dif-
ferences, all StyleGANs consist of a mapping network and a synthesis network. The role of the mapping network 

(5)
min
︸︷︷︸

G

max
︸︷︷︸

D

V(D,G) = Ex∼p(data)[(logD(x))] + EZ∼p(Z)[log(1− D(G(Z)))]

(6)min
︸︷︷︸

G

max
︸︷︷︸

D

V(D,G) = Ex∼p(data)[(D(x))] − EZ∼p(Z)[D(G(Z)))] + �Ex̂[(
∥
∥∇x̂D(x̂)

∥
∥
2
− 1)

2
]
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is to map the random noise vector z into intermediate vectors w, which allows the generator to learn disentan-
gled, less correlated features. However, the synthesis network is different in these variants. The StyleGAN uses 
progressive growth architecture59 with adaptive instance normalization (AdaIn) applied after each convolution 
layer. However, the AdaIN is found to be a source of artefacts and is modified in StyleGAN2. Also, instead of 
progressive growth, StleGAN2 employs skip connection and residual networks in generator and discriminator, 
respectively. Here, we implement the StyleGAN2-ADA which is similar to StyleGAN2 in terms of the loss func-
tion and network architecture, but with an additional augmentation pipeline that helps to improve stability and 
avoid the overfitting problem, especially when the number of training images is limited.

Training workflow.  While different architectures can be employed in GANs, several studies suggest that using 
convolutional networks in generator and discriminator can improve the fidelity of synthetic images and training 
performance. Such a network, known as deep-convolutional GAN (DCGAN), was first introduced by39. The 
general workflow used in this study for training different GANs is shown in Fig. 2a. We extracted smaller images 
from the two samples to prepare sufficient training images. In the meta-igneous sample, a total number of 14,697 
images were created by sliding a window of the size 512 pixel2 with a stride of 256 pixels over the original large 
BSE image. For the serpentinite sample, sliding window size and stride were 1024 pixels and 200, respectively, 
providing 10,150 training images. These images were then segmented and resized to 1282 . The smaller window 
size is selected for the meta-igneous sample because we observed a significant loss of information while down-
sampling larger images to 1282 which was our target size. This target size is chosen for the purpose of comparison 
of two reconstruction methods since it was the largest size that the stochastic algorithm converged. In the fol-
lowing sections, we show that this image size is not representative, and only GANs can generate synthetic images 
of representative size. More details about the architecture and hyperparameters used for training GANs used in 
this study can be found in supplementary information.

Figure 2b displays the evolution of loss functions versus generator iterations WGAN-GP. It can be seen that 
after 250 iterations, generator and discriminator losses start converging stably. However, since a decrease in gen-
erator loss cannot be related to reconstruction quality, an average S2 curve was calculated for real and simulated 
batch images (batch size = 128) at the end of each iteration. Subsequently, the MSE between two average curves 
was used as the reconstruction quality criterion. The best results were obtained at iteration 4300 with MSE= 
1.66e−8 . The training was performed on two NVIDIA Quadro P6000 GPUs, and the curves converged after 3 h.

Results
In this section, we first compare the capability of stochastic and a well-trained GAN on BSE images of size 1282 
obtained from both samples using the workflow shown in Fig. 2a. Then, three variants of GANs are trained on 
images of size 5122 which is shown to be the representative size for both samples. The reconstruction quality is 
then evaluated in terms of the error between SMDs computed in the original and reconstructed images. In all 
cases, the average functions of 128 images are calculated and compared.

Microstructure reconstruction: GAN versus SA.  Figure 3 depicts the image realisations obtained from 
SA and the WGAN-GP and highlights the importance of capturing higher-order correlation functions for gener-
ating realistic images. The reason for selecting WGAN-GP is that its training was stable (compared to DCGAN) 
and relatively fast (compared to the StyleGAN2-ADA). Visual inspection of the reconstructions shows that this 
GAN can generate more realistic images with similar geometrical and structural features such as shape, size, and 
orientation. This is consistent with quantitative analysis of polytope functions, showing that different levels of 
morphological symmetries are reproduced in GAN-reconstructed images.

Figure 2.   Training WGAN-GP with BSE images of the meta-igneous rock. (a) Schematic description of the 
general workflow. G and D are the generator and the discriminator with architectures described in Table S1. 
(section) Training dynamics of WGAN-GP show how two losses are converging around zero with generator 
iterations. In practice, the parameters of the discriminator were updated five times for each generator’s update. 
The same workflow was used for the reconstruction of the serpentinite.
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Figure 4 presents the Pn polytope functions corresponding to different geometrical correlations. These func-
tions provide new statistical information about the microstructures. Each Pn function provides new statistical 
information about the microstructures compared to Pn−1 . For example, the P4 function shows the square cor-
relations (patterns) in the sample and adds unique higher-order information to triangular correlations ( P3H and 
P3V ), which in turn, are complementary to P2 . Figure 4a-b show the average Pn functions of the original micro-
structures in the two samples. In each case, all functions start with the same probability at r = 0 , corresponding 
to porosity (or area fractions of phases of interest), which are 0.052 and 0.352 for the meta-igneous rock and 
serpentinite samples, respectively. It can be seen that the correlation functions initially decrease as r increases. 
However, the reduction rate of each correlation function is faster than its lower-order function. This is because, 

Figure 3.   Visual comparison of real (a,b) with reconstructed images using SA (c,d) and WGAN-GP (e,f). 
Red solid lines illustrate how the lineal-path function L can describe the linear clusters and connectivity in the 
microstructures.
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for example, it is less probable that all vertices of a hexagon lie in the same phase compared to those of a triangle 
with the same edge length. Furthermore, the r value in which the curves stabilise shows the average size of the 
features of interest in the samples i.e., average pore size and fracture width, respectively. Thus, one can infer 
that the average pore size is < 10 pixels ( ∼ 0.5 μm) in meta-igneous microstructures (Fig. 4a), and similarly, the 
average serpentinite fracture width is 20 pixels ( ∼ 10 μm) as shown in Fig. 4b.

To compare and evaluate the accuracy of microstructure reconstruction, polytope functions are computed 
on 128 reconstructed images by the SA and WGAN-GP. Figure 4c,d shows the quantification of microstructures 
reconstructed via the SA method (green curves). As can be seen, while there is a good agreement between S2 
curves of the original and reconstructed images, apparent discrepancies are observed between higher-order cor-
relation functions (i.e., for n > 2 ). A small error between S2 functions was expected as this function is used as 
the target function in the SA algorithm. Figure 4e,f compares the polytope functions calculated from the recon-
structed images via WGAN-GP with the original images. The close agreements between all polytope functions 
indicate that reconstructed images with WGAN-GP contain the higher-order structural information present in 
the original microstructures. To quantify and compare the reconstruction accuracy of the two methods, the MSE 
between Fn functions derived from original and reconstructed images are calculated and presented in Table S3. 

Figure 4.   Evaluation of reconstruction performance using SMDs. Quantification of original (a,b) and 
reconstructed microstructures using SA (c,d) and WGAN-GP (e,f).
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The table highlights that the two reconstruction methods are comparable in capturing S2 . However, with respect 
to higher-order correlations, the errors computed from WGAN-GP are between two (for meta-igneous rock) to 
three (for serpentinite) orders of magnitude less than the stochastic method.

Representative elementary size.  The main question that needs to be addressed in microstructure recon-
struction is determining representative image size capturing structural elements of the system under considera-
tion. It has been shown that the models trained on small images will create pores with artefacts and unrealistic 
shapes. Although, the larger the size of the training images, the more computationally demanding and less stable 
the training.

Mosser et al.13 proposed to use average grain size and chord length as the minimum training image size. 
However, a representative elementary size (RES) analysis should be carried out for heterogeneous and complex 
samples to find an adequate training image size38. RES analysis is a methodology to determine the smallest size 
of a system that is large enough to capture the system’s heterogeneity as a whole60. RES analysis is conventionally 
performed for a particular rock property such as porosity or permeability and is used in upscaling to evaluate the 
effective macro-scale properties of rocks from a smaller yet representative sample size. Thus, the RES determined 
by this method can significantly vary depending on the property of interest. Furthermore, this approach involves 
plotting sample size versus its corresponding calculated property. A common observation is that the property 
fluctuates widely at small sizes, but it becomes insensitive to size at some point which can be considered the 
representative size, i.e., the transition between micro- and macro-scale61.

Here, we rely instead on the two-point correlation function to determine the representative image size - this 
allows for a material-dependent representative image size. Such a representative size is characteristic of porosity 
(included as volume fraction in S2 ), but it is also structurally and topologically representative, which is important 
for many post-reconstruction analyses such as fluid flow simulations. Our approach consists of computing the 
average scaled two-point correlation ( F2 ) for 30 images of different sizes randomly selected from our original 
large BSE images of both samples (Fig. 5a,b). Then, MSEs between the largest image (i.e., of size 20482 pixels) and 
smaller images at the overlapping range are calculated (Fig. 5e,f). It can be seen that the F2 curves for the images 
smaller than 512 pixels show entirely different patterns (Fig. 5c,d), leading to more errors while the MSE does 
not decrease significantly beyond 512 pixels. Thus, an image of size 5122 pixels can be considered representative 
for both samples.

Reconstruction of representative microstructures.  In this section, we present the results of repre-
sentative image reconstruction using different GANs. The DCGAN is selected as a benchmark and its perfor-
mance is compared with WGAN-GP and StyleGAN2-ADA. However, SA algorithms did not converge with such 
a large system because the microstructural degeneracy of the system exponentially increases with the number 
of pixels. This leads to a rough and complex energy landscape (i.e., model posterior or solution space) associ-
ated with SA optimisation, thereby exploring the solution space to find the minimum global energy becomes 
numerically challenging19,62.

The first column in Fig. 6 shows original and reconstructed microstructures of the pore network in meta-
igneous rock. The results indicate that DCGAN can generate realistic microstructures in terms of pore size and 
pore orientation of the system. However, on closer inspection, it can be seen that some patterns (red arrows in 
6c) are repeated. These repeated patterns are not observed in reconstructed images by WGAN-GP (Fig. 6e) and 
StyleGAN2-ADA (Fig. 6g). In addition to this visual inspection, the quantification of reconstructed images using 
SMDs confirms the superior performance of these two variants to DCGAN (see discussion).

The results of reconstructions for the complex fracture network in the serpentinite sample can be compared 
in the second column of Fig. 6. From the images, we can see that DCGAN is able to capture the main structures, 
but the connectivity of fractures is better reproduced by WGAN-GP (Fig. 6f) and StyleGAN2-ADA (Fig. 6h). 
Moreover, the trained DCGAN was not able to generate diverse images i.e., all 128 reconstructed microstructures 
were very similar. As mentioned before, this is a common challenge in training GANs known as the mode col-
lapse. Figure S1 illustrates how quantifying reconstructions using two-point correlation ( S2 ) allows us to evalu-
ate the diversity of synthetic images, which can be also monitored during training to detect this phenomenon.

Discussion
One of the main aims of this paper was to illustrate the necessity of using higher-order correlation functions, 
which are common in material science to characterise microstructures, in training and reconstruction quality 
evaluation. We argue that these functions, as an external tool to the loss function, can encode more structural and 
topological information than the metrics used in previous studies (e.g., porosity, pore area, Euler connectivity, 
etc.), with the additional advantage of being interpretable. In this section, we show how these SMDs can assist us 
in understanding microstructure and immediately detect spatial patterns and/or artefacts in the reconstructions.

Our results show that capturing these geometrical correlations is an inherent capability of well-trained GANs. 
The term inherent here refers to the fact that the GAN has not been trained to fit higher-order polytope func-
tions. The information used by GAN during the training were (1) a great number of training images, and (2) the 
MSE error between S2 of the original and reconstructed images as a stopping criterion. The above-mentioned 
capability of GANs may be explained by the fact that there are multiple layers of convolutions in the discrimina-
tor, and each of them encodes spatial information from the images in the form of feature maps. In order for this 
nonlinear set of parameters to represent our sample geometry, the training data and chosen loss functions are 
the user-supplied priors - which the GAN relies upon during training to achieve network weights that lead to 
accurately-inferred reconstructions. In that process, the generator learns to simulate images containing those 
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spatial correlations to fool the discriminator - informed by the large prior number of training images extracted 
from our imaged samples.

Reconstruction performance: GAN versus SA.  Visual inspection of the reconstructions provided in 
Fig. 3 shows that WGAN-GP can generate more realistic images with similar geometrical and structural features 

Figure 5.   RES analysis by scaled autocovariance function Fn (Eq. 2) calculated for images of different sizes. 
(a,b) Are Fn functions computed for the meta-igneous rock and serpentinite samples, respectively, where (c,d) 
show the magnified views of (a,d). Grey shadow indicates the 95 percent confidence levels around the average 
values of the largest image ( 20482 pixels). (e,f) MSEs are calculated between the average Fn of the largest image 
and smaller ones.
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such as shape, size, and orientation in both samples. This is consistent with quantitative analysis of polytope 
functions (Fig. 4), showing that different levels of morphological symmetries are reproduced by WGAN-GP.

Figure 6.   Examples of image reconstructions of meta-igneous (first column) and serpentinite (second column) 
with representative size using GAN models. (a,b) Original microstructure, (c,d) DCGAN-reconstructions, 
(e,f) WGAN-GP- reconstructions, (g,h): StyleGAN2-ADA. The red arrows in (c) indicate the pores repeated at 
specific distances ( r ≈ 128 and r ≈ 256).
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In the case of the meta-igneous rock, we observe that the pores reconstructed by SA (Fig. 3c) are circular and 
smaller than the original pores, lacking the preferred orientation apparent in the original microstructure. This 
observation is also confirmed by determining the average lineal path L computed from 128 images, as presented 
in Fig. 7. Although there is a close agreement between the L of original and reconstructed images (Fig. 7a), zoom-
ing into the flat part of the curves (Fig. 7c) reveals that SA has underestimated the L (i.e., the linear connectivity 
of pores) in the system. In particular, instead of the elongated pores in the original images, round-shaped isolated 
pores of smaller diameters are reconstructed. Figure 8 compares the probability distributions of the area and 
orientation of the major axis of pores in the real and reconstructed images of the meta-igneous rock sample, 
computed by the label analysis tool within the Thermo Fisher Scientific AVIZO software. From Fig. 8, we can 
conclude that WGAN-GP reproduces pores of similar size and orientation to the natural system, whereas there 
is a significant difference between SA-reconstructions and the natural microstructure.

Moreover, it is also apparent from Fig. 3 that the SA-reconstructed images are entirely different from the 
original ones in serpentinite fracture networks. Specifically, circular pores of large diameters are reconstructed 
instead of reproducing a network of fractures with varying widths and orientations (Fig. 3d). This observation 
is in agreement with our earlier results, which show that SA overestimates all higher-order polytope functions 
(Fig. 4b) and lineal-paths (Fig. 7d) with errors up to three-order of magnitudes greater than WGAN-GP, leading 
to reconstructed images that have no resemblance to the original microstructure.

Unrealistic reconstructions obtained by the SA are due to the microstructural degeneracy of the S2 function, 
i.e., a number of different microstructures can be compatible with the given target function S2 (Eq. 3), resulting 
in a near-zero energy62. This means that the S2 does not contain sufficient information to characterise the system 
uniquely - particularly with regards to higher-order structures. However, it can be seen that SA performs much 
better in the meta-igneous rock sample than in the serpentinite sample. This may be explained because the ser-
pentinite microstructure is of higher geometrical complexity, i.e., it contains higher-order correlations at different 
length scales (Fig. 4b). In contrast, there are not many higher-order correlations in the porous meta-igneous rock 
system at longer ranges (Fig. 4a), in which polytope correlations become zero at short ranges.

Figure 7.   The average lineal-path functions L calculated from real (blue), SA-reconstructed (green), and GAN-
reconstructed (red) images. Grey areas in (c,d) are 95 percent confidence bounds around real curves. A better 
match between curves is derived via GAN reconstructions in both samples. CL = confidence level.
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In addition to higher accuracy, the computational reconstruction time of GANs is much less than for the SA 
method. This time difference is expected given the nature of stochastic optimisation versus the machine-learning 
approach. While stochastic optimisation yields a single reconstruction by numerically sampling a model posterior 
distribution iteratively (conducted independently for each reconstruction), GAN directly yields samples from 
the model posterior once trained. In the case of GAN, the training data, the choice of loss functions and archi-
tecture parameters, and the upfront time spent in training yield an implicitly-built prior estimator in the form of 
trained network weights - allowing for near-instantaneous inference/reconstruction after training. The training 
process involves finding the optimal hyperparameters for both generator and discriminator, which requires high-
performance computational resources such as modern GPUs. Although training a GAN can be challenging, one 
can save the trained generator and reuse it to generate an unlimited number of synthetic microstructures swiftly. 
This is an essential advantage of GANs over the classical stochastic methods. For example, the time required for 
training our GAN on 1282 meta-igneous images was about 3 h using two 24 GB NVIDIA Quadro P6000 GPUs. 
However, after training, it only needed 4 seconds to reconstruct 128 images, whereas the reconstruction time 
of the same number of images via SA was about 2 h on a system with 24 CPUs (Intel Xeon Gold 6136, 3 GHz), 
showing an acceleration of 1800 times.

Reconstruction analysis of GANs.  Figure 9 illustrates the quantification of original and reconstructed 
meta-igneous microstructures via SMD curves ( P4 and P6 are not shown as they contain little information i.e., 
they become zero at small r). The strong correlations observed in S2 curves at r ≈ 128 and r ≈ 256 reveal that 
some patterns are spatially repeated in the synthetic images by DCGAN, which is also illustrated by red arrows 
in Fig. 6c. Particularly, the peak at r ≈ 256 shows that more pores are generated at the edge of the image. How-
ever, in agreement with visual inspection (Fig. 6), there is a good match between the S2 curves at small ranges 
in all reconstructions, showing that the pore size and pore shape have been captured by all GANs. Despite the 
similar pore size, the lineal path curves indicate that WGAN-GP underestimates the connectivity i.e., there are 
black pixels within the pores, making it less probable that a random line lies entirely in the white phase. This 
artefact is known as the checkerboard pattern and can be observed by zooming in Fig. 6e. This was not unex-
pected as it might happen when the generator consists of transpose convolution layers as in WGAN-GP. Apart 
from the connectivity, other curves confirm the good match between WGAN-GP and StyleGAN2-ADA with 
original structures in the sample while DCGAN curves exceed the 95 percent confidence level at multiple ranges.

In the case of serpentinite in Fig. 10, the average SMDs obtained from WGAN-GP and StyleGAN2-ADA 
are within the confidence bounds of the original ones, while DCGAN curves go off the confidence bounds at 
high-order correlations. Here, we can see that the DCGAN underestimates the linear connectivity of fractures 
while other GANs better match the lineal-path curves (Fig. 10b), consistent with Fig. 6 and the MSE errors 
presented in Table S4. However, an increased correlation is also observed in StyleGAN2-ADA curves (orange 
curves) at large ranges showing that more fractures (or in general white pixels) are generated at the edges of 
images than the original ones (see Fig. S1g). As mentioned before, mode collapse is another common failure 
case in DCGAN due to the BCE loss function (Eq. 5), and it happens when the generator collapses to a set of 
fixed or very similar outputs. Figure S1c shows 64 random images generated using the trained DCGAN. It can 
be seen that all the images are very similar, which is also apparent from Fig. S1d showing that the S2 curves of 
reconstructed images via DCGAN are very close to each other. On the other hand, we can see that S2 curves 
from WGAN-GP and StyleGAN2-ADA cover the whole range of real image correlations, indicating that these 
two models are able to generate not only high-fidelity but also diverse synthetic images. Table S4 also reports 
the MSE errors between original and reconstructed SMD curves, which confirms the superior performance of 
StyleGAN2-ADA over other variants.

Figure 8.   Comparison of real and reconstructed images in terms of pore properties in the meta-igneous rock. 
(a) Probability density of the pore area was calculated from 128 randomly sampled images. Dashed lines show 
the estimated probability density functions fitting the data. (b) Distribution of pore orientations between − 90 
(clockwise) and + 90.
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In terms of computational time, it took about 15 and 33 h for DCGAN, and WGAN-GP to converge and give 
the best model on serpentinite images of resolution 512, respectively. Although the same learning rate ( 1e−4 ) 
was used in both models, a longer training time was expected in WGAN-GP because D was updated 5 times 
for each G update in practice. Furthermore, the gradient penalty term used in the loss function requires one 
more forward and backward propagation. While training with a larger learning rate makes the training faster, 
our experiments show that WGAN-GP is sensitive to learning rate and becomes unstable at larger values. On 
the other hand, the training time for StyleGAN2-ADA was more than 80 h which stems from additional layers 
in mapping and synthesis of the networks (see42 for more details). Another reason is that more regularization 
terms were used in StyleGAN2-ADA involving R1 regularization for D and path length regularization for G. 
The latter encourages a smoother G which means that a specific step size in w space results in a fixed change in 
the generated images. Another advantage of StyleGAN2-ADA over WGAN-GP was that we could successfully 
train it with images of higher resolution (1024) which was not possible in the case of other variants with our 
computational resources. This is because of skip connection and residual architecture used in G and D, respec-
tively. Finally, the adaptive discriminator augmentation (ADA) pipeline in which allows training with limited 
data. For example, in the case of serpentinite, we trained StyleGAN2-ADA with 5600 real images without the 
problem of overfitting (which is common when training images are not sufficient) while 9100 images were used 
for training DCGAN and WGAN-GP.

Conclusions and outlook
We investigated the use of three variants of GANs (DCGAN, WGAN-GP, and StyleGAN2-ADA) to reconstruct 
two-dimensional microstructures of natural rocks. We evaluate and compare their performance in retrieving 
highly-complex geometries accurately by quantifying higher-order statistical correlation functions. As inputs, 
we used electron microscopic images of two heterogeneous systems. The first sample is from an altered igneous 
rock with a mostly isolated but oriented pore network generated during fluid-driven mineral replacement. The 
second sample is from a serpentinised peridotite characterised by a complex and connected fracture network 
containing different geometrical patterns. Our results show that GANs are capable of capturing and reconstruct-
ing these topologically complex microstructures without prior statistical information - provided one takes steps 
to ensure training stability and to perform quality control after inference with the use of high-order descriptors.

Overall, for the first time, we carry out a comprehensive analysis of high-order SMDs for comparing the 
results of different GANs showing the strength of these tools in both training and inference time. One of the 

Figure 9.   Quantification of original and reconstructed meta-igneous microstructures via different GANs. P4 
and P6 are not presented due to insignificant amounts of information.
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major challenges in training GANs is that, in contrast to supervised learning, the value function (Eq. 5) is not 
particularly useful to stop training. Our findings show that the proposed SDMs can be computed for a batch of 
images during training and be monitored for evaluating the accuracy of GANs in capturing spatial patterns and 
detecting failure cases and artefacts. Computing each SMD can be perceived as encoding an image into a 1D 
vector (r is the index of pixels and remains unchanged for the same image size). Then, a distance metric (e.g., 
MSE) between vectors of original and synthetic images can be calculated and used as criteria to stop training or 
save generator’s weights ( θ(G) ). While our images were binary, this approach can also be utilized in multiphase 
systems. In this case, correlation functions should be computed for each phase to be compared with those in real 
microstructures. The drawback of incorporating descriptors for evaluation during the training is that it makes 
the training time longer, especially for images larger than 512 pixels. However, one can start such an evaluation 

Figure 10.   Characterising original and reconstructed serpentinite = − microstructures using different GANs. 
95 percent confidence levels around the average values of real microstructure are shown by grey shadow.
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when training (generator and discriminator losses) stabilizes, and perform it hierarchically i.e., calculating 
higher-order correlations only if there is a good match between lower-order curves.

Also, we showed that the proposed descriptors can be employed in inference time to not only validate GANs’ 
performance quantitatively but also interpret the synthetic microstructures. In other words, the proposed SMDs 
show not only how much but also how generated images differ from the original ones. The S2 and Minkowski 
functionals are traditional metrics used by previous works to validate GANs. We showed and discussed the 
inadequacy of S2 (Figs. 3 and 4) in the case of complex microstructures, illustrating that two microstructures 
can have almost identical S2 yet be structurally and topologically different. Although Minkowski functionals are 
useful metrics in three dimensions for calculating morphological properties, the properties that can be derived 
from 2D images are area, boundary length, and 2D Euler connectivity. Our proposed statistical tools, however, 
provide more information to evaluate reconstructions more precisely. Evaluation of these higher-order spatial 
correlation functions enables us to validate that different geometrical patterns (i.e., two-point, horizontal and 
vertical triangle, square, and hexagon patterns) with all possible edge lengths in generated microstructures match 
the original patterns. However, the highest order we should compute depends on the complexity of the micro-
structure. For example, while there is not much spatial information in P4 and P6 in the case of the meta-igneous 
sample (i.e., these curves drop quickly to zero at small ranges), complex fracture networks in the serpentinite 
contain such patterns, making it necessary to take account of these higher-order statistics. Moreover, as average 
polytope functions are calculated, a bump at a certain distance in the average curve shows that a correlation 
exists at that distance in the original microstructure which should be captured by the reconstruction method as 
much as possible. On the other hand, we should avoid generating repeating patterns if they are not present in 
the real microstructure (Fig. 9). It should be mentioned that different metrics such as frechét inception distance 
(FID) and precision and recall (PR)42are common in computer vision for quality assessment. However, they 
are not interpretable as SMDs, and usually need a large dataset to compare the similarity between two distribu-
tions (i.e., Pdata and Pmodel ) in high dimensions. Hence, they only show the general performance of the model 
to match the real data and do not ensure that each reconstructed image has the same structural and topological 
properties as your real images.

Last, based on the SMDs, we propose a novel methodology for determining the representative image size 
which is one of the first steps that should be taken in the image reconstruction problems. The representative 
image size determines the size of the training images, which in turn, is an important factor in selecting the GAN’s 
architecture and estimating the required computational resources. Our method is more comprehensive than the 
previous approaches - in terms of how it adapts to the properties of samples in question - because it considers 
the structural and morphological information captured by the selected SMD(s) used for the analysis.

The success of applying GANs for image reconstruction in recent years has resulted in increased interest and 
the emergence of new variants of GAN with new capabilities that can be easily incorporated due to the flexibility 
of GANs. Examples are Slice-GAN35,37, BicycleGAN36, and slice-to-pore GAN38, which all have been developed 
for 2D to 3D image reconstruction where 2D images of orthogonal planes are used to generate synthetic but 
statistically equivalent 3D microstructures. This type of GANs receives increased attention because 2D images 
are easier and more affordable to acquire and usually have higher resolution and a larger field-of-view (FoV). 
Moreover, patch-based GANs have been introduced to improve the reconstruction quality and the control of the 
local and global features. Chun et al.29 implemented a patch-based DCGAN for 2D reconstruction of heterogene-
ous energetic materials, and showed that it is possible to better control the micromorphology of reconstructions 
by introducing two input vectors by which one can manipulate the local stochasticity and global morphology of 
microstructure. This work was then expanded by34 by adding an actor-critic (AC) reinforcement learning to 3D 
DCGAN for generating microstructure with user-defined properties.

Despite high-quality image generation, much less is known about the properties of the latent space (z-space), 
for example, how image attributes are formed and organised in the latent space of a well-trained GAN, and the 
correlation between these attributes. Also, there is still uncertainty about how GANs can link the latent space to 
image semantic space and how the latent space can be interpreted and used for image manipulation63. The reason 
is that the generator in GANs is not trained to be invertible, i.e., a two-way mapping between the dataset (image 
space) and the latent space is not established during adversarial training. Instead, GANs learn to produce high-
quality synthetic images indirectly by optimising the generator’s weights to imitate the original dataset according 
to feedback from discriminator. Learning such mapping between latent and image space allows us to explore 
the latent space and to manipulate realistically, edit, and combine the features in the generated image. Several 
studies have attempted to address this challenge by using inverse mapping, i.e., from image space to latent space. 
More information about such methods, known as GAN inversion, can be found in the comprehensive survey 
by64. Other approaches focus on coupling GANs with other generative models, such as variational autoencoder65. 
Employing such methods can be a fruitful area for future works to investigate how higher-order information 
(such as polytope functions) are encoded by GAN in latent space and intermediate semantic space, and how we 
establish a mapping between this information and macroscopic properties of rock.

We show that coupling SMDs, initially developed in material science, with deep learning equips us with a 
powerful set of tools to tackle wide-ranging geoscience research questions where the quantification of mor-
phology-dependent rock properties is critical. This includes the generation of a wide library of digital samples 
from real samples to assess the statistical significance and/or variability of rock transport properties, e.g., in the 
presence of multi-phase flow. Moreover, our work enables new upscaling schemes, i.e., to generate representa-
tive domains from high-resolution images of small complex samples, and hence to couple microstructures to 
macroscopic phenomena as well as to enable the reconstruction of 3D microstructures when only 2D images are 
available. In both applications, higher-order characterisation is essential to ensure that the artificially-generated 
images share the same structural and topological properties. A particular example based on the rock micro-
structures studied here is the application of deep-learning-based image reconstruction to reactive fluid flow in 
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which, e.g., a connected pore network exists at the time of reaction. However, most pores are isolated after the 
reaction ceases2,66, as observed in the meta-igneous rock system. In such a situation, GAN inversion methods 
may realistically reconnect the isolated pores back to the time of reaction. In our future work, we try to couple 
the StyleGAN2 inversion method with SMDs to capture transient processes and the microstructure evolution 
occurring within the solid Earth using time-resolved 3D imaging.

Data availability
Original segmented BSE images and the data to reproduce the figures as well as python codes are available 
at Utrecht University Yoda data repository accessible via: https://​public.​yoda.​uu.​nl/​geo/​UU01/​ACSDR4.​html. 
Python codes are also accessible via https://​github.​com/​hamed​iut/​GeoWG​AN-​GP.
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